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Abstract 
In this paper, the problem of stability analysis for a class of 
impulsive Cohen-Grossberg neural networks with mixed 
time delays is considered. The mixed time delays comprise 
both the time-varying and distributed delays. By 
employing a combination of the M -matrix theory and 
analytic methods, several sufficient conditions are 
obtained to ensure the global exponential stability of 
equilibrium point for the addressed impulsive 
Cohen-Grossberg neural network with mixed delays. The 
proposed method, which does not make use of the 
Lyapunov functional, is shown to be simple yet effective 
for analyzing the stability of impulsive neural networks 
with variable and/or distributed delays. Moreover, the 
exponential convergence rate is estimated, which depends 
on the system parameters. The results obtained generalize 
a few previously known results by removing some 
restrictions or assumptions. An example with simulation is 
given to show the effectiveness of the obtained results. 
Key words: 
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1. Introduction 

The Cohen-Grossberg neural network model, first 
proposed and studied by Cohen and Grossberg in 1983 [1], 
has attracted considerable attention due to its potential 
applications in classification, parallel computing, 
associative memory, signal and image processing, 
especially in solving some difficult optimization problems. 
In such applications, it is of prime importance to ensure 
that the designed neural networks be stable[2,3]. In 
practice, due to the finite speeds of the switching and 
transmission of signals, time delays do exist in a working 
network and thus should be incorporated into the model 
equation [2]. In recent years, the dynamical behaviors of 
Cohen-Grossberg neural networks with constant delays or 
time-varying delays or distributed delays have been 
studied, for example, see [2-26] and references therein. 

On the other hand, impulsive effect likewise exists in 
a wide variety of evolutionary processes in which states 
are changed abruptly at certain moments of time in the 
fields such as medicine and biology, economics, 
electronics and telecommunications. Neural networks, 
which include Hopfield neural networks, cellular neural 
networks and Cohen-Grossberg neural networks, are often 
subject to impulsive perturbations that in turn affect 
dynamical behaviors of the systems. Therefore, it is 
necessary to consider both the impulsive effect and delay 
effect when investigating the stability of neural networks 
[27]. So far, several interesting results have been reported 
that focusing on the impulsive effect on delayed neural 
networks, see [27-39] and references therein. To the best 
of our knowledge, few authors have considered the 
dynamical behaviors of the impulsive Cohen-Grossberg 
neural network model with both time-varying and 
distributed delays. 
Motivated by the above discussions, the objective of this 
paper is to study the global exponential stability of 
impulsive Cohen-Grossberg neural network with both 
time-varying and distributed delays, and estimate the 
exponential convergence rate index. By employing a 
combination of the M-matrix theory and analytic methods, 
we obtain several sufficient conditions for ensuring the 
global exponential stability. Our proposed method does not 
make use of the Lyapunov functional and is shown to be 
simple yet effective for analyzing the stability of impulsive 
neural networks with variable and/or distributed delays. 
Our main results generalize a few previously known 
results by removing some restrictions or assumptions. An 
example with simulation is given to show the effectiveness 
of the obtained results. 
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2. Model description and preliminaries 
 
In this paper, we consider the following model. 
 
 
 
 
 
 
 
 
 

(1) 
 
 
 
 
 
for 1, 2, ,i n= L  and 1, 2,k = L , where n  corresponds 
to the number of units in the neural network; 

( )iu t corresponds to the state of the i th unit at time t . 
The first part is the continuous part of model (1), which 
describes the continuous evolution processes of the neural 
network, where jg , jf  and jh  denote the activation 

functions; ( )ij tτ corresponds to the transmission delay 
along the axon of the j th unit from the i th unit and 

satisfies 0 ( )ij ijtτ τ≤ ≤ ( ijτ  is a constant); 

( ( ))i ia u t represents an amplification function at time t ;  

