
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

310

An Optimized Scheme for Vertical Partitioning of a Distributed
Database

 Eltayeb Salih Abuelyaman

CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia

Summary
This paper proposes a scheme for vertical
partitioning of a database at the design cycle.
When a partition is formed, attributes are
divided among various systems or even
throughout different geographical locations.
This may result in situations where a query
may include attributes that are located at
different sites. The scheme determines the hit
ratio of a partition. As long as it falls below a
predetermined threshold, the partition is
altered. Although no proof is provided,
experimental data showed that moving an
attribute that is loosely coupled to a different
subset within a partition improves hit ratio. A
simulator was built to test the proposed
algorithm. Results of various simulation runs
are consistent with the hypothesis. That is, the
proposed algorithm enables a reliable
distribution of newly designed database tables
across multiple storage devices based on a
predetermined hit ratio. The scheme is
independent of frequencies of queries thus,
can be used as a stepping stone for its
counterpart, the dynamic partitioning
technique.

Keywords: database, partition, frequency, query,
reflexive, symmetry, transitivity, hit ratio.

1. Introduction

Distributed and parallel processing is an efficient
way of improving performance of Data-Base
Management Systems (DBMSs) and applications
that manipulate large volumes of data. Such
improvement comes from limiting queries only to
data that are relevant to their respective
transactions. This is one of the main design goals
of distributed databases according to [2].

The primary concern of DBMS design is the
fragmentation and allocation of the underlying

database. The distribution of data across various
sites of computer networks involves making
proper fragmentation and placement decisions.
The first phase in the process of distributing a
database is fragmentation which clusters
information into fragments. This process is
followed by the allocation phase which distributes,
and if necessary, replicates the generated
fragments among the nodes of a computer
network. The use of data fragmentation to improve
performance is not new and commonly appears in
file design and optimization literature [3].

Partitioning based on attributes has been studied
earlier in [3], [4], [6], [8]. Stocker and Dearnley
discussed implementation of a self-reorganizing
DBMS that carries out attribute clustering [9].
They showed that it is beneficial to cluster
attributes of a DBMS where storage cost is low
compared to the cost of accessing subfiles. Such is
the case because increases in storage costs will be
offset by savings in access cost. Hoffer developed
a non-linear, zero-one program which minimizes a
linear combination of the costs of: storing,
retrieving and updating, with capacity constraints
for each file [6]. Navathe et al used a two-step
approach for vertical partitioning. In the first step,
they used the given input parameters in the form of
an Attribute Usage Matrix (AUM) to construct an
Attribute Affinity Matrix (AAM) for clustering
[8]. After clustering, an empirical objective
function is used to perform binary partitioning
iteratively. In the second step, estimated storage
cost factors are considered for further refinement
of the partitioning process. Further details about
AUM and AAM matrices will be provided in the
next paragraph.

Cornell and Yu extended Navathe et al approach to
decrease the number of disk accesses for optimal
binary partitioning [5]. Their extension involved
specific physical factors such as: the number of
attributes, their length and selectivity, the
cardinality of the relation and so on. Navathe and
Ra developed a new algorithm that follows graph

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

311

theory partitioning techniques [7]. Their algorithm
starts from the AAM matrix, which is transformed
into a graph called the Affinity Graph (AG). An
edge in AG is labeled with a weight that represents
the affinity between its vertices, where: vertices
represent attributes; affinity between vertices
represents the number of queries in which the
attributes occurred simultaneously. For the interest
of clarity of presentation we will define what an
AAM matrix is. For more details, interested
readers are referred to reference [8]. Basically, an
n x n AAM matrix is one whose AAM(i, j) entry
represents the number of queries that
simultaneously access the attributes represented by
i and j. Based on the AAM, an iterative binary
partitioning method has been proposed in [5 and
8]. The authors first clustered the attributes and
then applied empirical objective functions and/or
mathematical cost functions to perform
fragmentation.

The partitioning algorithms suggested in the
literature suffer from various limitations that will
complicate the task of a Data Base Designer (DBD).
These limitations are:

1. A DBD has to have sufficient empirical data on

Frequencies Of Queries (FOQ).
2. FOQ is a function of several variables that

include time, users, and future needs of an
organization.

