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Summary 
We present a concept for the realization of asymmetric 
cryptographic techniques in light-weight cryptographic devices 
and describe an implementation based on elliptic curve 
cryptography which can be used for authentication in mass 
applications of RFID tags. Our schemes offer advantages in large 
decentralized applications with many unobservable readers in the 
field over previous solutions. Moreover, using public key 
techniques cryptographic protocols that protect the privacy of the 
tag bearer can be easily implemented.  
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1. Introduction 

RFID tags are small devices for identification purposes 
applicable in a wide variety of application scenarios as 
supply chain management, access control systems, anti 
counterfeiting of luxury goods, tracking of goods, 
inventory management, etc. It is expected that many of 
these devices will be deployed in the near future and hence 
several security and privacy threats will come up 
depending on the application where RFID tags used. 

In the case of preventing counterfeiting of luxury 
goods or expensive drugs, or securing an access control, it 
is essential to verify the authenticity of the product or 
person and it is not sufficient to read only the ID of the tag. 
Authenticity can be achieved by a secure protocol (e.g. 
challenge response protocol) running between RFID tag 
and reader. If a unique secret information is stored on the 
tag and the tag can convince the reader to possess that 
information, the tagged product is declared to be authentic, 
respectively the person gains access and otherwise not. 
Such an authentication protocol has to be dynamic and 
controlled by the reader otherwise by transmitting always 
static information an attacker can eavesdrop on the 
channel and obtains by the way the information sent by the 
RFID tag. Afterwards, the attacker easily replays the 
eavesdropped information upon request of a reader and 
makes it believe to be the genuine tag.   

On the other hand RFID tags can be read unnoticed 
without any intervisibility which entails privacy threats. 
Assuming people having tags at their body or carrying tags 
in their clothes or bags, they can be scanned without 
permission and the harvested information can be used to 
analyze their behavior, e.g. where people go, what people 
buy, etc. We distinguish between data privacy and location 

privacy. Protection of data privacy means that the data 
transmitted by the RFID tag cannot be understood by any 
unauthorized reader whereas protection of location privacy 
means that the data sent by the tag cannot be used to track 
this tag. Protection of location privacy includes protection 
of data privacy and it has the additional property that the 
data sent by the tag must be different at each execution of 
the protocol. If the data sent by the tag is static, it is 
possible to track an RFID tag, even if the data is not 
interpretable by unauthorized readers. The occurrence of 
the same data alone at different locations can detect the 
same RFID tag and hence the person carrying that tag. In 
order to ensure protection of the privacy an RFID protocol 
has to be designed such that the information sent by the tag 
appears to be randomly chosen to an unauthorized reader 
and different whenever the tag is requested. Location 
privacy can be achieved by semantically secure encryption 
of the transmitted data. 

An even stronger security property is the so-called 
forward location privacy protection. If an attacker can 
reveal secret information of an RFID tag at a particular 
time, she or he may not be able to recognize that tag in 
previously recorded instances of the protocol.  

It depends on the application which security properties 
are necessary and must be provided by the protocol. E.g., 
an access control or electronic passports require a high 
security level. On the one hand authentication is essential 
and on the other hand protection of the privacy of the 
people, i.e. location privacy protection or forward location 
privacy protection, has to be assured. 