( ( ))i ib u t is an appropriately behaved function at time 
t such that the solutions of model (1) remain 
bounded; ( )ij n nC c ×= , ( )ij n nD d ×=  and ( )ij n nV v ×=  

are connection matrices; ijK  is the delay kernel function; 

iI  is the constant input from outside of the network. The 
second part is the discrete part of model (1), which 
describes that the evolution processes experience abrupt 
change of state at the moments of time kt  (called 
impulsive moments), where 

1( ( ), , ( ))ik np u t u t− −L represents impulsive perturbations of 

the i th unit at time 
k

t  and ( )ju t−  denotes the left 

limit of ( )ju t ; 1 1( (( ( )) ), , (( ( )) ))ik i n inq u t t u t tτ τ− −− −L  
represents impulsive perturbations of the i th unit at time 

k
t  which caused by transmission delays; ikJ represents 

external impulsive input at time 
k

t , the fixed moments of 

time 
k

t  satisfy 1 2t t< <L , limk kt→+∞ = +∞  

and { } { }12 1 ,
min maxk k ijk i j n

t t τ−≤ ≤∞ ≤ ≤
− > . 

Remark 1. When 1( ( ), , ( )) ( )ik n ip u t u t u t− − =L ，

1 1( (( ( )) ), , (( ( )) )) 0ik i n inq u t t u t tτ τ− −− − =L  and 

0ikJ = ( 1, 2, ,i n= L ; 1, 2,k = L ), model (1) turns to the 
following Cohen-Grossberg neural network model without 
impulses 
 
 
 
 

(2) 
 
 
 
 
for 0t > , 1, 2, ,i n= L . Note that model (2) is a general 
neural network that covers some popular models such as 
delayed Hopfield neural networks, delayed cellular neural 
networks, delayed BAM neural networks. 

For convenience, we introduce several notations. 

1 2( , , , )T n
nu u u u R= ∈L denotes a column vector; u  

denotes the absolute-value vector given 
by 1 2( , , , )T n

nu u u u R= ∈L . For matrix 

( ) n n
ij n nA a R ×

×= ∈ , A denotes the absolute-value matrix 

given by ( )ij n nA a ×= ; ( )Aρ denotes the spectral radius 

of A ; u denotes a vector norm defined by
1
max ii n

u u
≤ ≤

= . 

[ , ]C X Y denotes the space of continuous mappings from 
the topological space X  to the topological 
space Y . {[ , ] : | ( ) ( )n nPC I R I R t tϕ ϕ ϕ+= → = for 

t I∈ , ( )tϕ − exists for 0( , )t t∈ +∞ , ( ) ( )t tϕ ϕ− = for all but 
points }0( , )kt t∈ +∞ ,where I R⊂  is an interval, ( )tϕ +  

and ( )tϕ − denote the left-hand limit and right-hand limit 
of the scalar function ( )tϕ , respectively. 

Throughout this paper, we make the following 
assumptions: 

(H1) Model (1) has at least one equilibrium point. 
(H2) ( )ia u  is a continuous function and 

0 ( )i ia a u< ≤ ( ia is a constant) for all u R∈ , 
1,2, ,i n= L . 

(H3) There exists a positive diagonal matrix 

1 2( , , , )nB diag b b b= L  such that 
( ) ( )i i

i
b u b v

b
u v
−

≥
−

 for all 

u , v R∈ ( u v≠ ), 1, 2, ,i n= L . 

