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Summary 
This paper proposes a scheme for vertical 
partitioning of a database at the design cycle. 
When a partition is formed, attributes are 
divided among various systems or even 
throughout different geographical locations. 
This may result in situations where a query 
may include attributes that are located at 
different sites. The scheme determines the hit 
ratio of a partition. As long as it falls below a 
predetermined threshold, the partition is 
altered. Although no proof is provided, 
experimental data showed that moving an 
attribute that is loosely coupled to a different 
subset within a partition improves hit ratio. A 
simulator was built to test the proposed 
algorithm. Results of various simulation runs 
are consistent with the hypothesis. That is, the 
proposed algorithm enables a reliable 
distribution of newly designed database tables 
across multiple storage devices based on a 
predetermined hit ratio. The scheme is 
independent of frequencies of queries thus, 
can be used as a stepping stone for its 
counterpart, the dynamic partitioning 
technique. 
 
Keywords:  database, partition, frequency, query, 
reflexive, symmetry, transitivity, hit ratio. 
 
 
1. Introduction 
 
Distributed and parallel processing is an efficient 
way of improving performance of Data-Base 
Management Systems (DBMSs) and applications 
that manipulate large volumes of data. Such 
improvement comes from limiting queries only to 
data that are relevant to their respective 
transactions. This is one of the main design goals 
of distributed databases according to [2].  

 
The primary concern of DBMS design is the 
fragmentation and allocation of the underlying 

database. The distribution of data across various 
sites of computer networks involves making 
proper fragmentation and placement decisions. 
The first phase in the process of distributing a 
database is fragmentation which clusters 
information into fragments. This process is 
followed by the allocation phase which distributes, 
and if necessary, replicates the generated 
fragments among the nodes of a computer 
network. The use of data fragmentation to improve 
performance is not new and commonly appears in 
file design and optimization literature [3].  
 
Partitioning based on attributes has been studied 
earlier in [3], [4], [6], [8]. Stocker and Dearnley 
discussed implementation of a self-reorganizing 
DBMS that carries out attribute clustering [9]. 
They showed that it is beneficial to cluster 
attributes of a DBMS where storage cost is low 
compared to the cost of accessing subfiles. Such is 
the case because increases in storage costs will be 
offset by savings in access cost. Hoffer developed 
a non-linear, zero-one program which minimizes a 
linear combination of the costs of: storing, 
retrieving and updating, with capacity constraints 
for each file [6].  Navathe et al used a two-step 
approach for vertical partitioning. In the first step, 
they used the given input parameters in the form of 
an Attribute Usage Matrix (AUM) to construct an 
Attribute Affinity Matrix (AAM) for clustering 
[8]. After clustering, an empirical objective 
function is used to perform binary partitioning 
iteratively. In the second step, estimated storage 
cost factors are considered for further refinement 
of the partitioning process. Further details about 
AUM and AAM matrices will be provided in the 
next paragraph. 

 
Cornell and Yu extended Navathe et al approach to 
decrease the number of disk accesses for optimal 
binary partitioning [5]. Their extension involved 
specific physical factors such as: the number of 
attributes, their length and selectivity, the 
cardinality of the relation and so on. Navathe and 
Ra developed a new algorithm that follows graph 
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theory partitioning techniques [7]. Their algorithm 
starts from the AAM matrix, which is transformed 
into a graph called the Affinity Graph (AG). An 
edge in AG is labeled with a weight that represents 
the affinity between its vertices, where: vertices 
represent attributes; affinity between vertices 
represents the number of queries in which the 
attributes occurred simultaneously. For the interest 
of clarity of presentation we will define what an 
AAM matrix is. For more details, interested 
readers are referred to reference [8]. Basically, an  
n x n AAM matrix is one whose AAM(i, j) entry 
represents the number of queries that 
simultaneously access the attributes represented by 
i and j. Based on the AAM, an iterative binary 
partitioning method has been proposed in [5 and 
8].  The authors first clustered the attributes and 
then applied empirical objective functions and/or 
mathematical cost functions to perform 
fragmentation. 
 
