
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008 
 

 
 

10 

Manuscript received  February 5, 2008 

Manuscript revised  February 20, 2008 

 
An Optimal Sensor Architecture for Wi-Fi Intrusion 

Detection  
 

     Zhiqi Tao†  Baikunth Nath (Sr. Member IEEE) ††  Andrew Lonie† 
  

†Department of Information Systems, 
††Department of Computer Science and Software Engineering， 

The University of Melbourne， 
Victoria 3010 Australia 

 
Summary 
This paper presents a novel approach to identifying illegitimate 
nodes in wireless networks. We demonstrate that, given a 
sufficiently dense sensor network, we are able to discriminate all 
network nodes based solely on signal strength datasets. Further, 
we demonstrate that within the dense sensor network, only a 
small subset of available sensors are required to effectively 
discriminate between nodes, and that this subset can be readily 
identified. Finally, we propose that duplicated network nodes 
may be identified by unsupervised, real-time analysis of signal 
strength datasets. 
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1. Introduction 

The development of wireless (Wi-Fi) network 
technologies has been characterized by a succession of 
security problems [1-3]. Although the upcoming security 
enhancement standard, IEEE 802.11i [4-7], is widely 
expected to overcome weaknesses of cryptographic 
mechanisms in early versions of Wi-Fi products [8], the 
nature of wireless infrastructure ensures that attacks based 
on impersonation (spoofing attacks) in Wi-Fi networks 
will remain a major threat to Wi-Fi security [9]. As Wi-Fi 
network infrastructure inherently lacks reliable positional 
knowledge of the origin of individual network packets – as 
compared to, for instance, a wired network in which the 
physical wires provide strong evidence of a packet’s origin 
- intruders are potentially able to impersonate legitimate 
access points (APs) and clients, and such impersonated 
nodes are extremely difficult to detect. 
 
We propose to use radio signal strength data from multiple 
sensors to differentiate Wi-Fi network nodes at different 
positions. We demonstrate that a densely distributed 
sensor network is capable of collecting a rich 
signal-strength data set for each monitored node, which 

can be exploited to eliminate “blind spots” and effectively 
discriminate duplicated nodes. 
 
We also demonstrate that, for each monitored node, the 
‘discriminatory ability’ of the signal strength dataset is 
heavily weighted towards a small number of the available 
sensors for each node; generally the important sensors are 
very close to one of the node positions, and there is a 
strong correlation between the discriminatory effectiveness 
of a sensor and the absolute strength of the signal received 
by that sensor, providing a simple mechanism for 
identification of critical sensors. We provide evidence that 
this subset of critical sensors is sufficient to discriminate 
between duplicate nodes in all of our test cases. 
 
Lastly, we propose that, using this approach to identifying 
critical sensors, it may be possible to detect duplicated 
network nodes by unsupervised, real-time analysis of the 
signal strength dataset, suggesting a new approach to 
intrusion detection in wireless networks. 
 
The remaining sections of this paper are organized as 
follows: Section 2 describes background of this research. 
Section 3 discusses our approach to discriminating Wi-Fi 
network nodes via signal strength data from a densely 
distributed sensor network. Section 4 describes the 
generation of a real-world dataset based on a dense sensor 
network. Section 5 presents a comprehensive analysis of 
this dataset, demonstrating the discriminatory ability of the 
sensor network and correlation between absolute signal 
strength and discriminatory ability of individual sensors. 
Section 6 presents our conclusions and future work. 

2. Background  

2.1 Security threats in Wi-Fi infrastructure 

From the network architecture perspective, Wi-Fi 
networking is an alternative implementation of the MAC 
sub layer and physical layer as compared to fixed network 
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technologies – in other words, both wireless and wired 
networks share the same high level protocols but use 
different low level (data-link layer and physical layer) 
protocols. Wi-Fi network technologies bring a number of 
new challenges to security and privacy, due to the nature 
of the medium used to transmit information [10]. The 
challenges can be categorized via the classic CIA triad 
(Confidentiality, Integrity and Availability) [11]: 