3. Attributes are partitioned based on FOQ.

The first limitation makes the partitioning
inapplicable to newly designed database schemas.
The second applies to periodical queries the likes of
those for student records and taxes databases.
Furthermore, changes in organizational structures or
business requirements may call for additional
attributes. The third limitation stalks from the
natural dynamicity of FOQ.

The common denominator in all three limitations is
FOQ. Therefore, the author herein classifies all
partitions that are based on FOQ as dynamic. On the
other hand, the only way for a partition to be
independent of FOQ is when it is based on a
database schema. In this case it will be logical to
classify it as static. The proposed partition is static
and will be called StatPart.

The rest of this paper is organized as follows: In
the next section we will introduce the StatPart. In
section 3 we will discuss simulation of StatPart. A
comparison of performance of StatPart with a

benchmark is given in Section 4. The conclusion is
presented in sections 5.

2. StatPart
In general, designers very frequently delay
important steps to the end of design cycles. The
design of efficient database systems is not an
exception because database partitioning is based on
FOQ. That is, data must be collected from a large
number of queries before partitioning. To
circumvent such a constraint, dependency on FOQ
must be eliminated. One way to do so is to perform
database partitioning at the design phase and
immediately after completion of the schema.
Conveniently, partitioning can be decided even
before database tables are populated. For such a
partition, which we classified as static, the DBD
must:

1. Gain sufficient knowledge on the business

requirements of an organization.
2. Gather necessary and sufficient information

about intended usage of the database to
determine the set of queries that would be of
immediate use. Henceforth, this set will be
called the Set of Kickoff Queries (SKQ). This
step requires thorough understanding of the
business requirement of an organization.

3. Gather information about future plans of an
organization to determine additional queries
that may be needed in the future. This set will
be referred to as the Set of Future Queries
(SFQ).

For illustration of the proposed static partitioning,
the following definition will be necessary.

Definition 1:

a) Na : the total number of attributes.
b) Nk : the number of queries in the set SKQ.
c) Nf : the number of queries in the set SFQ.
d) SQ: the union of the set SKQ with SFQ.
e) SA = {A1, A2… ANa}: the overall set of

attributes.
f) SQ = {Q1 , Q2, … , QNq} : the overall set of

queries.

In the next section, we will discuss a suggested
simulator for the static partitioning.

3. Simulation of StatPart

Our proposed simulator will enable a DBD to
partition a database at its infancy, that is, at its

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

312

schema level. The output of the simulator may
range from 0 to 100 percent where 0 percent implies
that the schema cannot be partitioned and 100
percent means that every attribute is placed in a
partition by itself. Both percentages are undesirable
and the latter is unacceptable. Along with the
schema, a complete set of queries and parameters
defining the database must be fed into the simulator.
These parameters will be discussed hereafter as
necessary.
The simulator has the following three modules.
Each of the modules is discussed separately.

a) reflexivity
b) symmetry
c) transitivity

3.1 The reflexivity module
The module prompts a user to enter values for each
of the first three parameters in Definition 1. The
module then prompts the user to enter a percentage
C that controls the number of attributes appearing in
each query. If the designer enters the value 30 for
example, then the module will generate a value of 1
with probability of 0.3 and a value of 0 with
probability of 0.7. That is, if the total number of
attributes is 10 then on the average a query would
include three attributes. The reflexivity module will
then generate a matrix that relates attributes to
queries. For C = 30 and (Na , Nk , Nf) = (8,5,3), we
found the output challenging enough to use for the
interest of the discussion. The output is shown on
Table 1 below. Henceforth, such output will be
called the Reflexivity Matrix (RM).
In an RM matrix, the total number of 1’s on a
column gives the degree of reflexivity of the column
header’s attribute. For example, in table 1 the
reflexivity of attribute B is equal to 3.

