
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

102

A New Approach to Sketch Recognition using Heuristic

 G. Sahoo† and Bhupesh Kumar Singh††

†Department of Computer Science & Engineering

Birla Institute of Technology, Mesra, Ranchi, India
††Department of Computer Science & Engineering

Lingaya’s Institute of Mgt. & Technology, Faridabad, India

Summary
The people of various domains, mechanical engineering for
machine drawing, electronics engineering for circuit drawing,
computer engineering for architectural design etc. generally
use sketches. This paper presents an efficient approach for
Sketch Recognition using Heuristic. Many papers have been
presented in the literature to recognize sketches using various
approaches. We discuss here multi-domain Sketch Recognition
that provides flexibility to the user and increases the
capabilities of a system. The Heuristic framework proposed in
this paper offers the user more liberty for free-style sketching
as well as for grouping the strokes, reducing the complexity for
recognizing the sketches. It also solves the purpose of online as
well as offline input sketch recognition. An attempt has been
made here to remove the local search strategy and introduce a
global search strategy to improve the recognition of the
structure.

Key words:
Sketch recognition, Bayesian network, Heuristic, A* Algorithm,
Canny Algorithm, Gaussian Filter, Fuzzy-Membership Rule

1. Introduction

This paper presents an efficient approach to deal with the
problems of recognition of free-hand drawing or free-
style sketch input given to the system using keyboard,
mouse, digitizing tablet etc. Many papers have been
presented in this regard, but the basic problem of
efficiency, effectiveness and accuracy still persists.
Sketch Recognition provides intelligence to the system in
understanding the inputs given by the user so that system
can recognize the input and respond as per the user’s
requirement. Sketch understanding (SU) [1] is a part of
intelligence system which aimed at deriving the semantic
knowledge from the sketch that helps user to convey
ideas and guide over thinking process to make
recognized problem more concrete. User may draw
informal input, which produces inconsistent and
ambiguous input to the system. So, a recognition engine
should automatically adopt particular user styles.
Recognition can be performed on the basis of two things:
Stroke based where each stroke is recognized separately
and Feature based where we make use of geometrical
properties of the sketch [2].

We follow a recognition style based on both – strokes
and geometrical features. The recognition can be
performed over a single domain or on multiple domains.

i. Single domain Recognition: It employs the knowledge
in only one domain. Yet it is simplistic but an inefficient
approach because the person of different domain cannot
use it.

ii. Multi-Domain Recognition: This recognition system
incorporates the knowledge from multiple domains, so a
single system can be used for various domains. Even, the
system would find the result without changing the mode
of the system [3], [4]. Input to this type of recognition
system can be provided in the following two ways.
1. Online input (dynamic input): It means that system
can be provided the input at run time while the system
recognizes the strokes at the same time. As a natural
tendency user draws the sketches with some pauses. The
method to be used, without interfering the user, takes the
input provided at the previous time instant and
recognizes it at the next instant. After the user has given
a long pause it shows the recognized figure to the user.
2. Offline input (Static input): User can draw a sketch
on a paper and then feed it as input to the system. Our
recognition engine will draw the output for this static
input as well. The motive of our recognition system is to
provide flexibility to the user as well as to represent the
most efficient and accurate output. The paper is
organized by introducing the concept of heuristic that
removes the statistical approach used in Bayesian
networks. Then, we explain the architecture of our
system. Next, we explain the hierarchy of our
recognition process that includes stroke filtering, sketch
segmentation, elementary shape recognition, structure
matching and semantic checking using heuristic and
finally, the output, followed by future work and
conclusion.