Confidentiality 

Confidentiality is at risk if individuals other than the 
intended recipients are able to read a communication 
(confidentiality is not restricted to a particular network 
layer). Wi-Fi nodes broadcast omnidirectionally, subject to 
physical restraints of the environment such as radio signal 
absorption. So any Wi-Fi device operating on the same 
frequency band and within range is able to capture the 
signal at the data-link layer. Given the signal itself cannot 
be made confidential, encryption is an effective 
mechanism to protect the confidentiality of a 
communication over a Wi-Fi connection, and indeed, one 
of the most widespread security measures for wireless 
networks is the use of encryption, providing both 
confidentiality and potentially authentication through the 
use of shared secrets between client node and 
infrastructure (or more complex authentication 
mechanisms such as RADIUS). Well administered, strong 
encryption provides a very strong defense against 
confidentiality attacks; unfortunately, encryption standards 
employed in Wi-Fi have a poor record, and weak 
cryptographic mechanisms have been responsible for a 
number of security incidents [12-16]. Newer standards 
such as IEEE 802.11i [17] are more promising, but 
encryption systems are hard to administer unless the 
environment is very well controlled, and are often faulty or 
absent in practice. WEP (Wired Equivalency Privacy) in 
particular is a weak form of wireless security with 
fundamental and well-publicized flaws, but is extremely 
widespread. Many free tools exist for analyzing collected 
Wi-Fi traffic, including tools for breaking encrypted 
streams across various wireless encryption 
implementations [18-20]. 
 
Assuming a Wi-Fi network is either unencrypted, or a 
tool/method for decrypting the network stream exists, an 
attacker may be able to monitor not only confidential 
information but potentially the authentication information 
associated with the network clients, leading to the greater 
risk of a impersonation attack – where a legitimate 
network device is impersonated at the packet/frame level, 
either to gain direct access to the network infrastructure, or 
to manipulate a legitimate client into connecting to a rogue 
access point to monitor that client’s activity, thus (in both 
cases) compromising both integrity and availability. 

Integrity 

Integrity is achieved when a communication is authentic 
and complete. Wi-Fi networks are especially susceptible to 
integrity attacks, because of the lack of evidence to match 
received data to a particular source. There is a level of 
basic packet-level integrity support in commonly used 
Wi-Fi standards: for instance, the WEP standard uses a 
very simple Cyclic Redundancy Check (CRC) to check if 
the received Wi-Fi network frame was altered, and in 
IEEE 802.11i and WPA 2, a Pair wise Transient Key 
method is included to replace CRC to ensure the Wi-Fi 
frame unimpaired [17]. However, the fundamental 
integrity issue in Wi-Fi is the difficulty of exclusively 
identifying the origin of Wi-Fi network frames. This is 
discussed in more detail below. 

Availability 

Availability is compromised when legitimate users are 
unable to access a computer network service in a reliable 
and timely manner. Wi-Fi networks are also especially 
susceptible to availability attacks, again because of the 
difficulty of authenticating the source of a data packet. For 
instance, in a Wi-Fi network, all of the nodes generally 
share the same transmission channel on one open medium, 
so in order to make sure that only one Wi-Fi device 
transmits at one time, IEEE 802.11 Standard builds in 
Carrier Sense Multiple Access Collision Avoidance 
(CSMA/CA) [21]: before a Wi-Fi network node transmits, 
it sends out a request to occupy channel for a certain 
amount of time and all other devices which received this 
request will not transmit during this period. However, this 
service assurance feature creates a number of 
availability-based security vulnerabilities, including such 
scenarios as a Carrier Sense attack [3], in which an 
attacker could continuously requests for large intervals of 
transmission time, so that other clients on the same 
channel would be able to transmit at a very low throughput 
or even fail to transmit. Another example of an availability 
vulnerability would be de-authentication/de-authorization 
attacks [3], in which, by impersonating either a party of an 
established connection, an attacker can send 
de-authentication frames or de-authorization frames to 
force the other party to exit the authenticated state or to 
exit the associated state.  
 