Many protocols for authentication and/or privacy 
protection were proposed in recent years: e.g. Sarma et al. 
[23], Weis et al. [24], Ohkubo et al. [20], Molnar et al. 
[19], Rhee et al. [22], and Feldhofer et al. [11]. All of them 
use symmetric cryptography, for example keyed hash 
functions or AES implementations, to meet the constraints 
of low-power consumption, limited chip area, and 
restricted computation time in order to produce low-cost 
RFID tags. Protocols based on asymmetric cryptography 
have not been considered yet because they were supposed 
to be too complicated. But in many application scenarios it 
is indispensable to obtain the high security level provided 
by an asymmetric approach. The use of asymmetric 
instead of symmetric solutions for RFID systems can 
radically reduce costs, maybe not necessarily on side of 
the RFID tags themselves, but on the part of the readers 
and the corresponding middle ware expenses can be saved. 
Proposed symmetric protocols for authentication purposes 
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need to store securely secret keys in the reader itself or at 
least a secure connection to a back end database must be 
provided. Furthermore, a complex search in order to 
retrieve the right key in the reader or in the back end 
database has to be accomplished. To prevent 
compromising the system, at least a part of the system, the 
reader or the connection to the back end database must be 
tamper-proof which is quite cost-intensive. Especially 
strong decentralized applications where not necessarily 
trustworthy persons operate the readers or the readers are 
not located in a secure area, require expensive readers and 
corresponding expensive middle ware. These costs can be 
reduced using asymmetric security mechanisms since 
RFID systems no longer have to distribute secret keys to 
each reader device or readers no longer must retrieve a 
secret key from a database over a secure channel. For 
asymmetric protocols in general it is difficult to meet the 
constraints of low-power consumption, limited chip area, 
and restricted computation time of RFID tags. Recent 
publications on this topic investigated the applicability of 
elliptic curve cryptography for RFID applications and the 
authors proposed approaches towards a low-cost RFID tag 
based on elliptic curve cryptography. Kumar et al. [15] 
introduced a hardware implementation of elliptic curves 
over finite fields of even characteristic and gave a 
performance analysis with respect to chip size, memory, 
and computation time. Batina et al. [2] designed a similar 
elliptic curve arithmetic unit, they also gave a performance 
analysis and proposed a protocol for tag authentication 
based on Okamoto’s identification protocol [21].  

Our Contributions 

In this paper we give a detailed description of a 
hardware implementation of elliptic curves over finite 
fields of even characteristic but also in regard to 
countermeasures against side channel attacks.  

Many cryptographic protocols using elliptic curves also 
need computations in the factor ring Z/qZ where q is the 
order of the base point on the elliptic curve (see also [2]) 
and hence additional hardware logic is necessary. In our 
case we completely avoid operations in Z/qZ and design 
an authentication protocol that only requires elliptic curve 
arithmetic.  

We extend our authentication protocol to an 
authentication protocol with protection of the location 
privacy of the tag bearer and also protection of the forward 
location privacy. 

2. The Implementation 

There exists a vast literature on the implementation of 
elliptic curve cryptography in software [14]. In this article 
we focus on efficient hardware implementations which 
enable public key cryptography for mass applications like 

sensors and RFID tags. For hardware implementations and 
corresponding applications the requirements are different 
and new constraints must be fulfilled. Optimization 
techniques developed for software implementations often 
rely on time-memory trade-offs and cannot be used when a 
device with small footprint should be designed. 

The dominating cost factor is the chip size of the 
elliptic curve hardware. Our architecture consists of an 
arithmetic unit, control logic, and memory (see Figure 1). 
The arithmetic unit computes additions and multiplications 
in the finite field over which the elliptic curve is defined. 
The control logic implements the scalar multiplication of 
points on the elliptic curve and the cryptographic protocol 
of the application without using an additional CPU. The 
memory contains volatile intermediate results of the point 
arithmetic and non-volatile system parameters and keys. 

 

 
Fig. 1 The RFID Tag Architecture 

 Our arithmetic unit has a serial-parallel design 
consisting of the main component, an adder for the finite 
field, which can add two elements in a single clock cycle 
and logic for the generation of partial products for the 
multiplication. In this design two n bit numbers can be 
multiplied in n clock cycles. The serial-parallel design 
offers a good compromise between chip size and 
performance: a full parallel design could add and multiply 
in a single clock cycle but would increase the chip size 
considerably. A full serial approach could minimize the 
necessary hardware but would imply linear running-time 
for an addition and quadratic running-time for a 
multiplication. For fields of composite degree of extension 
further trade-offs are possible [8] but these fields are 
cryptographically weaker [12], [18]. 

We have chosen elliptic curves over a finite field 
GF(2n) since addition in this structure is very simple and 
consists of bitwise XOR operations. In (extension) fields 
of larger characteristic the adder has a long carry path 
which must be broken by a more complicated circuit 
design (carry save, carry look-ahead, redundant 
representation, or similar) to reduce power consumption 
and to increase performance. 