The partitioning algorithms suggested in the 
literature suffer from various limitations that will 
complicate the task of a Data Base Designer (DBD). 
These limitations are: 

  
1. A DBD has to have sufficient empirical data on 

Frequencies Of Queries (FOQ).  
2. FOQ is a function of several variables that 

include time, users, and future needs of an 
organization.  

3. Attributes are partitioned based on FOQ.   
 

The first limitation makes the partitioning 
inapplicable to newly designed database schemas.  
The second applies to periodical queries the likes of 
those for student records and taxes databases. 
Furthermore, changes in organizational structures or 
business requirements may call for additional 
attributes. The third limitation stalks from the 
natural dynamicity of FOQ.  

 
The common denominator in all three limitations is 
FOQ. Therefore, the author herein classifies all 
partitions that are based on FOQ as dynamic. On the 
other hand, the only way for a partition to be 
independent of FOQ is when it is based on a 
database schema. In this case it will be logical to 
classify it as static. The proposed partition is static 
and will be called StatPart. 
 
The rest of this paper is organized as follows:  In 
the next section we will introduce the StatPart. In 
section 3 we will discuss simulation of StatPart. A 
comparison of performance of StatPart with a 

benchmark is given in Section 4. The conclusion is 
presented in sections 5.  
 
2. StatPart 
In general, designers very frequently delay 
important steps to the end of design cycles. The 
design of efficient database systems is not an 
exception because database partitioning is based on 
FOQ. That is, data must be collected from a large 
number of queries before partitioning. To 
circumvent such a constraint, dependency on FOQ 
must be eliminated. One way to do so is to perform 
database partitioning at the design phase and 
immediately after completion of the schema. 
Conveniently, partitioning can be decided even 
before database tables are populated.  For such a 
partition, which we classified as static, the DBD 
must: 

 
1. Gain sufficient knowledge on the business 

requirements of an organization. 
2. Gather necessary and sufficient information 

about intended usage of the database to 
determine the set of queries that would be of 
immediate use. Henceforth, this set will be 
called the Set of Kickoff Queries (SKQ). This 
step requires thorough understanding of the 
business requirement of an organization. 

3. Gather information about future plans of an 
organization to determine additional queries 
that may be needed in the future. This set will 
be referred to as the Set of Future Queries 
(SFQ).  

 
For illustration of the proposed static partitioning, 
the following definition will be necessary. 

 
Definition 1: 

 
a) Na : the total number of attributes. 
b) Nk : the number of queries in the set SKQ.    
c) Nf : the number of queries in the set SFQ.     
d) SQ: the union of the set SKQ with SFQ.           
e) SA = {A1, A2… ANa}:   the overall set of 

attributes. 
f) SQ = {Q1 , Q2, … , QNq} : the overall set of 

queries. 
 
In the next section, we will discuss a suggested 
simulator for the static partitioning. 
 
3. Simulation of StatPart 
 
Our proposed simulator will enable a DBD to 
partition a database at its infancy, that is, at its 
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schema level. The output of the simulator may 
range from 0 to 100 percent where 0 percent implies 
that the schema cannot be partitioned and 100 
percent means that every attribute is placed in a 
partition by itself. Both percentages are undesirable 
and the latter is unacceptable. Along with the 
schema, a complete set of queries and parameters 
defining the database must be fed into the simulator. 
These parameters will be discussed hereafter as 
necessary.  
The simulator has the following three modules. 
Each of the modules is discussed separately.  