In our opinion, the fundamental reason that Wi-Fi 
networks infrastructures are vulnerable to Integrity and 
Availability attacks is that, lacking the ability to control or 
identify the position of a node, Wi-Fi network nodes must 
rely on (at a minimum) the MAC address in the header of 
each Wi-Fi network frame to identify traffic associated 
with a particular Wi-Fi network node. Although a MAC 
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address is designed to be a unique identifier of a network 
interface, a number of operating systems support arbitrary 
network packet generation, including the data-link layer 
header; hence a Linux user can, for instance, generate a 
correctly formed network packet, with arbitrary headers 
including a modified MAC address, using freely available 
libraries [22]. This obviously lowers the identification 
‘value’ of a MAC address in a wireless, or indeed wired, 
network. However, wired network infrastructures have 
physical wire-based links between sender and receiver 
nodes, which provide strong (but not irrefutable) 
identification evidence of a packet sourced from that link, 
particularly if supported by a monitored node: port list 
within the infrastructure. So, although packets can be 
impersonated (spoofed) in a wired network, it is not an 
insurmountable security issue, as the physical link between 
nodes can be used as a second identifying factor of 
end-nodes: if a particular network packet comes from the 
‘wrong’ physical link – generally identified by a lookup 
table matching MAC address of the network node 
interface to port in the network switch/router - then it must 
have been spoofed and can be discarded (and, potentially, 
an alarm raised). The reliance on ‘softer’ measures for 
node identification, such as MAC address and shared 
secrets, makes WLAN inherently more insecure in node 
identification, and given that the lack of physical link is 
the major benefit of a wireless network, this is unlikely to 
change. 
 
Clearly, it would be beneficial to Wi-Fi security if more 
positional evidence was available for node identification. 
In particular, intrusions based on impersonation attacks, 
which are the basis for many integrity and availability 
vulnerabilities, would be much more reliably detected if 
duplicated nodes could be discriminated on position.   

2.2 Related work 

Both academic researchers and industry vendors have 
proposed numerous ways to detect impersonation attacks 
in wireless (and wired) networks. For instance, a popular 
approach to detecting illegitimate APs in commercial 
systems is to physically patrol the area with a handheld 
“network analyzer” and match the identified nodes and 
APs against the known authorized points [23], [24]. This 
approach is likely to be effective in sparse networks 
covering a small area, or when restricted to detecting 
simple AP masqueraders, but is unlikely to detect a 
sophisticated fake AP setup. A skillful intruder would 
know to turn off the response of continuous beacon frames 
to avoid detection [9]. 
 
A variety of traffic-based intrusion detection methods have 
been proposed. Wright [25], Dasgupta et al. [26] and Guo 
et al. [27] suggested the use of packet sequence number to 

detect MAC address impersonation. Wright’s approach 
was based on analysis of the sequence number gap 
between temporally subsequent network packets; if the gap 
exceeds a threshold, it is evidence that the packets may not 
have originated from the same source. Dasgupta et al. 
presented an anomaly based approach based on Fuzzy 
Logic in which a system trained on artificially generated 
sequence number traces containing mock impersonation 
attacks was used to identify anomalous events based on 
sequence number variation. Guo et al also investigated the 
regular and abnormal patterns of sequence number 
changes but limited to the scenario that victim node and 
attacking node are connecting to same access point 
simultaneously. Nevertheless the fundamental limitation of 
sequence number based approach is that sequence number 
is a plain-text field in Wi-Fi network frame header and is 
subject to compromise. 
 
Tao et al. [28] proposed an approach based on deployment 
of dedicated wireless network “snoopers” close to the 
access points in their WLAN. They physically moved a 
transmitting laptop through the environment hosting the 
network, while recording both the position information of 
the laptop, and the signal strength measurements on 
packets transmitted by the laptop as received by 
the ’snoopers’. This data was used to train a Bayesian 
network model which was capable of estimating the 
location of network nodes (and thus by extension, 
unauthorized nodes). This technique is similar to 
commercial WLAN localization system Ekahau Position 
Engine [29]. Such approaches have a drawback: the 
training data is a snapshot which may not be completely 
representative of the environment in which the derived 
model is working. Generally, for a trained system to be 
extended to a new environment, another training phase 
would have to be conducted. Even in the same 
environment, if there are any substantial physical changes 
in the environment, training data may not accurately 
reflect actual radio propagation afterwards. 
 