The arithmetic unit has a highly regular design and can 
therefore be implemented bit-sliced in full-custom design. 
In Figure 2 a small example of a corresponding unit is 
given. The unit consists of an accumulator designed as a 
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Fig. 2 The Arithmetic Unit 

linear feedback shift register with irreducible feedback 
polynomial which is connected to a 16 bit bus, an operand 
register which can be loaded in parallel, AND-gates for the 
computation of partial products, XOR-gates for addition 
and modular reduction, and logic for loading values from 
the bus. To compute an addition, the first operand is 
loaded to the accumulator, copied to the operand register, 
the second operand is loaded to the accumulator, the 
operand register is added to the accumulator, and the result 
is stored. To compute a multiplication the first operand is 
loaded to the accumulator, copied to the operand register, 
the accumulator is cleared, and during the next n clock 
cycles the second operand is used bit by bit for the control 
of partial product generation. Finally, the result is stored. 
The irreducible feedback polynomial defines the 
polynomial basis for the representation of field elements. 
Despite the fact that squaring is a linear operation in 
GF(2n) and can be computed in one clock cycle using 
special hardware we decided to omit this additional 
hardware components and to compute squarings with the 
existing general multiplication hardware. Moreover, the 
hardware for squarings would destroy the regularity of the 
arithmetic unit and render a full-custom design more 
complicated. 

Most standard cryptographic protocols using elliptic 
curves, for example ElGamal encryption, signature or 
ECDSA, need also computations in Z/qZ where q is the 
prime order of the subgroup in which the cryptographic 
operations are done. To encounter this problem other 
proposals for elliptic curve hardware devices use curves 
over prime fields Z/qZ and implement a more complicated 
arithmetic unit, design an arithmetic unit which can realize 
computations in GF(2n) and Z/qZ (see [13]), or use a CPU 
and implement the computation modulo the order of the 
group of points in software [2]. In our design we use new 
cryptographic protocols without computations modulo the 
order of the group of points. This simplifies our hardware 
device considerably. 

The arithmetic unit is not designed for fast inversions 
or divisions in the field GF(2n). If necessary, inversion can 
be done with Fermat’s method using discrete 

exponentiation, i.e.  
x−1 = x2n−2. 

In our cryptographic protocols we use projective 
coordinate representation of points on the elliptic curve to 
avoid inversions and do not convert back results to affine 
representation. For example in the RFID application the 
conversion to affine representation can be done by the 
terminal which has more computing power than the tag.  

Let y2 + xy = x3 + ax2 + b be the equation of the elliptic 
curve E = E(a, b) where a, b ∈ GF(2n). Let P = (xP , yP) be 
a point on the curve E and k be a scalar with binary 
representation k = (kℓ, . . . , k1)2. The scalar multiplication 
Q = k · P = P + . . . + P (k times) is done using 
Montgomery’s ladder [17]. Given the affine x-coordinate 
xP and the binary representation of the scalar k the 
algorithm computes a projective representation X1/Z1 of 
the x-coordinate of k · P. If the result is the point O at 
infinity then Z1 = 0. We follow in the sequel the 
presentation of [14] (see Fig. 3) and in the following we 
use the term  

(X1, Z1) ← Mul(k, xP) 
 
whenever the algorithm is called. Montgomery’s ladder 
algorithm also computes a projective representation X2/Z2 
of the x-coordinate of (k + 1) · P. If the y-coordinate of the 
point P is given then it is possible to reconstruct the 
y-coordinate of the result k · P from the values X1, Z1, X2, 
Z2, xP and yP (see [14]). 
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Fig. 3: Montgomery’s Ladder 

In our design we do not need to reconstruct the 
y-coordinate of k · P. In the cryptographic protocols we 
only use the x-coordinates (see Section 5). The input xP is 
an x-coordinate of a point on the elliptic curve in affine 
representation and the output (X1, Z1) an x-coordinate in 
projective representation. 

Montgomery’s ladder algorithm is advantageous for 
hardware implementations for several reasons: 

The algorithm offers a competitive performance in 
comparison to non-window methods for scalar 
multiplication. Per bit of the scalar ten multiplications 
must be computed (not distinguishing between squaring 
and multiplication) (see [14]). 