a) reflexivity  
b) symmetry  
c) transitivity 

 
3.1 The reflexivity module 
The module prompts a user to enter values for each 
of the first three parameters in Definition 1. The 
module then prompts the user to enter a percentage 
C that controls the number of attributes appearing in 
each query. If the designer enters the value 30 for 
example, then the module will generate a value of 1 
with probability of 0.3 and a value of 0 with 
probability of 0.7. That is, if the total number of 
attributes is 10 then on the average a query would 
include three attributes. The reflexivity module will 
then generate a matrix that relates attributes to 
queries.  For C = 30 and (Na , Nk , Nf)  = (8,5,3), we 
found the  output challenging enough to use  for the 
interest of the discussion. The output is shown on 
Table 1 below. Henceforth, such output will be 
called the Reflexivity Matrix (RM).  
In an RM matrix, the total number of 1’s on a 
column gives the degree of reflexivity of the column 
header’s attribute. For example, in table 1 the 
reflexivity of attribute B is equal to 3.   

 
 

             Attribute 
Query 

A B C D  E  F G H 

a 0 1 0 0 1 0 1 1
b 0 0 1 1 0 1 0 0
c 1 0 1 1 0 0 0 0
d 0 0 0 1 1 1 1 1
e 0 1 1 0 1 1 1 0
f 0 0 0 0 0 0 0 0
g 0 1 1 0 0 1 1 1
h 0 0 1 1 1 1 0 0

Table 1. A randomly generated Reflexivity 
Matrix  

 
Once again, a 0 entry on the table indicates that the 
row header query does not involve the column 

header attribute. One can see that RM [d, F] is 
equal to 1.  The table provides the relationship 
between queries and attributes. However, it doesn't 
directly provide desired relationships among 
attributes. The RM matrix, however, will be used as 
input to the second module, the symmetry module, 
which will produce the desired relationship.  
 
3.2 The symmetry module 
  
The following equations were used to compute the 
Symmetry Matrix (SM) on table 2 which defines 
the desired relationships among attributes.  
 
 
SM [j, j] =      Σ RM[i, j]       for j = 1 to Na         
(1) 

 
 
      

SM [i, j] =    Σ RM (k, i)*RM (k, j)  
                                    

 
For  i = 1 to Na  (For j = 1 to Na)    i ≠j                (2)   

 
Table 2. Symmetry Matrix generated from the 
Reflexivity Matrix and equations 1 and 2 
 
Equation 1 adds up column entries for each attribute 
j in table 1 to determine its reflexivity. The diagonal 
entries on an SM matrix give the reflexivity 
degrees of attributes. Equation 2 finds the 
intersection between each pair of attributes i and j. 
For example, in table 1, if we performed entry by 
entry multiplication of attributes i = E = 
(1,0,0,1,1,0,0,1)T and j = F = (0,1,0,1,1,0,1,1)T the 
result would be i*j = (0,0,0,1,1,0,0,1)T. Entries in 
the result add up to 3 which is the value stored in 
both SM[E,F] and SM[F,E]  of table 2.  
 
If the matrix is transformed into a graph, then 
without loss of generality we assume attribute K to 
be represented by vertex V. The weight of the edge 

         Attribute 
Attribute 

A B C D E F G H

A 1 0 1 1 0 0 0 0 
B 0 3 2 0 2 2 3 2 
C 1 2 5 3 2 4 2 1 
D 1 0 3 4 2 3 1 1 
E 0 2 2 2 4 3 3 2 
F 0 2 4 3 3 5 3 2 
G 0 3 2 1 3 3 4 3 
H 0 2 1 1 2 2 3 3 

Na

 i=1 

Na

 k=1 
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connecting V with a vertex W is given by the 
symmetry value of attribute K with the attribute 
represented by W. On the other hand, reflexivity for 
an attribute indicates that an edge starts from, and 
ends at the same vertex.  

 
It is practical to assume that each attribute is 
included in at least one query. Consequently, each 
must have a reflexivity degree of at least one. From 
table 1 in the previous section, the reflexivity of 
attribute B was found equal to 3. This reflectivity 
degree is stored in SM[2,2] of table 2. Every 
diagonal element gives the reflectivity degree of its 
column header’s attribute. A non-diagonal entry of 
SM gives the symmetry between the row and 
column headers and is equal to the number of 
queries that include both.  The SM matrix can be 
thought of as a data structure for a graph. 
Consequently, for the corresponding graph, the 
symmetry is modeled by an edge connecting the two 
vertices (attributes). The SM matrix is itself 
symmetrical around its diagonal. At this point, we 
are ready to discuss the transitivity module which 
acts upon the output of the symmetry module. 
 