Gill et al. [30], [31] proposed intrusion detection 
techniques based on meta-information from wireless 
networks, i.e. RSSI and RTT. By extending the 
Snort-Wireless RSSI and RTT plug-ins, they developed a 
correlation engine based on observations of these metrics 
from a single sensor and used these metrics to profile 
Wi-Fi network clients. If RSSI and RTT change beyond 
defined thresholds, it is indicative that the packets may not 
have originated from a single source. However, some 
potential issues with this approach may be: 
 
(i) Generally, the system clock of a Wi-Fi interface card 

only supports the hardware timestamp with 
microsecond accuracy [32]. As a Wi-Fi signal 
transmits at ~3×108 meter/second, the level of 
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(a) Wi-Fi network nodes form a dense sensor network which has 
excellent coverage in the concerned area 

(b) Access Points only reside in the central area but might not detect 
intrusions at the fringe 

Fig. 1  Comparison between Access Point oriented approach and our sensor network architecture 

accuracy of discriminating a position change may be 
limited to ~300 meters. So RTT is largely decided by 
chipset’s processing capacity in Wi-Fi network 
interface card but not the transmission distance of a 
Wi-Fi network frame. 

(ii) One sensor’s RSSI observation does not provide 
reliable ‘absolute’ information on a transmitting 
WLAN node because RSSI is designed to be used as a 
relative metric and does not guarantee an accurate 
absolute signal strength measurement. In the IEEE 
802.11 standard [21], RSSI has the following 
definition: 

 
“14.2.3.2 RXVECTOR RSSI 
The received signal strength indicator (RSSI) is an 
optional parameter that has a value of 0 through 
RSSI Max. This parameter is a measure by the PHY 
sublayer of the energy observed at the antenna used 
to receive the current PPDU. RSSI shall be measured 
between the beginning of the start frame delimiter 
(SFD) and the end of the PLCP header error check 
(HEC). RSSI is intended to be used in a relative 
manner. Absolute accuracy of the RSSI reading is not 
specified.” 

 
As reported in [33], different chipset vendors have 
implemented RSSI in different ways, so even WLAN 
network cards from same vendor might use different 
chipsets and therefore would report different RSSI value 
for the same signal. RSSI is also known to be dependent 
on the type of antenna equipped. 

3. A novel approach to node discrimination 

In order to exclusively discriminate Wi-Fi network nodes, 
we need to consider what ‘unfakeable’ identification 

information is available for each Wi-Fi network node. 
 
We propose a method of using multiple and multi-angle 
measurements of a Wi-Fi network node’s signal strength. 
As Wi-Fi network is a wireless technology based on radio 
wave, its signal propagation is subject to the length, 
medium and obstructions on its transit path. When a Wi-Fi 
network node emits network traffic, sensors at different 
locations receive and report different levels of signal 
strength. Although an impersonating device can disguise 
itself with fake identity at the packet level, the received 
signal strength (RSS) of its traffic is unlikely to be the 
same as that of the legitimate node because of different 
routes of radio propagation, particularly when RSS is 
measured by multiple sensors from different angles. As a 
result, the signal strength measurements from a sensor 
network may provide adequate information of 
discriminating Wi-Fi network nodes at physical different 
positions even if they appeared to have exact same 
identity.  
 
We also suggest that, the denser and more evenly 
distributed such a sensor net is, the richer data set of RSSI 
value for each monitored node it can collect, potentially 
resulting in more effective discrimination. In contrast,  
many current approaches to using RSSI as an 
informational metric in Wi-Fi network monitoring tend to 
be based on RSS values derived from transmissions to or 
from the access points or few dedicated sensors within the 
network [34-37], which are normally located in 
geometrically central area (for the very good reason of 
providing maximal coverage with minimal investment) 
and may not provide sufficient discriminatory ability – as 
depicted in Figure 1, the smaller the number of RSS values, 
the greater chance for coincident value sets for nodes in 
different positions. Another concern is that centralized 
sensors may not be able to gather sufficient RSSI data 
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Fig. 2  Experimental Network 

 
Fig. 3  Sensor w01’s RSSI measurement for position 1 

from nodes which are on the periphery of the monitored 
area. In fact as discussed in section 5, in this paper we 
demonstrate that when only few sensors are available, their 
RSSI measurements are often similar for a particular node 
in different locations. 