The algorithm has a highly regular structure. The only 
difference between the two execution paths of the 
if-statement is a change of (X1, Z1) and (X2, Z2). See also 
the countermeasures against simple power analysis and 
timing attacks in Section 5.1. 

Since the scalar multiplication can be done with x- 
coordinates only the algorithm is very space-efficient. 
Using our arithmetic unit the implementation needs 
memory for five intermediate values (X1, Z1, X2, Z2 and a 
temporary value), the input xP, and non-volatile memory 
for the curve parameter b (or the square root of b) and the 
scalar. The curve parameter a is not necessary for the 
computation and the protocols. 

For security reasons it is necessary to verify that the 
input to the scalar multiplication is really a point on the 
curve (and belongs to the subgroup in which the 
cryptographic application should work). Otherwise, attacks 
to recover the scalar are possible (see [3]). These attacks 
can be avoided if the input to the elliptic curve scalar 
multiplication unit comprises a complete point (x, y) with 
both coordinates. Then the unit can check if the input 
satisfies the defining equation of the curve, but we need to 
communicate the y-coordinate to the device. If only the 
affine x-coordinate is given the device has to verify that 
the equation Tr(x + a + b/x2) = 0 holds which requires a 
costly computation of the inverse of x in GF(2n). In 

addition we need to store the curve parameter a in the 
device in both cases. 

In order to further simplify the implementation we 
decided not to check whether the input to the elliptic curve 
unit is a valid x-coordinate of a point on the elliptic curve. 
Instead we require that elliptic curves usable for our 
applications have additional security properties. This is 
motivated by the following observation. 

For performance reasons and to assure that the elliptic 
curve E is cryptographically strong the curve is normally 
chosen such that the order of the group of points satisfies 
the condition ord(E) = rq where q is a large prime number 
and r is a small co-factor (in the best case r = 2). The base 
point P for cryptographic protocols is normally chosen to 
be a generator of the subgroup < P > of order q. Then, 
approximately half of the elements x ∈ GF(2n) are 
x-coordinates of points on E, i.e. x-coordinates of points in 
the group < P > or of points in a different residue class of 
< P >. The remaining elements x ∈ GF(2n) have the 
property that Tr(x + a + b/x2) = 1 and do not belong to 
points on E. But these elements are x-coordinates of points 
on a twisted curve Et = (a + v, b) where v ∈ GF(2n) with 
Tr(v) = 1. The orders of E and Et over GF(2n) are related 
by the equation ord(E) + ord(Et) = 2n + 1 + 2 independent 
of the concrete value v. A fault tolerant strong elliptic 
curve E is an elliptic curve such that ord(E) and ord(Et) are 
cryptographically strong, i.e., ord(E) = r1q1 and ord(Et) = 
r2q2 such that q1, q2 are large prime numbers and r1, r2 are 
small co-factors (in the best case 2 and 4). 

If our hardware device uses a fault tolerant strong 
elliptic curve then any input x ∈ GF(2n) is either 
x-coordinate of a point on E and Et. Therefore, if the prime 
numbers q1, q2 are large enough that both discrete 
logarithm problems are hard then given a secret scalar k an 
attacker would only be able to learn k mod r1r2 using 
techniques from [16]. These threats can for example be 
avoided by countermeasures against zero-value attacks [1] 
(see Section 5.1). Fault tolerant elliptic curves also offer 
protection against certain fault attacks (see Section 5.3). 

Moreover, to protect against the attacks in [7] the 
elliptic curve E should be chosen in a way such that the 
prime numbers q1 and q2 dividing the orders of E and Et 
are strong prime numbers, i.e., q1 − 1 and q2 − 1 are also 
divisible by large prime numbers themselves. 

3. Size and Performance 

We implemented our elliptic curve hardware in VHDL 
on Xilinx Spartan 3 FPGA. The synthesis tool counted a 
total of 18121 gate equivalents and computed 
corresponding gate counts for the different components of 
the unit figured in Table 1. In this table the memory 
includes the volatile and non-volatile parts. The VHDL 
code of all components of the unit (including the memory) 

Input:  k = (kℓ, . . . , k1)2 and xP affine x-coordinate of P.
Output: (X1, Z1) projective representation of the  

x-coordinate of k · P. 
 