3.3 The transitivity module  
Before proceeding with further discussions, we 
will summarize the above concepts in the 
following definitions. 
 
Definition 2 
 
a)   Reflexivity: Reflexivity of an attribute Z 
represents the number of queries that reference Z. 
In an RM matrix, the number of 1’s on the column 
of attribute Z represents the degree of reflexivity 
of Z. On the corresponding graph, Reflexivity is 
represented by an edge that loops back to the same 
vertex and the Degree of Reflexivity (DR) is the 
label on the edge.  
 
b)  Symmetry: Two attributes are called symmetric 
if there is at least one query that includes both. On 
an SM's corresponding graph, symmetry between 
any two vertices U and W is represented by an 
edge connecting U to W. The Degree of Symmetry 
(DS) between U and W is represented by the label 
on their edge, and corresponds to the number of 
queries that include both.  
 
Prior to discussing the algorithm, we will state that 
for any attribute (or vertex) V, its DR will always 
be greater than or equal to each of the DS values 
with neighboring vertices (attributes).  This is true 
because from definition 1 above, DR gives the 

number of queries referencing V while for any other 
attribute W; DS gives the number of queries 
referencing both V and W. The transitivity module 
receives the SM matrix as input and produces the 
required partition as output. However, before 
discussing the transitivity module, we will first plan 
a strategy that sets the mechanism for the algorithm 
and then suggest tactics to optimize its output. 
 
3.4 Strategy and tactics 
In general, the success of an algorithm depends on 
the strategy that sets criteria for choosing the best 
start point and the smartest move thereafter. Going 
back to the graph theory terminology, one must first 
choose the best vertex to start with, and then pick 
the most appropriate edge to traverse in search for 
an optimal partition. Equally, our strategy will focus 
on selecting the attribute to start with, which is a 
function of the DR, and then picking the best 
neighbor to reach, which is a function of DS.  

 
To that end, there are four different possibilities:   
{(+DR,+DS);(+DR,–DS);(–DR,+DS);(–DR,–DS)}, 
where +DR (+DS) represents the maximum degree 
of reflexivity (symmetry) of the remaining vertices 
(attributes). Similarly, –DR(–DS) represents the 
minimum degree of reflexivity (symmetry). Based 
on our empirical data, we determined that the most 
appropriate combination is the (–DR,+DS) pair.  

 
The algorithm starts with a vertex V that satisfies    
(–DR). We will call V the current vertex. The 
algorithm then finds a vertex with +DS among V’s 
neighbors.  Once such a neighbor is found, both V 
and its neighbor are placed in a subset. The 
neighbor would then become the current vertex. 
The process would continue to search neighbors of 
the most recent current vertex in a similar manner 
until a cycle is formed or no more vertices are left. 
The algorithm will continue to produce new subsets 
in the same manner and ends when all vertices are 
handled. The resulting subsets are disjoint and 
together represent the partition. 

 
The next step is to compute the partition’s hit ratio. 
A hit ratio of one hundred percent occurs when all 
attribute are in a single set. The only time this is 
true is when the schema cannot be partitioned.  A 
DBD is responsible for setting up a partition’s hit 
ratio threshold.  

 
The tactic of the algorithm is to look for the most 
loosely coupled attribute in the partition and move it 
to a different subset. The new hit ratio is then 
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computed and checked against the threshold. The 
process is continued until an acceptable hit ratio is  
achieved. A simplified version of the partitioning 

algorithm is shown on figure 1 below. 
 