4. Experimental setup and data generation 

We constructed an experimental network to generate a 
data set that we considered would be sufficiently rich to 
explore the feasibility and effectiveness of our approach of 
discriminating between network nodes based on RSSI. 
Figure 2 illustrates our network setup at south side of 
Level three in ICT building in the University of Melbourne. 
It consists of twenty sensors and one moving monitored 
node. These sensors were Pentium III workstations 
equipped with a PCI Wi-Fi network interface card. The 
number of sensors is roughly equivalent to the regular 
number of client computers in this area, and the sensors 
were placed at locations that we considered reasonably 
simulated the distribution of client computers in the 
environment. On each of the sensors, the wireless interface 
was configured into passive monitoring mode. The moving 
monitored node was a laptop with a wireless interface, 
which was constantly transmitting to a central access point 
(via an automated script that generated web traffic). 
Sensors were configured to record all wireless traffic on 
the channel that the monitored node was transmitting, 
using an open source network monitoring program, 
WireShark. The monitored node was left at each position 
for 1 minute, which was sufficient time to collect a large 
amount (~15000) of network frames at each sensor. The 
node was then moved to the next position as depicted in 
Figure 2. When data at all positions were recorded, the 
Received Signal Strength Indicator (RSSI) value in the 
PRISMHEADER, along with other relevant information 

such as sensor identification index and node position index, 
was extracted and saved into a MySQL database. We also 
recorded the absolute position of each position, but have 
not used that data in this study. 
 
During the experiment, the monitored node was moved 
through positions <1> to <22> as shown in Figure 2. In 
this way we collected a dataset which consists of RSSI 
measurements of the monitored node at 20 sensors over 22 
positions. By choosing subsets of sensors out of the full 20 
sensors, up to 1,048,575 different sensor configurations 
are possible (20!/20! + 20!/19!(1!) + 20!/18!(2!) … + 
20!/1!(19!)), with 231 possible ‘position pairs’ 
((22!/2!(20!)). Each position pair may be considered to 
represent one possible ‘impersonation’ attack, as for each 
pair there are two network nodes appearing to have the 
same frame-based identification information (MAC 
address). Because we have a range of distances and 
environmental obstructions represented by the set of 231 
position pairs, we suggest that this data set covers a 
realistic and diverse wireless office environment. 

5. Analysis 

We conducted a comprehensive analysis of our dataset. In 
order to focus on examining the discriminatory ability of 
the sensor network to illegitimate nodes, we used a 
statistical method to epitomize the complex dataset and 
designed a comparative method. Not only does our 
analysis demonstrate that our approach can effectively 
cope with and various scenarios but also reveals 
correlation between individual sensors’ received signal 
strength and their discriminatory ability, which suggests a 
simple mechanism to select sensible data for the real time 
intrusion detection discussed in section 6. 
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5.1 Statistical Analysis 

The experiment was designed such that each sensor 
collected a large number of Wi-Fi network frames from 
the target node at each position. For instance, when the 
target node was at position <1>, sensor w01 collected 
15079 frames, sensor w02 collected 14842 frames and 
sensor w03 collected 14744 frames. Fig 3 is an illustration 
of how sensor w01’s RSSI measurements vary during this 
period. Darker regions in Fig 3 indicate that more frames 
were measured at these values. Intuitively we see that 
RSSI values for a stationary node as recorded by a single 
sensor demonstrate considerable variation - RSSI values at 
some points are between 20 and 25 while others are 
greater than 45. In order to reduce the dataset complexity 
for further analysis, some statistical derivative of the data 
collected is required. Table 1 summarizes general 
statistical descriptors of this dataset. It is clear that there is 
little difference between mean, median and mode of this 
dataset. This suggests that, although RSSI measurements 
for a particular node/position/sensor instance might vary, a 
statistical representation of the full RSSI dataset is valid. 
In all our further analyses, we chose mode as the 
representative function; subsequent references to RSSI 
actually refer to the mode derivative of the set of RSSI 
values for a particular node/position/sensor. 
 

Table 1: Statistical Analysis of RSSI measurement of  

Mean Median Mode Standard 
Deviation 

40.49009 41 42 3.104027
 

5.2 Level of Discrimination 

In order to quantitatively compare how well sensor 
configurations can discriminate between ‘identical’ nodes 
at different positions using sets of RSSI values, we 
introduce a metric called “Level of Discrimination (LoD)”. 
For any set of sensors, the set of (statistically simplified) 
RSSI measurements of a monitored node’s transmitted 
signal (assuming the node is at a single stationary position) 
may be considered as an n-dimensional vector, in which n 
is equal to the number of sensors in the set. If the node is 
moved, a second vector would be expected to be created 
from the new set of RSSI measurements; the second vector 
will differ from the first as a function of the propagation of 
the radio signal from the node and it’s interaction with the 
environment. So, multiple vectors will be defined for 
different positions of a monitored node, and the 
mathematical difference between the vectors represents the 
difference between the node ‘environments’ as represented 
in the recorded RSSI dataset.  
 