1

1

1

( )
( ( )) ( ( )) ( ( ))

( ( ( )))

( ) ( ( ))

ni
i i i i ij j j

j

n

ij j j ij
j

n t
ij j j i

j

du t
a u t b u t c g u t

dt

d f u t t

K t s h u s ds I

τ

=

=

−∞
=

= − − ∑

− −∑

− − +∑ ∫

⎡
⎢⎣

⎤
⎥⎦

1

1

1
,

( )
( ( )) ( ( )) ( ( ))

( ( ( )))

( ) ( ( ))

ni
i i i i ij j j

j

n

ij j j ij
j

n t
ij ij j j i

j

du t
a u t b u t c g u t

dt

d f u t t

v K t s h u s ds I

τ

=

=

−∞
=

= − − ∑

− −∑

− − +∑ ∫

⎡
⎢⎣

⎤
⎥⎦

1 1 1

,

( ) ( ( ), , ( )) ( (( ( )) ),

, (( ( )) ))

i ik n ik i

n in ik

u t p u t u t q u t t

u t t J

τ

τ

− − −

−

= + −

− +

L

L ,kt t=

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

,kt t≠
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(H4) There exist three positive diagonal matrices 
1 2( , , , )nG diag G G G= L ， 1 2( , , , )nF diag F F F= L  and 

1 2( , , , )nH diag H H H= L  such that 

1 2

1 2

1 2

( ) ( )
sup j j

j
u u

g u g u
G

u u≠

−
=

−
, 

1 2

1 2

1 2

( ) ( )
sup j j

j
u u

f u f u
F

u u≠

−
=

−
 

and 
1 2

1 2

1 2

( ) ( )
sup j j

j
u u

h u h u
H

u u≠

−
=

−
 for all 1 2u u≠ , 

1, 2, ,j n= L . 
(H5) The delay kernel : [0, ) [0, )ijK +∞ → +∞  is real 

valued nonnegative continuous function and satisfies 

0
( ) ( )s

ij ije K s ds rβ β
+∞

=∫ , where ( )ijr β  is continuous 

function in [0, )δ , 0δ > , and (0) 1ijr = , , 1, 2,i j n= L . 

(H6) There exist nonnegative matrices ( )( )k
k ij n nP p ×= , 

( )( )k
k ij n nQ q ×=  such that  

( )
1 1

1

( , , ) ( , , )
n

k
ik n ik n ij j j

j

p u u p v v p u v
=

− ≤ −∑L L , 

( )
1 1

1

( , , ) ( , , )
n

k
ik n ik n ij j j

j

q u u q v v q u v
=

− ≤ −∑L L  

for all 1( , , )T n
nu u R∈L , 1( , , )T n

nv v R∈L , 1,2, ,i n= L , 
1, 2,k = L . 

Definition 1: The equilibrium point 
* * * *

1 2( , , , )T
nu u u u= L  of model (1) is said to be globally 

exponentially stable if there exist constants 0ε >  and 
0M >  such that 

 
(3) 

 
for all 0t > , where 1 2( ) ( ( ), ( ), , ( ))T

nu t u t u t u t= L is any 
solution of model (1) with initial value 

0( ) ( ) (( ,0], )i iu t s s PC Rφ+ = ∈ −∞ , 1,2, ,i n= L , and 
* *

1 ( ,0]
max sup ( )i ii n s

u s uφ φ
≤ ≤ ∈ −∞

− = − . 

Definition 2[18]: A real matrix ( )ij n nA a ×=  is said to be 
an M -matrix if 0ija ≤ ( , 1, 2, ,i j n= L , i j≠ ) and 
successive principle minors of A  are positive. 

To prove our results, the following lemmas that can be 
found in [18, 33] are necessary. 
Lemma 1[18]: Let Q  be n n×  matrix with 
non-positive off-diagonal elements, then Q  is an 
M -matrix if and only if one of the following conditions 
holds. 

(i) The real parts of all eigenvalues of Q  are 
positive. 
(ii) There exists a vector 0ξ >  such that 0T Qξ > . 
When A  is an M -matrix, denoting 

( ) { | 0, 0}nA R Aξ ξ ξΩ = ∈ > > , 
we know from Lemma 1 that ( )AΩ  is nonempty. 
Lemma 2[33]: Let A  be a nonnegative matrix, then A  
has an nonnegative eigenvalue that is ( )Aρ  and its 
eigenvectors are nonnegative. 