 Figure 1. A simplified version of the partitioning 
algorithm 
  
3.5 Illustration of the tactics 
 
To illustrate the process, we used the SM on table 2 
to produce the partition P. 
Initially As is equal to {(A, B, C, D, E, F, G, H)}. 
The following are step by step execution of the 
algorithm.  

(a) S = {A} and  As = {(B, C, D, E, F, G, H)} 
(b) S = {(A,C)} and As = {(B, D, E, F, G, H)} 
(c) S = {(A,C,F)} and As = {(B, D, E, G, H)} 
(d) S = {(A,C,F,D)} and As = {(B, E, G, H)} 

 
P =  { (A, C, D, F) ; (B, E, G, H) }  
 
The hit ratio for the partition can be computed 
from the following table which shows the number 
of times an attribute is associated with its subset 
mates (hits) verses the number of times it is 
associated with others that are not in its subset 
(misses).  
 
 A B C D E F G H Total 
hit 2 7 8 7 7 7 9 7 54 
miss 0 4 7 4 7 10 6 4 42 

Table 3. Attribute associate for P  

 
To demonstrate how the entries of table 3 are 
computed, let us examine the second row in table 2, 
which gives association of attribute B.  The valid 
nonzero entries are (2, 2, 2, 3, 2) falling under 
column headers (C, E, F, G, H) respectively. These 
entries give the nonzero DS values of neighbors of 
attribute B. The partition that we obtained in the 
first round which was given above, is repeated for 
convenience of the reader as follows:  
P = { (A, C, D, F) ; (B, E, G, H) }  
Now the hit for attribute B is found by adding its 
DS values with members of its subset [E, G, H]. In 
this case, the hit value is (2+2+3) or 7. Since B is 
also associated with [C, F] who are not members of 
its subset. The miss value is (2+2) or 4. Table 3 
shows under B’s column these values. 
 
A closer look at table 3 reveals that F is the attribute 
with the worst hit to miss ratio. That is, F is loosely 
coupled with its subset mates. If the threshold is set 
at 60% then the partition P must be altered. Moving 
F to the second subset in the partition would reverse 
the worst attribute hit ratio on the table from (7:10) 
to (10:7). Now F is tightly coupled with its new 
subset mates. However, the overall impact of this 
change is still unclear. The new hit ratio for the 
altered partition P’ must therefore be computed. 
Table 4 shows these values where P’ is: 

 P’ = { (A, C, D) ; (B, E, F, G, H) }. 
 
 A B C D E F G H Total
hit 2 9 4 4 10 10 12 9 60 
miss 0 2 11 7 4 7 3 2 36 

Table 4. Attribute associate for P’  
 
Table 4 reflects an improvement of the partition’s 
hit ratio from 56.3% to 62.5%.  Each attribute’s 
hit(miss) value in table 3 differ from its 
corresponding value in table 4 by the DS the 
attribute shares with  F. The strategy can now be 
summarized as follows in figure 2. 

 
1. Produce a partition from an SM using the

criterion (–DR, +DS) and figure 1. 
2. Compute the partition hit ratio (PHR) 
3. If PHR is less than the predefined threshold

then 
a) Find the attribute with the minimum hit to

miss ratio and move it to a different subset
using the attribute association table in the
process 

b) Repeat from step (2) 
4.  End partitioning 
 

a) From the SM matrix, select the attribute V  that 

corresponds to  –DR. Add V to the temporary 

subset S, Remove V from the set of attributes As 

b) From the attributes adjacent to the current V 

select the attribute that corresponds to  +DS, say 

attribute W. Remove W from As and add it to S 

c)  repeat step (b) but with W as the new V to find 

a new W. The process continues until the set As is 

empty or a cycle is formed 

d) If a cycle has been formed then copy the 

attributes in  S as a subset in the partition set P 

e) repeat from step (b)  if As is not empty and a 

new V with –DR exists 

f) The subsets in P form a partition 
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Figure 2. Partitioning Strategy 
 
 
4. StatPart VS a benchmark 
 
We will use the Attribute Usage Matrix (AUM) in 
reference [8] as a benchmark and compare the 
results of their example with the output of our 
simulator. Their AUM matrix is shown on table 5 
below. 