For a specific set of sensors, LoD is defined as the 
Euclidean distance between two vectors representing the 
RSSI data sets recorded by that set of sensors for two 
different nodes (or one node at two different positions), 
and is calculated through formula (1).  
 

∑
=

−=
n

i
ii rsLoD

1

2)(   (1) 

s and r represent a sensor’s RSSI measurement in one 
sensor configuration regarding to position pair <s, 
r>. n represents the number of sensors in the 
configuration.  

 
Vectors s and r may represent the same node in different 
positions, or two different nodes. In effect the LoD 
measures how well a set of sensors can discriminate 
between nodes in different positions based solely on RSSI. 
For the same position pair, a larger LoD indicates that a 
sensor configuration can better differentiate a position pair 
than the configuration with smaller LoD.   
 
As an example, consider a subset of the experimental data 
described in the previous section. The RSSI dataset 
gathered on position pair <8, 17> by sensors {2, 7, 10} 
forms two RSSI vectors: |36, 35, 32| and |48, 86, 54|. The 
LoD (Euclidean distance between the two vectors) is 
calculated as. 
 

 82.56)3254()3586()3648( 222 =−+−+−  

 
Similarly, for the same position pair <8, 17>, we can 
consider a second set of sensors {4, 13, 14, 15}, with the 
resultant RSSI vectors |33, 42, 43, 42| and |50, 40, 46, 35|. 
The calculated LoD is then 
 

73.18
)4235()4346()4240()3350( 2222

=

−+−+−+−

 
 
Sensor configuration {2, 7, 10} has a much higher LoD 
than configuration {4, 13, 14, 15} for discrimination of 
position pair <8, 17>, even though more sensors are 
present in the second data set. Therefore, configuration {2, 
7, 10} is a better choice of discrimination for this case. 
 
We realize that this statistical treatment has limited 
practical value for impersonation detection, as LoD is 
derived from a simplified representation of RSSI datasets; 
this is only possible because the experimental data is 
pre-categorised according to node position and so data 
from different nodes can be statistically simplified 
independently. Neither the statistical simplification of 
RSSI measurements, nor the calculation of LoD would be 
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Fig. 4  Elimination of Blind Spots 

 

 
 

Fig. 5  Max and Min LoD in Position Pair <5,7>, Position 
Pair <9,13>,  Position Pair <12, 21> and Position Pair <8,17>

 
Table 2: RSSI measurements of Position Pair (8, 17) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P8 64 36 48 33 43 38 35 45 50 32 85 39 42 43 42 47 27 38 52 32
P17 24 48 38 50 47 49 86 34 37 54 32 48 40 46 35 37 40 34 36 17

possible in a real world impersonation attack because 
RSSI measurements would be received as a single 
spectrum of values for a particular MAC address, 
containing both genuine and impersonated packets, as 
there is no simple categorization feature available outside 
of MAC address (this is of course the main issue with 
impersonation attacks in wireless networks). However, our 
assumption is that the statistical analysis of pre-categorised 
data will help us to understand the information available in 
an RSSI dataset, its distribution between sensors, and how 
different sensor configurations affect discriminatory 
behavior. These analyses will inform further research in 
effective real time, naïve node discrimination; we discuss 
this further in Section 6. 

5.3 Elimination of ‘blind spots’ 

For a number of instances in our experimental dataset, the 
LoD of a particular sensor configuration regarding a 
position pair is so small that it is equal to zero. This 
indicates that such a sensor configuration fails to 
discriminate between identical nodes at these two positions 
because sensors in those configurations measured 
insufficient differences in RSSI values when the monitored 
node was in different positions. For example, 
configuration {1, 3, 15, 19} reported same RSSI 
measurements at position 1 and position 13: |41, 44, 48, 
43|. It is obvious that LoD for this case is zero. We term 
this kind of scenario a “blind spot”.  
 