Let 
( ) { | ( ) }nA R A Aξ ξ ρ ξΓ = ∈ = . 

When A  is  an nonnegative matrix, it follows from 
Lemma 2 that ( )AΓ  is nonempty. 
 

3. Main Results 

 
Theorem 1: Under assumptions (H1)-(H6), the 
equilibrium point of model (1) is globally exponentially 
stable and the exponential convergence rate equals ε α−  
if the following conditions are satisfied 

(i) W B C G D F V H= − − −  is an M -matrix. 

(ii) [ ]
1

( ) ( ) ( )k k
k

P Q W
∞

=
Δ = Γ Γ ΩI I I  is nonempty. 

(iii) There exists a constant α  such that 

1

ln
, 1, 2,k

k k

k
t t

α
α ε

−

≤ < =
−

L          (4) 

where the sequence kα  satisfies 
max{1, ( ) ( )}k k kP e Qετα ρ ρ≥ +          (5) 

and the scalar 0ε >  is determined by the inequality 

( )
1

( ) 0
n

i i j ij j ij j ij ij j
ji

b c G e d F v r H
a

ετεξ ξ ε
=

⎛ ⎞
− + + + <⎜ ⎟

⎝ ⎠
∑  

(6) 
for a given 1 2( , , , )T

nξ ξ ξ ξ= ∈ΔL , 
1 ,1

max { }iji n j n
τ τ

≤ ≤ ≤ ≤
= . 

Proof. From assumption (H1), we let * * * *
1 2( , , , )T

nu u u u= L  
be an equilibrium point of model (1). By denoting 

* *( ) ( ) , ( ( )) ( ( ) )i i i i i i i iy t u t u a y t a y t u= − = +% , 
* *( ( )) ( ( ) ) ( )i i i i i i ib y t b y t u b u= + −% , 
* *( ( )) ( ( ) ) ( )j j j j j j jg y t g y t u g u= + −% , 
* *( ( )) ( ( ) ) ( )j j j j j j jf y t f y t u f u= + −% , 
* *( ( )) ( ( ) ) ( )j j j j j j jh y t h y t u h u= + −% , 

* *
1 1 1

* *
1

( ( ), , ( )) ( ( ) , , ( ) )

( , , ),
ik n ik n n

ik n

p y t y t p y t u y t u

p u u

= + +

−

% L L

L
 

* *
1 1 1

* *
1

( ( ), , ( )) ( ( ) , , ( ) )

( , , ),
ik n ik n n

ik n

q y t y t q y t u y t u

q u u

= + +

−

% L L

L
 

we can rewrite model (1) as follows: 
 
 
 

0( )* *( ) t tu t u M u e εφ − −− ≤ −
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(7) 
 
 
 
 
for 1, 2, ,i n= L , 1, 2,k = L . 

Since W is an M -matrix and the set Δ  is 
nonempty, from lemma 1, there exists 

1 2( , , , ) ( )T
n Wξ ξ ξ ξ= ∈Δ ⊆ ΩL  such that  

( )
1

0, 1,2, , .
n

i i j ij j ij j ij j
j

b c G d F v H i nξ ξ
=

− + + + < =∑ L   

(8) 
We can choose a sufficiently small positive constant 

0ε >  such that 

( )
1

( ) 0,
n

i i j ij j ij j ij ij j
ji

b c G e d F v r H
a

τεεξ ξ ε
=

⎛ ⎞
− − + + + <⎜ ⎟

⎝ ⎠
∑  

1, 2, , .i n= L                                 (9) 
Let 

0( )( ) ( ) , 1,2, , .t t
i ix t e y t i nε −= = L  

Calculating the upper right derivative ( )iD x t+  of ( )ix t  
along the solutions of (7), from the assumption (H2), (H3), 
(H4) and (H5), we can get 

0 0

0 0

( ) ( )

1

1

1

( ) ( )

( ) ( ) sgn( ( ))

( ( )) ( ( )) ( ( ))