 
Table 5. The AUM matrix from reference[8] 
 
One can see that the AUM matrix is quite similar to 
the RM matrix in table 1. First, we will use our 
symmetry module to produce an SM matrix which 
would serve as input to the transitive module. The 
latter will produce a partition that can be compared 
with the partition in the reference [8]. 
 
Based on the AUM matrix as input, the output of 
the symmetry module is shown in table 6 below. 
The table will be referred to as the Symmetry 
Matrix for AUM. Entries of SM are computed 
using equations 1 and 2. 
 

 
Table 6.  The SM matrix for the AUM matrix 
 

Now that we have the SM matrix for AUM, we will 
use it as input to the transitivity module to 
determine the partition. As in the previous section, 
we used the algorithm in figure 1 to produce a 
partition. We call the resulting partition Q to 
distinguish it from the partition in the previous 
example.  
Q =  { (A, B, C, E, G, H, I) ; (D, F, J) } 
 
The next step is to compute the partition’s hit ratio. 
In a similar manner as before, table 7 is produced as 
the attribute association table for Q. 
 
 A B C D E F G H I J Total
hit 12 14 15 2 12 2 13 14 15 2 101 
miss 0 0 3 6 0 6 0 0 3 4 22 
Table 7. Attribute associate for  
 
The partition hit ratio is 82%, which is above the 
threshold of 60%. The partition for the AUM 
matrix from reference [8] is shown in figure 3 
below. Replacing the numbers from 1 to 10 in the 
figure with the letters A through J we can see that 
the two partitions are identical. The figure suggest 
that (4, 6, 10) should be in a subset while the rest 
in another. Equally, our partition put (D, F, G) in a 
different subset than that of the rest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Partition from reference [8] 
 
An important point to mention is that the algorithm 
presented in this paper is a simplified version of 
the one used for simulation. Few steps are not 
included in this document because the reader can 
easily figure them out using his/her imagination 
and creativity.  

          Attributes 
Queries 

A B C D E F G H I J

a 1 0 0 0 1 0 1 0 0 0
b 0 1 1 0 0 0 0 1 1 0
c 0 0 0 1 0 1 0 0 0 1
d 0 1 0 0 0 0 1 1 0 0
e 1 1 1 0 1 0 1 1 1 0
f 1 0 0 0 1 0 0 0 0 0
g 0 0 1 0 0 0 0 0 1 0
h 0 0 1 1 0 1 0 0 1 1

          Attributes
Attributes 

A B C D E F G H I J

A 3 1 1 0 3 0 2 1 1 0
B 1 3 2 0 1 0 2 3 2 0
C 1 2 4 1 1 1 1 2 4 1
D 0 0 1 2 0 2 0 0 1 2
E 3 1 1 0 3 0 2 1 1 0
F 0 0 1 2 0 2 0 0 1 2
G 2 2 1 0 2 0 3 2 1 0
H 1 3 2 0 1 0 2 3 2 0
I 1 2 4 1 1 1 1 2 4 1
J 0 0 1 2 0 2 0 0 1 2
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5. Conclusions 
 

This paper proposed a vertical partitioning 
algorithm for improving the performance of 
database systems. The algorithm uses the number 
of occurrences of an attribute in a set of queries 
rather than the FOQ accessing these attributes. 
This enables the fragmentation of a database 
schema even before its tables are populated. Thus, 
a database designer will be in a position to perform 
partitioning and consequent distribution of 
fragments before the database enters operation. A 
simulator for the algorithm has been written. 
Results of simulations were consistent with those 
obtained using frequency based partitioning 
algorithms. The significant advantage of the 
proposed algorithm is that a database designer 
doesn’t have to wait for empirical data on query 
frequencies before partitioning a database. 
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