 Attribute
Query

A B C D E F G H

a 0 1 0 0 1 0 1 1
b 0 0 1 1 0 1 0 0
c 1 0 1 1 0 0 0 0
d 0 0 0 1 1 1 1 1
e 0 1 1 0 1 1 1 0
f 0 0 0 0 0 0 0 0
g 0 1 1 0 0 1 1 1
h 0 0 1 1 1 1 0 0

Table 1. A randomly generated Reflexivity
Matrix

Once again, a 0 entry on the table indicates that the
row header query does not involve the column

header attribute. One can see that RM [d, F] is
equal to 1. The table provides the relationship
between queries and attributes. However, it doesn't
directly provide desired relationships among
attributes. The RM matrix, however, will be used as
input to the second module, the symmetry module,
which will produce the desired relationship.

3.2 The symmetry module

The following equations were used to compute the
Symmetry Matrix (SM) on table 2 which defines
the desired relationships among attributes.

SM [j, j] = Σ RM[i, j] for j = 1 to Na
(1)

SM [i, j] = Σ RM (k, i)*RM (k, j)

For i = 1 to Na (For j = 1 to Na) i ≠j (2)

Table 2. Symmetry Matrix generated from the
Reflexivity Matrix and equations 1 and 2

Equation 1 adds up column entries for each attribute
j in table 1 to determine its reflexivity. The diagonal
entries on an SM matrix give the reflexivity
degrees of attributes. Equation 2 finds the
intersection between each pair of attributes i and j.
For example, in table 1, if we performed entry by
entry multiplication of attributes i = E =
(1,0,0,1,1,0,0,1)T and j = F = (0,1,0,1,1,0,1,1)T the
result would be i*j = (0,0,0,1,1,0,0,1)T. Entries in
the result add up to 3 which is the value stored in
both SM[E,F] and SM[F,E] of table 2.

If the matrix is transformed into a graph, then
without loss of generality we assume attribute K to
be represented by vertex V. The weight of the edge

 Attribute
Attribute

A B C D E F G H

A 1 0 1 1 0 0 0 0
B 0 3 2 0 2 2 3 2
C 1 2 5 3 2 4 2 1
D 1 0 3 4 2 3 1 1
E 0 2 2 2 4 3 3 2
F 0 2 4 3 3 5 3 2
G 0 3 2 1 3 3 4 3
H 0 2 1 1 2 2 3 3

Na

 i=1

Na

 k=1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

313

connecting V with a vertex W is given by the
symmetry value of attribute K with the attribute
represented by W. On the other hand, reflexivity for
an attribute indicates that an edge starts from, and
ends at the same vertex.

It is practical to assume that each attribute is
included in at least one query. Consequently, each
must have a reflexivity degree of at least one. From
table 1 in the previous section, the reflexivity of
attribute B was found equal to 3. This reflectivity
degree is stored in SM[2,2] of table 2. Every
diagonal element gives the reflectivity degree of its
column header’s attribute. A non-diagonal entry of
SM gives the symmetry between the row and
column headers and is equal to the number of
queries that include both. The SM matrix can be
thought of as a data structure for a graph.
Consequently, for the corresponding graph, the
symmetry is modeled by an edge connecting the two
vertices (attributes). The SM matrix is itself
symmetrical around its diagonal. At this point, we
are ready to discuss the transitivity module which
acts upon the output of the symmetry module.

3.3 The transitivity module
Before proceeding with further discussions, we
will summarize the above concepts in the
following definitions.

Definition 2

a) Reflexivity: Reflexivity of an attribute Z
represents the number of queries that reference Z.
In an RM matrix, the number of 1’s on the column
of attribute Z represents the degree of reflexivity
of Z. On the corresponding graph, Reflexivity is
represented by an edge that loops back to the same
vertex and the Degree of Reflexivity (DR) is the
label on the edge.

b) Symmetry: Two attributes are called symmetric
if there is at least one query that includes both. On
an SM's corresponding graph, symmetry between
any two vertices U and W is represented by an
edge connecting U to W. The Degree of Symmetry
(DS) between U and W is represented by the label
on their edge, and corresponds to the number of
queries that include both.