( ( ( )))

( ) ( ( ))

( ( ))
( )

(

t t t t
i i i

n

i i i i ij j j
j

n

ij j j ij
j

n t

ij ij j j
j

t t t ti i
i

i

i

D x t e y t e y t

a y t b y t c g y t

d f y t t

v K t s h y s ds

a y t
e y t e

a

a y

ε ε

ε ε

ε ε

τ

ε ε

− −+

=

=

−∞
=

− −

⎧
= + ⎨

⎩

⎡− −⎣

− −

⎫⎤⎪− − ⎬⎥
⎪⎦⎭
⎧

≤ + ⎨
⎩

−

∑

∑

∑ ∫

%% %

%

%

%

%
1

1

1

( )) ( ) ( )

( ( ))

( ) ( )

n

i i i ij j j
j

n

ij j j ij
j

n t

ij ij j j
j

t b y t c G y t

d F y t t

v K t s y t H ds

τ

=

=

−∞
=

⎡
−⎢

⎣

− −

⎫⎤⎪− − ⎬⎥
⎪⎦⎭

∑

∑

∑ ∫

 

( )

1 1

1

1

1

( ( ))
( ) ( ( )) ( )

( ) ( ( ))

( ) ( )

( ( )) ( ) ( )

( ( ))

ij

i i
i i i i i

i

n n
t

ij j j ij j j ij
j j

n t

ij ij j j
j

n

i i i i ij j j
ji

n

ij j j ij
j

a y t
x t a y t b x t

a

c G x t d F e x t t

v K t s x t H ds

a y t b x t c G x t
a

e d F x t t

ετ

ετ

ε

τ

ε

τ

= =

−∞
=

=

=

⎡
= − ⎢

⎣

− − −

⎫⎤⎪− − ⎬⎥
⎪⎦⎭

⎡ ⎛ ⎞
≤ − − +⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

+ −

∑ ∑

∑ ∫

∑

∑

%
%

%

1

( ) ( )
n t

ij j ij j
j

v H K t s x t ds
−∞

=

⎤
+ − ⎥

⎦
∑ ∫

 

for 1, 2, , ;i n= L  1k kt t t− < < , 1, 2,k = L . 
Leting 

*

0

1
min{ }ii n

u
l

φ

ξ
≤ ≤

−
= , 

then we have 
0( ) * *

0 0( ) ( ) ( ) ( )s t
i i i i i ix s e y s y s s t u u lε φ φ ξ−= ≤ = − − ≤ − ≤

, 0s t−∞ < ≤ , 1, 2, ,i n= L . 
Let us prove 

0( )i ix t lξ≤ , 0 1t t t≤ < , 1, 2, ,i n= L .      (11) 
If (11) is not true, then there exist some i  and 

*
0 1[ , ]t t t∈  such that 

*
0( )i ix t lξ= , *( ) 0iD x t+ ≥  and 0( )j jx t lξ≤  

for *t t−∞ < ≤ , 1, 2, ,j n= L . However, from (9), (10) 
and (H5), we get 

*

1 1

0
1

( ) ( ( ))

( )

0,

i i j i i
i

n n

ij j j ij j j
j j

n

ij j ij j
j

D x t a y t b
a

c G e d F

v H r l

ετ

ε ξ

ξ ξ

ε ξ

+

= =

=

⎡ ⎛ ⎞
≤ − −⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

+ +

⎤
⎥
⎦

<

∑ ∑

∑

%

 

and this is a contradiction. So 
0( )i ix t lξ≤ , 0 1t t t≤ < , 1, 2, ,i n= L , 

which is 
0( )

0( ) t t
i iy t l e εξ − −≤ , 0 1t t t≤ < , 1,2, ,i n= L .    (12) 

In the following, we will use the mathematical induction to 
prove that 

0( )
0 1 1 0( ) t t

i k iy t l e εα α α ξ − −
−≤ L , 1k kt t t− ≤ < , 1, 2, ,i n= L , 

1, 2,k = L ,                                  (13) 
holds for 0 1α = . 