1. X1← 1, Z1 ← 0, X2 ← xP , Z2 ← 1 
2. for i ← ℓ downto 1 do 
3.  if ki = 1 then 
3.1.   T ← Z1, Z1 ← (X1Z2 + X2Z1)2, 
3.2.   X1 ← xPZ1 + X1X2TZ2, T ← X2, 
3.3.   X2 ← X2

4 + bZ2
4, Z2 ← T2Z2 

4.  else 
4.1.   T ← Z2, Z2 ← (X2Z1 + X1Z2)2, 
4.2.   X2 ← xPZ2 + X2X1TZ1, T ← X1, 
4.3.   X1 ← X1

4 + bZ1
4, Z1 ← T1Z1 

5. return (X1, Z1) 
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is completely synthesizable. If the arithmetic unit and the 
memory are implemented in full-custom design the 
resulting circuit consumes less space than the fully 
synthesized VHDL implementation and the corresponding 
equivalent gate count should be smaller. Using a system 
clock of 5 MHz and an elliptic curve over the field 
GF(2163) a scalar multiplication with a 163 bit scalar can 
be done in 64 ms. 

Table 1: Gate Count of the Elliptic Curve Unit 

Component Gate equivalents 
Arithmetic unit 4548 
Memory 11205 
Control logic 2368 

4. Resistance Against Side Channel Attacks 

4.1. Simple Power Analysis and Timing Analysis 

Montgomery’s ladder is inherently protected against 
simple power analysis and timing attacks. The algorithm is 
highly regular and the overall execution of the algorithm 
does not depend on the value of the secret scalar. The 
running time depends only on the extension degree of the 
finite field GF(2n) and the length of the scalar. 

In addition hardware countermeasures must be taken to 
hide the traces of the execution of the if-statement in the 
power profile. It should not be visible which execution 
path of the if-statement has been taken. For example one 
could use the actual bit of the scalar to toggle between two 
sets of addresses for X1, Z1 and X2, Z2 of equal Hamming 
weight or use redundant representations of the scalar. The 
effectiveness of the countermeasures depends on the 
implementation of the control logic. 

There exist only two cases such that a coordinate of a 
point in the representation used in Montgomery’s ladder 
algorithm becomes zero: the point O at infinity has the 
representation x ≠ 0 and z = 0 and the point of order two 
has the representation x = 0 and z ≠ 0. If the input xP to the 
scalar multiplication is an x-coordinate of a point P whose 
order is larger than the scalar then it is not possible that 
any intermediate result becomes zero: all projective 
coordinates X1, Z1, X2, Z2 belong to points of large order 
and are not equal to zero. This implies that all results of 
the products in GF(2n) computed during the algorithm are 
not zero. The results of the additions are again projective 
coordinates of points of large order. Therefore, zero-value 
attacks (see [1]) can only be mounted if the input xP 
belongs to a point of small order, i.e., if the order of P 
divides the co-factor of the curve. These attacks can be 
avoided if the device first computes a scalar multiplication 
of the input xP with the co-factor of the curve to verify that 

the order of P is large. If this computation gives the result 
Z1 = 0 then the input must be rejected. 

4.2. Differential Power Analysis 

Montgomery’s ladder can be easily enhanced to 
become resistant against differential power analysis. We 
randomize the projective coordinate representation of 
points [9]. Let r ∈ GF(2n), r ≠ 0 be randomly chosen. The 
initialization step 1 in Algorithm 1 is changed as follows:  

 
X1

* ← r, Z1
* ← 0, X2

* ← rxP and Z2
* ← r. 

 
It can be easily seen that in iteration i of the for-loop the 
algorithm computes the values  

Xm
* = r22i

Xm and Zm
* = r22i

Zm  
for m ∈ {1, 2}. 

This randomization destroys the correlation in the 
power profile between the scalar, the input or output of the 
computation, and intermediate results of the scalar 
computation. Single order differential power attacks are no 
longer effective. 

The generalization of the attack in [10] is a higher 
order power analysis. If the device must be secured against 
this type of attack then the irreducible polynomial which 
defines the finite field and which is encoded in the 
reduction part of he arithmetic unit must have 
approximately n/2 monomials which should be equally 
distributed over {x0, . . . , xn}. This countermeasure renders 
the arithmetic unit slightly more complicated. 