Prior to discussing the algorithm, we will state that
for any attribute (or vertex) V, its DR will always
be greater than or equal to each of the DS values
with neighboring vertices (attributes). This is true
because from definition 1 above, DR gives the

number of queries referencing V while for any other
attribute W; DS gives the number of queries
referencing both V and W. The transitivity module
receives the SM matrix as input and produces the
required partition as output. However, before
discussing the transitivity module, we will first plan
a strategy that sets the mechanism for the algorithm
and then suggest tactics to optimize its output.

3.4 Strategy and tactics
In general, the success of an algorithm depends on
the strategy that sets criteria for choosing the best
start point and the smartest move thereafter. Going
back to the graph theory terminology, one must first
choose the best vertex to start with, and then pick
the most appropriate edge to traverse in search for
an optimal partition. Equally, our strategy will focus
on selecting the attribute to start with, which is a
function of the DR, and then picking the best
neighbor to reach, which is a function of DS.

To that end, there are four different possibilities:
{(+DR,+DS);(+DR,–DS);(–DR,+DS);(–DR,–DS)},
where +DR (+DS) represents the maximum degree
of reflexivity (symmetry) of the remaining vertices
(attributes). Similarly, –DR(–DS) represents the
minimum degree of reflexivity (symmetry). Based
on our empirical data, we determined that the most
appropriate combination is the (–DR,+DS) pair.

The algorithm starts with a vertex V that satisfies
(–DR). We will call V the current vertex. The
algorithm then finds a vertex with +DS among V’s
neighbors. Once such a neighbor is found, both V
and its neighbor are placed in a subset. The
neighbor would then become the current vertex.
The process would continue to search neighbors of
the most recent current vertex in a similar manner
until a cycle is formed or no more vertices are left.
The algorithm will continue to produce new subsets
in the same manner and ends when all vertices are
handled. The resulting subsets are disjoint and
together represent the partition.

The next step is to compute the partition’s hit ratio.
A hit ratio of one hundred percent occurs when all
attribute are in a single set. The only time this is
true is when the schema cannot be partitioned. A
DBD is responsible for setting up a partition’s hit
ratio threshold.

The tactic of the algorithm is to look for the most
loosely coupled attribute in the partition and move it
to a different subset. The new hit ratio is then

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

314

computed and checked against the threshold. The
process is continued until an acceptable hit ratio is
achieved. A simplified version of the partitioning

algorithm is shown on figure 1 below.

 Figure 1. A simplified version of the partitioning
algorithm

3.5 Illustration of the tactics

To illustrate the process, we used the SM on table 2
to produce the partition P.
Initially As is equal to {(A, B, C, D, E, F, G, H)}.
The following are step by step execution of the
algorithm.

(a) S = {A} and As = {(B, C, D, E, F, G, H)}
(b) S = {(A,C)} and As = {(B, D, E, F, G, H)}
(c) S = {(A,C,F)} and As = {(B, D, E, G, H)}
(d) S = {(A,C,F,D)} and As = {(B, E, G, H)}

P = { (A, C, D, F) ; (B, E, G, H) }

The hit ratio for the partition can be computed
from the following table which shows the number
of times an attribute is associated with its subset
mates (hits) verses the number of times it is
associated with others that are not in its subset
(misses).

 A B C D E F G H Total
hit 2 7 8 7 7 7 9 7 54
miss 0 4 7 4 7 10 6 4 42

Table 3. Attribute associate for P

To demonstrate how the entries of table 3 are
computed, let us examine the second row in table 2,
which gives association of attribute B. The valid
nonzero entries are (2, 2, 2, 3, 2) falling under
column headers (C, E, F, G, H) respectively. These
entries give the nonzero DS values of neighbors of
attribute B. The partition that we obtained in the
first round which was given above, is repeated for
convenience of the reader as follows:
P = { (A, C, D, F) ; (B, E, G, H) }
Now the hit for attribute B is found by adding its
DS values with members of its subset [E, G, H]. In
this case, the hit value is (2+2+3) or 7. Since B is
also associated with [C, F] who are not members of
its subset. The miss value is (2+2) or 4. Table 3
shows under B’s column these values.