1

1

1
,

( )
( ( )) ( ( )) ( ( ))

( ( ( )))

( ) ( ( ))

ni
i i i i ij j j

j

n

ij j j ij
j

n t
ij ij j j

j

dy t
a y t b y t c g y t

dt

d f y t t

v K t s h u s ds

τ

=

=

−∞
=

= − − ∑

− −∑

− −∑ ∫

⎡
⎢⎣

⎤
⎥⎦

%% %

%

%

1 1 1( ) ( ( ), , ( )) ( (( ( )) ),

, (( ( )) )),

i ik n ik i

n in

y t p y t y t q y t t

y t t

τ

τ

− − −

−

= + −

−

% %L

L

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

,kt t≠

kt t=



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008 

 

98 

 

When 1k = , from (12) we know that (13) holds. 
Suppose that the inequalities  

0( )
0 1 1 0( ) t t

i k iy t l e εα α α ξ − −
−≤ L , 1k kt t t− ≤ < , 1, 2, ,i n= L  

holds for 1, 2, ,k m= L . 
From assumption (H6) and (14), the discrete part of 

model (7) satisfies that 

(15) 
for 1, 2, ,i n= L . 

From 1 2( , , , )T
nξ ξ ξ ξ= ∈ΔL  and Lemma 2, we 

know that ( )mPξ ∈Γ  and ( )mQξ ∈Γ . Thus  
( )m mP Pξ ρ ξ= , ( )m mQ Qξ ρ ξ= , 

i.e., 
From (15), (16) and (4), we get 

( ) 0

0

( )
0 1 1 0

( )
0 1 1 0

( ) ( ) ( ) m

m

t t
i m m m m i

t t
m m i

y t P e Q l e

l e

εετ

ε

ρ ρ α α α ξ

α α α α ξ

− −
−

− −
−

≤ +

≤

L

L
  (17) 

for 1, 2, ,i n= L . This, together with both (14) and (12), 
lead to 

0( )
0 1 1 0( ) t t

i m m m iy t l e εα α α α ξ − −
−≤ L , 1, 2, ,i n= L ; 

( , ]mt t∈ −∞                                  (18) 
i.e., 

0 1 1 0( )i m m ix t lα α α α ξ−≤ L , 1, 2, ,i n= L ; ( , ]mt t∈ −∞ (19) 
In the following, we will prove that 

0 1 1 0( )i m m ix t lα α α α ξ−≤ L , 1, 2, ,i n= L ; 1[ , )m mt t t +∈ (20) 
holds. 

If (20) is not true, then there exist some i  and 
**

1[ , )m mt t t +∈  such that 
**

0 1 1 0( )i m m ix t lα α α α ξ−= L , **( ) 0iD x t+ ≥  and 

0 1 1 0( )j m m ix t lα α α α ξ−≤ L  

For **t t−∞ < ≤ , 1, 2, ,j n= L . However, from (9), (10) 
and (H5), we get 

** **

1 1

0 1 1 0
1

( ) ( ( ))

( )

0,

i i i i i
i

n n

ij j j ij j j
j j

n

ij j ij j m m
j

D x t a y t b
a

c G e d F

v H r l

ετ

ε ξ

ξ ξ

ε ξ α α α α

+

= =

−
=

⎡ ⎛ ⎞
≤ − −⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

+ +

⎤
+ ⎥

⎦
<

∑ ∑

∑

%

L

 

which is a contradiction. This indicates that (20) holds. To 
this end, by the mathematical induction, we can conclude 
that (13) holds. 