We calculated all possible LoD values from our 

experimental dataset, for all sensors sets (1,048,575) over 
all 231 positions pairs. Figure 4 plots the number of blind 
spots against the number of sensors in the sensor set. We 
notice that, for configurations consisting of few sensors, 
there are a considerable number of blind spots. For 
example, for sets of single sensors (of which there are 20) 
there are nearly 386 blind spots, which are 8.3% of total 
position pairs multiplying configurations (231 * 20 = 
4620). However, as the number of sensors increase, the 
number of blind spots declines dramatically. Data from 
more sensors make RSSI measurements regarding to 
certain position pair more diversified, which results in 
eliminating blind spots. In our dataset, as long as we use 
sensor configurations consisting of more than 6 sensors, 
RSSI measurements are diversified enough to completely 
eliminate blind spots from our system, no matter which 
sensor configuration we choose – i.e. in any set of 6 
sensors, there is enough information to demonstrate a LoD 
> 0.  

5.4 Critical sensors 

Although maximum LoD regarding all of position pairs 
can be achieved by taking data from all of sensors into 
consideration, we notice that the improvement of LoD 
declines after the first few ‘best’ sensors were taken. This 
indicates that, generally, a few of critical sensors supply 
much more important information in terms of 
discrimination than others. Fig 5 is an illustration. In Fig 5 
the X-axis represents the number of sensors we used in a 
configuration. Y-axis represents LoD of this configuration 
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Fig.6  The number of Critical Sensors needed to achieve 
50% of max LoD 

 
Fig. 7  The number of highest RSSI sensors vs. percentage of 

position pairs  

regarding this position pairs. For simplification purpose 
we only plot the maximum LoD and minimum LoD for 
configurations consisting of certain number of sensors. 
LoD of all other configurations would then fall into the 
area between two edges. We plotted four position pairs, <5, 
7>, <9, 13>, <12, 21> and <8, 17>. Position Pair <5, 7> 
has the shortest physical distance and Position Pair <8, 
17> were selected for plotting as these two pairs have the 
shortest and longest absolute physical distance between 
node positions respectively, so might reasonably be 
expected to be ‘hard’ and ‘easy’ to discriminate (this is of 
course a simplification of the real case, as distance is only 
one of the factors that affects RSSI). Position Pair <9, 13> 
and Position Pair <12, 21> are two random examples from 
the rest of the 231 position pairs. 
 
For all of four positions pairs, Maximum LODs improve 
dramatically in the first a few sensors and after that its 
improvements are trivial. On the other hand, minimum 
LOD continuously improves at similar rate as the number 
of sensors increase and suddenly accelerate as approaching 
the maximum number of sensors. This indicates that there 
exists a small set of critical sensors. We took position pair 
<8, 17> as an example and highlighted the three most 
critical sensors for discrimination of this position pair in 
Fig 6. Sensor 11 and 7 are two most critical sensors for 
this position pair as highlighted in Table 2. A 
configuration consisting of only these two sensors can 
achieve 76% of the maximum possible LoD (maximum 
LoD is assumed to be that which takes into account all of 
20 sensors). In fact sensor 11 and sensor 7 are “mirror” 
sensors in that they each physical reside close to one end 
of position pair <8, 17> (refer Figure 2), and Table 2 
demonstrate that their RSSI values are nearly opposite.  
 
In order to find out if critical sensors exist in all of 231 
position pairs, we analysed the contribution of each 
individual sensor to the discriminatory power of the 
complete set of sensors. In Figure 6, the X-axis represents 

the number of sensors in the configurations maximum 
LoD. The Y-axis represents the percentage contribution of 
each sensor, in decreasing order of contribution (calculated 
by ranking the sensors based on absolute difference in 
RSSI values between the two positions), to the total 
discriminatory power of the complete set of 20 sensors. So, 
the total of all plotted contributions for any position pair is 
100% LoD. Intuitively, we see that for all position pairs, 
there is a clear bias to critical sensors that provide a large 
percentage of the overall discriminatory power. Vertical 
lines are marked on Figure 6 to represent the number of 
critical sensors needed to exceed 50% of maximum LoD, 
and the numbers above the lines represent how many 
position pairs such a number of critical sensors can 
achieve 50% of total LoD. It shows that, for 88% of 231 
position pair, one critical sensor is enough to achieve 50% 
of maximum LoD; only 12% of them need two critical 
sensors to achieve 50% of maximum LoD. 