A closer look at table 3 reveals that F is the attribute
with the worst hit to miss ratio. That is, F is loosely
coupled with its subset mates. If the threshold is set
at 60% then the partition P must be altered. Moving
F to the second subset in the partition would reverse
the worst attribute hit ratio on the table from (7:10)
to (10:7). Now F is tightly coupled with its new
subset mates. However, the overall impact of this
change is still unclear. The new hit ratio for the
altered partition P’ must therefore be computed.
Table 4 shows these values where P’ is:

 P’ = { (A, C, D) ; (B, E, F, G, H) }.

 A B C D E F G H Total
hit 2 9 4 4 10 10 12 9 60
miss 0 2 11 7 4 7 3 2 36

Table 4. Attribute associate for P’

Table 4 reflects an improvement of the partition’s
hit ratio from 56.3% to 62.5%. Each attribute’s
hit(miss) value in table 3 differ from its
corresponding value in table 4 by the DS the
attribute shares with F. The strategy can now be
summarized as follows in figure 2.

1. Produce a partition from an SM using the

criterion (–DR, +DS) and figure 1.
2. Compute the partition hit ratio (PHR)
3. If PHR is less than the predefined threshold

then
a) Find the attribute with the minimum hit to

miss ratio and move it to a different subset
using the attribute association table in the
process

b) Repeat from step (2)
4. End partitioning

a) From the SM matrix, select the attribute V that

corresponds to –DR. Add V to the temporary

subset S, Remove V from the set of attributes As

b) From the attributes adjacent to the current V

select the attribute that corresponds to +DS, say

attribute W. Remove W from As and add it to S

c) repeat step (b) but with W as the new V to find

a new W. The process continues until the set As is

empty or a cycle is formed

d) If a cycle has been formed then copy the

attributes in S as a subset in the partition set P

e) repeat from step (b) if As is not empty and a

new V with –DR exists

f) The subsets in P form a partition

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

315

Figure 2. Partitioning Strategy

4. StatPart VS a benchmark

We will use the Attribute Usage Matrix (AUM) in
reference [8] as a benchmark and compare the
results of their example with the output of our
simulator. Their AUM matrix is shown on table 5
below.

Table 5. The AUM matrix from reference[8]

One can see that the AUM matrix is quite similar to
the RM matrix in table 1. First, we will use our
symmetry module to produce an SM matrix which
would serve as input to the transitive module. The
latter will produce a partition that can be compared
with the partition in the reference [8].

Based on the AUM matrix as input, the output of
the symmetry module is shown in table 6 below.
The table will be referred to as the Symmetry
Matrix for AUM. Entries of SM are computed
using equations 1 and 2.

Table 6. The SM matrix for the AUM matrix

Now that we have the SM matrix for AUM, we will
use it as input to the transitivity module to
determine the partition. As in the previous section,
we used the algorithm in figure 1 to produce a
partition. We call the resulting partition Q to
distinguish it from the partition in the previous
example.
Q = { (A, B, C, E, G, H, I) ; (D, F, J) }

The next step is to compute the partition’s hit ratio.
In a similar manner as before, table 7 is produced as
the attribute association table for Q.

 A B C D E F G H I J Total
hit 12 14 15 2 12 2 13 14 15 2 101
miss 0 0 3 6 0 6 0 0 3 4 22
Table 7. Attribute associate for

The partition hit ratio is 82%, which is above the
threshold of 60%. The partition for the AUM
matrix from reference [8] is shown in figure 3
below. Replacing the numbers from 1 to 10 in the
figure with the letters A through J we can see that
the two partitions are identical. The figure suggest
that (4, 6, 10) should be in a subset while the rest
in another. Equally, our partition put (D, F, G) in a
different subset than that of the rest.

Figure 3. Partition from reference [8]

An important point to mention is that the algorithm
presented in this paper is a simplified version of
the one used for simulation. Few steps are not
included in this document because the reader can
easily figure them out using his/her imagination
and creativity.