From (5), we have 
1( )k kt t

k eαα −−≤ , 1, 2,k = L . 
It follows from (13) that 

1 0 1 2 02 1

1 0 0

0 0

0
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0
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1
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1
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min{ }
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y t e e e l e

u e e

u e e

u e

α α εα

α ε
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φ
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ξ
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−

− − − −−

− − −

≤ ≤

− − −

≤ ≤

− − −

≤ ≤

≤

= −
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= −

L

 

for any 1[ , )k kt t t−∈ , 1, 2,k = L , that is 

0( )( )* *

1

( )
min{ }

t ti
i

ii n

u t u u e ε αξ
φ

ξ
− − −

≤ ≤

− ≤ −  

for 0t t≥ ,  So 
0( )( )* *( ) t tu t u M u e ε αφ − − −− ≤ −  

for 0t t≥ ,  where
1

1
min{ }

i

ii n

M
ξ
ξ

≤ ≤

= ≥ . This means that the 

equilibrium point *u of model (1) is globally 
exponentially stable, and the exponential convergence rate 
equals ε α− . The proof is completed. 
Remark 2. We may choose appropriate matrices kP and 

kQ  in assumption (H6) to guarantee that the set Δ  in 
Theorem 1 is nonempty. In particular, when k kP p E=  
and k kQ q E=  ( kp , kq  are nonnegative constants and 
E  is a unit matrix), Δ  is certainly nonempty. So, by 
using Theorem 1, we can obtain the following corollary 
easily. 
Corollary 1: Under assumptions (H1)-(H5), the 
equilibrium point of model (1) is globally exponentially 
stable if the following conditions are satisfied 

(i) There exist nonnegative constants kp  and  kq  
such that  

1 1( , ) ( , )ik n ik n k i ip u u p v v p u v− ≤ −L L  
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1 1
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1 1( , ) ( , )ik n ik n k i iq u u q v v q u v− ≤ −L L  

for all 1( , , )T n
nu u R∈L , 1( , , )T n

nv v R∈L , 1,2, ,i n= L , 
1, 2,k = L . 
(ii) W B C G D F V H= − − −  is M -matrix. 

(iii) Let max{1, }k k kp q eετα ≥ + . Assume that there 
exists a constant α  such that 

1

ln k

k kt t
α

α ε
−

≤ <
−

  1, 2,k = L , 

where the scalar ε  is determined by the inequality 

( )
1

( ) 0
n

i i j ij j ij j ij ij j
ji

b c G e d F v r H
a

ετεξ ξ ε
=

⎛ ⎞
− + + + <⎜ ⎟

⎝ ⎠
∑  

for a given 1 2( , , , ) ( )T
n Wξ ξ ξ ξ= ∈ΩL . 

Proof. Noticing condition (i) is a special case of (H6) with 
k kP p E=  and k kQ q E= , we know that (H6) is satisfied. 

It can be easily computed that 

[ ]
1

( ) ( ) ( ) ( )k k
k

P Q W W
∞

=
Δ = Γ Γ Ω = ΩI I I . From condition 

(ii), we know that ( )WΩ  is nonempty, and therefore the 
condition (ii) of Theorem 1 is satisfied. By using 
Theorem 1 we can deduce the conclusion, and the proof is 
complete. 

From Theorem 1 of [18] and Corollary 1 of this paper, 
we can prove the following result. For simplicity of the 
presentation, the proof is skipped. 
Corollary 2: Under assumptions (H2)-(H5), model (2) has 
a unique equilibrium point, which is globally 
exponentially stable if W B C G D F V H= − − −  is an 
M -matrix. 
Remark 3. In [2-16], [19, 20, 21, 23, 25, 26], the 
amplification functions were required to satisfy 
0 ( )i i ia a u a< ≤ ≤ < +∞  for all u R∈ , 1, 2, ,i n= L . It 
is worth pointing out, in our paper, the upper bound 
constraint on the amplification functions is no longer 
needed. In addition, assumption (H3) on the behaved 
functions in our results is the same as that in [5, 8, 18], and 
the condition for differentiability imposed on behaved 
functions in [2-4], [6], [7], [9-11] is removed in our results. 
Remark 4. Corollary 2 of this paper shows that there is a 
unique equilibrium point *u  of the continuous part of the 
system (1) under assumptions (H2)-(H5). In many cases,  

*u  may not be a solution of the discrete part of the system 
(1) without the external impulsive input. In other words, 
the entire system (1) may have no equilibrium point. In 
order to guarantee that the entire system (1) has an 
equilibrium point, as in [33], we can introduce the external 
impulsive input ikJ  so that *u  is also an equilibrium 
point of the discrete part of the system (1). 
 