4.3. Fault Analysis 

Most techniques against fault attacks either repeat (at 
least part of) the cryptographic computation (or of the 
inverse operation) or introduce invariants in the 
implementation that must hold during the computation [5], 
[4]. When the cryptographic operation is done, the 
implementation checks whether the invariant is still valid. 
A fault during the operation destroys the invariant with 
high probability. Montgomery’s ladder algorithm for 
scalar multiplication has an implicit invariant which holds 
in each round of the for-loop. An efficient implementation 
of the test whether this invariant holds can be found in [6]. 

If an attacker causes a fault prior to the initialization 
step of Montgomery’s ladder algorithm then the fault 
tolerant strong elliptic curve protects the device. As shown 
before, with high probability the scalar multiplication is 
computed with a point of large order on E or Et. 

In order to protect the elliptic curve unit against errors 
in the long term non-volatile system parameters as curve 
parameter and secret key the developer must implement a 
scheme for error detection and verify the data prior to 
scalar multiplication. Otherwise an attacker could change 
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the defining elliptic curve of the scheme and extract the 
secret key of the tag using a weak curve.  

5. Tag Authentication 

In this section we present an authentication protocol 
based on the elliptic curve arithmetic proposed in the 
previous sections. In the first version the protocol offers 
authentication of the tag where no privacy aspects are 
considered. The corresponding protocol is depicted in 
Figure 4. 
 

 
Fig. 4 Tag Authentication Protocol 

5.1. Requirements 

Let E be an elliptic curve over GF(2n) satisfying the 
security properties described in Section 2. Let P = (xP, yP) 
be a point on E with order q where q is a prime. 
Furthermore, let “GenSig” denote a public key signature 
generation algorithm and let “VerifySig” be the 
corresponding signature verification algorithm. A key pair 
consisting of a private key for the signature generation and 
public key for the signature verification is also given by 
“PrivSKey” and “PubSKey”. 

5.2. Tag Setup 

Each tag is initialized with a randomly chosen private 
key 0 < ξT < q and a certificate (xT, sT) consisting of the 
corresponding public key xT which is the affine 
x-coordinate of the point T = ξT · P and the signature sT of 
xT, generated with the signature generation algorithm 
“GenSig” using the private signature key “PrivSKey”, i.e. 
sT = GenSigPrivSKey(xT). 

5.3. Reader Setup 

Each reader is initialized with the public signature key 
“PubSKey”. No secret key has to be stored in the reader. 

5.4. Interaction 

The reader picks a randomly chosen value 0 < λ < q 
and computes the affine x-coordinate xA of A = λ · P and 
sends this value to the tag. Upon reception of this 
challenge the tag runs the Montgomery’s ladder algorithm 
(XB, ZB) ← Mul(ξT, xA) with the private key ξT as scalar 
and the challenge xA as input for the affine x-coordinate. 
The result (XB, ZB) finally represents the affine 
x-coordinate XB/ZB of the point B = ξT · (λ · P). After 
computation the tags sends the coordinates XB and ZB 
together with its certificate consisting of the public key xT 
and the corresponding signature sT back to the reader. 
Afterwards the reader verifies the certificate by calling 
VerfiySigPubSKey(xT, sT). If the certificate is invalid the tag 
will not be accepted. Otherwise the reader continues with 
the verification of the response. The reader calculates the 
projective coordinates XC and ZC of C = λ · (ξT · P) and 
checks if the affine x-coordinates XC/ZC and XB/ZB are 
identical. This can be done by verifying the equation XCZB 
= XBZC. If the response is correct, the tag is accepted and 
declared to be authentic, otherwise the tag is rejected. 

5.5. Security 

The security of the protocol is based on the Elliptic 
Curve Diffie Hellman Problem (ECDHP). An attacker 
who wants to fake an authentic RFID tag gets the 
challenge A = λ · P from the reader and must return the 
corresponding valid response B together with an authentic 
public key T = ξT · P signed by the certification authority. 
Since the attacker only has A = λ · P and T = ξT · P without 
knowledge of λ and ξT he only can determine the correct 
response B = ξT · (λ · P) if and only if he solves the 
ECDHP. 