 Attributes
Queries

A B C D E F G H I J

a 1 0 0 0 1 0 1 0 0 0
b 0 1 1 0 0 0 0 1 1 0
c 0 0 0 1 0 1 0 0 0 1
d 0 1 0 0 0 0 1 1 0 0
e 1 1 1 0 1 0 1 1 1 0
f 1 0 0 0 1 0 0 0 0 0
g 0 0 1 0 0 0 0 0 1 0
h 0 0 1 1 0 1 0 0 1 1

 Attributes
Attributes

A B C D E F G H I J

A 3 1 1 0 3 0 2 1 1 0
B 1 3 2 0 1 0 2 3 2 0
C 1 2 4 1 1 1 1 2 4 1
D 0 0 1 2 0 2 0 0 1 2
E 3 1 1 0 3 0 2 1 1 0
F 0 0 1 2 0 2 0 0 1 2
G 2 2 1 0 2 0 3 2 1 0
H 1 3 2 0 1 0 2 3 2 0
I 1 2 4 1 1 1 1 2 4 1
J 0 0 1 2 0 2 0 0 1 2

2 2

2

3
3

4

2 2

2

9

3

5
8

2

7

1

4 10

6

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

316

5. Conclusions

This paper proposed a vertical partitioning
algorithm for improving the performance of
database systems. The algorithm uses the number
of occurrences of an attribute in a set of queries
rather than the FOQ accessing these attributes.
This enables the fragmentation of a database
schema even before its tables are populated. Thus,
a database designer will be in a position to perform
partitioning and consequent distribution of
fragments before the database enters operation. A
simulator for the algorithm has been written.
Results of simulations were consistent with those
obtained using frequency based partitioning
algorithms. The significant advantage of the
proposed algorithm is that a database designer
doesn’t have to wait for empirical data on query
frequencies before partitioning a database.

References

[1] H. Abdalla and M. AlFares, “Vertical Partitioning

for Database Design: A Grouping Algorithm”, to
appear in SEDE 2007.

[2] M. Özsu and P. Valduriez, Principles of Distributed

Database Systems, 2nd edition (1 st edition 1991),
New Jersey, Prentice-Hall, 1999.

[3] M. Babad. A record and file partitioning model.

Commun. ACM 20, 1(Jan 1977).

[4] F. Baião “A Methodology and Algorithms for the

Design of Distributed Databases using Theory
Revision”
D.Sc. Thesis, COPPE/UFRJ, Dec 2001.
(http://www.cos.ufrj.br/~baiao/thesis/baiaoDSc.pdf).

[5] D. Cornell, and P. Yu. A Vertical Partitioning

Algorithm for Relational Databases. Proc. Third
International
Conference on Data Eng. , Feb. 1987.

[6] J. Hoffer. An integer programming

formulation of computer database design problems.
Inf. Sci., 11(July 1976), 29-48.

[7] S. Navathe, and M. Ra. Vertical Partitioning for

Database Design: A Graphical Algorithm. ACM
SIGMOD, Portland, June 1989.

[8] S. Navathe, S. Ceri, G. Weiderhold, and J. Dou.

Vertical Partitioning Algorithms for Database
Design ACM Transactions on Database Systems,
Vol. 9, No. 4, 1984.

[9] M. Stocker and A. Dearnley. Self-organizing Data
Management Systems Computer Journal. 16, 2(May
1973).

[10] H. Abdulla , E. Abuelyaman and F. Marir “A

Static Attribute-Based Partitioning
Algorithm(SAPA) for Vertical Fragmentation
Problem in DDBs” Proceedings of the 2007
International Conference on Parallel and Distributed
Processing Techniques and Applications, Volume II,
pp 1017-1022, Las Vegas, 2007

Eltayeb Salih Abuelyaman
received a PhD degree in Computer
Engineering from the University of
Arizona in 1988. He served as faculty
member at various universities in the
US for 18 years before moving to
Prince Sultan University in Saudi
Arabia where he served as a Faculty
Member, a Director of the
Information Technology and

Computing Services and currently serves as the Dean of the
College of Computer and Information Sciences. His current
research Interest is in the areas of Computer Networks and
Information Security and Database.