5.5 Identifying critical sensors 

We find a strong correlation between the discriminatory 
effectiveness of a sensor and the absolute strength of the 
signal received by that sensor, providing a simple method 
for naïvely identifying critical sensors. As an example, 
critical sensors 7 and 11 for position pair <8, 17> are 
sensors with the highest RSSI values at each end. Figure 7 
demonstrates the generalisability of this approach across 
all 231 position pairs. This figure plots the number of 
highest RSSI sensors needed to include critical sensors 
contributing to 50% of maximum LoD against the 
percentage of position pairs that fall within this criteria. 
The figure demonstrates that, for over 90% of position 
pairs, the highest three RSSI sensors achieve over 50% of 
maximum LoD. Further, although we have not 
quantitatively analysed it, the sensor/node location spread 
from Figure 2 suggests a very strong correlation between 
physical distance between sensor and node, and 
discriminatory contribution of that sensor. This suggests 
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further possibilities in identifying the location of 
intrusions. 
 
Several questions arise from the results we have presented 
here, the most obvious being: what is a sufficient LoD for 
practical node discrimination? As presented, LoD is an 
artificial metric, as it is derived from RSSI sets that have 
been pre-categorised according to node position, reduced 
via the statistical mode function. In a real scenario, RSSI 
data is not pre-categorised, and the statistical derivative 
that our LoD metric is based on (mode), will not allow for 
discrimination of nodes based on RSSI alone, as it is an 
averaging metric across all RSSI data. We address these 
points in the next section. 

6. Conclusions and future work 

In this paper we investigated an important issue in Wi-Fi 
network security - node discrimination. We critically 
examined previous research in impersonation attacks in 
Wi-Fi networks, and suggested that the difficulty of 
discriminating Wi-Fi network nodes is a product of the 
inherent nature of current Wi-Fi network infrastructure. 
We proposed a distributed dense sensor network to address 
this issue. Our research demonstrates that such a sensor 
network can achieve a high level of discrimination for 
various scenarios without any pre-knowledge of operating 
environment, and because data from multiple sensors is 
used, the approach is effective in addressing problems 
such as blind spots which are generally encountered when 
only limited sensors participate in node monitoring. Our 
results also suggest that, among all of the participating 
sensors, only a small set of sensors play a critical role in 
discrimination. For the majority of position pairs it is 
sufficient to select the sensors reporting the highest RSSI 
in order to achieve half of the maximum discriminatory 
values. It is important to note that the set of critical sensors 
is different for each position pair; so although only a few 
sensors are required in each discrimination instance, it is 
necessary to have a dense sensor network from which to 
identify the critical sensors in each case. Additionally, it is 
necessary to have a well distributed sensor network, as 
critical sensors tend to be the sensors that are closest to 
one of the monitored node(s). 
 
Our results have demonstrated the feasibility of using rich 
sensor data sets for discriminating duplicate nodes in a 
Wi-Fi network. The analysis methods presented are not, 
however, directly applicable to real world discrimination 
as the statistical treatments we have used depend on the 
data being precategorised by node position. To this end, 
we are currently engaged in developing a approach to 
analysis in which, under the assumption that there is 
sufficient discriminatory power available in a multi-sensor 

RSSI dataset from which critical sensors have been 
selected, we would identify the concurrent RSSI value 
‘peaks’ which would indicate duplicate nodes in different 
positions. We are currently exploring the development of a 
naive clustering algorithm based on mode which will 
exploit the large separation of concurrent RSSI clusters 
from critical nodes. 
 
We also plan to investigate how to discriminate traffic 
from two identical nodes in real time. Because security 
applications, and intrusion detection systems in particular, 
require both fast response times and low false positive and 
false negative rates, we will explore trade offs between 
discrimination accuracy, processing time, amount of data 
required, thresholds of detectable distance between sensors 
and number of sensors.  
 
Finally, a potential criticism of the dense sensor network 
approach is that it is economically unfeasible to deploy 
such a network. However, we suggest that a densely 
distributed sensor network can be constructed with 
minimal extra hardware investment by recruiting existing 
wireless clients in the network as sensors.  Most Wi-Fi 
network interface cards are capable of being configured to 
passively monitor Signal Strength (RSS) for any Wi-Fi 
network frames they receive, and as the nature of a 
wireless client base is to be well distributed, they can be 
recruited to create a densely distributed sensor network, 
and, in fact, our experimental dataset was generated from a 
client network that had been configured in such a way. 
There are of course other concerns with using non-fixed 
sensors for intrusion detection; we intend to address these 
and other issues in our subsequent reports. 
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