6. Privacy Enhanced Tag Authentication 

The authentication protocol of the tag presented in the 
previous section can be extended to a privacy enhanced 
protocol, i.e. the protection of the location privacy and the 
forward location privacy is assured (see Figure 5). 

The reader transmits the challenge together with its 
certificate, consisting of a public key and the 
corresponding signature to the RFID tag. The tag verifies 
the certificate, calculates the response, randomly encrypts 
that response and its certificate with the public key of the 
reader, and sends the cipher text back to the reader. Only 
the reader which has the corresponding private key can 
decrypt the message and hence can “understand” the tag. 
The crucial steps in that protocol are of course the 
certificate verification and the encryption. 

 

reader 
 
pick λ 
(XA, ZA) ← Mul(λ, xP) 
xA ← XA/ZA 
 
 
 
VerifySigPubSKey(xT, sT) 
(XC, ZC) ← Mul(λ, xT) 
XCZB = XBZC? 

tag (secret key: ξT) 
 
 
 
 
 
(XB, ZB) ← Mul(ξT, xA)

xA 

XB, ZB, xT, sT
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Fig. 4 Privacy Enhanced Tag Authentication Protocol 

6.1. Signature Verification 

The reader’s certificate consists of its public key xR and 
the corresponding signature sR which may be an ECGDSA 
signature. The major task for the RFID tag is the 
verification of the signature. The signature verification can 
be reduced to a test whether the sum of two points 
resulting from scalar multiplications is equal to a point 
from a third scalar multiplication. This step can be 
implemented efficiently by evaluating a polynomial of 
degree 2. Following this approach we avoid expensive 
inversions in the field GF(2n) and the computation of long 
integers modulo the order of a subgroup < P> . Let ξS be 
the private signature key “PrivSKey” and let xS be the 
corresponding public signature key “PubSKey”, i.e. xS is 
the affine x-coordinate of the point S satisfying ξS · S = P, 
where P = (xP, yP) denotes the base point. Now the 
signature sR of the reader’s individual public key xR is 
defined as sR = (α, β) where the first component α is the 
affine x-coordinate of k · P for a randomly selected number 
k. Furthermore, the second component β satisfies the 
equation β = ξS · (k · α − xR) mod q where q is the order of 
the base point. 

In order to verify the certificate one has first to 
compute 

U := (β · α-1) · S + (xR · α-1) · P 
 
and afterwards compare the affine x-coordinate of U to the 
signature component α. If both values are equal the 
signature is declared to be valid, otherwise it is invalid. 

This verification is equivalent to the test whether the 
equation  

α · (k · P) = β · S + xR · P 
 
holds. In order to verify this equation we evaluate a 
polynomial of degree 2. In the case of the signature 
verification we test the following equation 
 

X3
2 (X1Z2 + X2Z1)2 + X1X2X3Z1Z2Z3 
+ X1

2X2
2Z3

2 + bZ1
2Z2

2Z3
2 = 0 

 
with corresponding input values 
 

(X1, Z1) ← Mul(α, α), 
(X2, Z2) ← Mul(xR, xP), 
(X3, Z3) ← Mul(β, xS). 

6.2. Symmetric Encryption 

In the privacy enhanced authentication protocol the tag 
computes a challenge XD/ZD for the reader and uses the 
corresponding response XC/ZC as a symmetric key for the 
encryption of the data which is transmitted to the reader. 
To avoid the inversion in the calculation of the affine 
x-coordinate xC = XC/ZC of the response the tag uses the 
value XC as secret key and sends ZC to the reader. Given 
the correct response to the challenge XD/ZD and the value 
ZC the reader can also reconstruct the secret key chosen by 
the tag. 

With the aid of the session key XC the memory contents 
of the tag transmitted to the reader can be encrypted 
randomly to protect the privacy of the tag bearer. For this 
encryption step a symmetric encryption scheme must be 
implemented on the tag in addition to the hardware for the 
asymmetric scheme. It is possible to reuse parts of the 
arithmetic unit for the implementation of the symmetric 
encryption algorithm. For example, the linear feedback 
shift register of the accumulator can be extended to a 
stream cipher. 
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