4. Example 
 
Example 1. Consider the following model 
 
 
 
 
 
 
 
 
 
 

(30) 
 
 
 
 
 
 
 
 
 
 
 
where 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )g x g x f x f x h x h x x= = = = = = , 

11 12 21 22( ) ( ) ( ) ( ) tK x K x K x K x te−= = = = , 
( ) cos 0.1t tτ = + ,  0 0t = , 1 0.5k kt t k−= + , 1, 2,k = L . 

One can verify that the point (1,2)T  is an equilibrium 
point of model (30), and model (30) satisfies assumptions 

(H2)-(H6) with 1 1a = , 2 2a = , 
11 0
0 12

B ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

1 1
0 2

C
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

1 0
2 3

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
2 1
1 2

V
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

1 0
0 1

F G H ⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
, 0.05 2 1
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4 2

k
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0.05 1 0
0.4

0 1
k
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= ⎜ ⎟
⎝ ⎠

, 1.1τ = . 

It can be easily checked that 
7 2

W=B- C
3 5

F D G V H
−⎛ ⎞

− − = ⎜ ⎟−⎝ ⎠
 

is an M -matrix, and 0.05( ) ( ) 0.4 k
k kP Q eρ ρ= = . 

Therefore, { }1 2 2 1( ) ( , ) | 2T
kP z z z zΓ = = , 2( )kQ RΓ = , 
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(1, 2)Tξ = ∈Δ  and 0.2164ε =  so that the following 
inequalities 
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( )
1

( ) 0
n

i i j ij j ij j ij ij j
ji

b c G e d F v r H
a

ετεξ ξ ε
=

⎛ ⎞
− + + + <⎜ ⎟

⎝ ⎠
∑  

hold for , 1,2i j = . Taking 0.05k
k eα = , 0.1α = , we 

know that the inequalities 
{ }0.05 0.05 0.23804max 1,0.4 0.4k k

k e e eα ≥ + , 1, 2,k = L , 
and 

0.05

1

ln ln
0.5

k
k

k k

e
t t k

α
α ε

−

= ≤ <
−

, 1, 2,k = L , 

are satisfied. Clearly, all conditions of Theorem 1 are 
satisfied. From Theorem 1, we know that the unique 
equilibrium point (1,2)T  of model (30) is globally 
exponentially stable, and the exponential convergence rate 
equals 0.1164. The global exponential stability of 
equilibrium point (1,2)T  of model (30) is further verified 
by the simulation given in Figure 1, where the initial state 
is taken as 1( ) 2 sin(3 )u s s= − , 2 ( ) 1 cos(4 )u s s= − + , 

( ,0]s∈ −∞ . 
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t

u
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u2

 
Fig. 1 Quantization procedure for measurement of noise level fluctuation. 
 

5. Conclusion 

 
In this paper, the problem on exponential stability has been 
investigated for a class of impulsive Cohen-Grossberg 
neural networks with both the time-varying and distributed 
delays. Several sufficient conditions for checking the 
global exponential stability of equilibrium point have been 
established by using the M-matrix theory and analytic 
methods. Moreover, the exponential convergence rate 
index has been estimated, which depends on the system 
parameters. The proposed results have generalized some 
recently known ones in the literature, and removed some 
restrictions on the neural networks. An example with 
simulation has been given to show the effectiveness of the 
obtained results. 
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