2. Recognition Framework

Bayesian Network uses local search strategy that makes
an incremental changes aimed at improving the score of
the structure [5]. A global search algorithm like heuristic

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

103

can avoid getting trapped in local minima. We select A*
algorithm from a number of heuristic algorithms. Using
heuristic approach we introduce how much resources like
time and energy have been spent in recognizing a
particular node from the start. This algorithm proves to
be admissible i.e. the algorithm secures to find the most
optimal way to recognize a stroke (node) [6]. Note that
A* Algorithm evaluates nodes by combining the cost to
reach the node and the cost to get from the node to the
goal. If g(x) denotes the cost of the path from START
node to GOAL node x, and h(x) defined to be the
estimated cost of the cheapest path from x to the goal
then the estimated cost of the cheapest solution through x
can be given as

f(x) = g(x) + h(x)

To find the cheapest solution, we need to calculate the
smallest f(x) value. A* strategy is more than just
reasonable provided that the heuristic function h(x)
satisfies certain conditions. A* Algorithm is both
complete and optimal.
For tree-search, A* is optimal if h(x) gives an admissible
heuristic – that is, h(x) must never overestimate the cost
to reach the goal. Admissible heuristics is by nature
optimistic. Since g(x) provides the exact cost to reach x,
so its immediate consequence is that f(x) never
overestimates the true cost of a solution through x.
Straight line proves to be admissible because the shortest
path between any two points is a straight line, so the
straight line can never be an overestimate.
To make a graph based searching optimal A* Algorithm
imposes an extra requirement of consistency or
monotonic. A heuristic function h(x) is consistent if, for
every node x and every successor s of x generated by an
action a, the estimated cost of reaching the goal from x
never greater than the step cost of getting s plus the
estimated cost of reaching the goal from s, that is,

h(x) ≤ c(x, a, s) + h(s).

This is a form of general triangle inequality, which
stipulates that each side of a triangle cannot be longer
than the sum of the other two sides. Here the triangle is
formed by x, s, the goal closest to x. So, it represents that
every consistent heuristic is also admissible.
If h (x) is consistent, then the values of f(x) along any
path do not decrease. Suppose s is successor of x, then

g(s) = g(x) + c(x, a , s) for some a
 and

f(s) = g(s) + h(s) = g(x) +c(x, a, s)+ h(s)
 ≥ g(x) + h(x)
 = f(x)

It follows that sequence of nodes expanded by A* using
graph-search is in non-decreasing order of f(x). Hence,

the first goal node selected for expansion must be an
optimal solution, since all later nodes become at least as
expensive. If C* be the cost of optimal solution path,
then A* expands all nodes with f(x) < C* and no nodes
with f(x) > C*.
Further, A* algorithm ignores a sub tree that gives the
solution while it still guarantees optimality. All above
explanation shows that A* is optimally efficient for any
heuristic function because any algorithm that does not
expand all nodes with f(x) < C* run the risk of missing
the optimal solution [6].

 A* Inference Algorithm

A* maintains a set of partial solutions, i.e. paths through
the graph starting at the start node, stored in a priority list.
The priority assigned to a path x can, of course, be
determined by the function

 f(x) =g(x) +h(x)

where, g(x) is the cost(weight of the edge) of the path so
far and h(x) is the heuristic estimate of the minimal cost
to reach the goal from x. For example, if “cost” is taken
to mean distance traveled, the straight-line distance
between two points on a map is a heuristic estimate of
the distance to be traveled. The lower f(x) the higher the
priority. We define the algorithm as

 A*_function (START, GOAL)
 {
 if (START ==NULL || START==GOAL)
 return;
 a = remove_first(START);
 if (a == GOAL)
 return success;
 else
 {
 if(successors_a(a != NULL))
 s = successors_a(a);
 fitness_no_s = cost_s(s) + evaluation_s(s);
 LIST1 = sort_s(fitness_no_s);
 }
 START = LIST1;
 Continue;
 }
 return;
 }

2.2 Complexity

The time complexity of A* algorithm depends on the
heuristic. In worst case, the number of nodes expanded is
exponential w.r.t. the length of the solution (the shortest

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

104

path), but it is polynomial when the heuristic function h
meets the following condition

| h(x) – h*(x) | ≤ O(log h*(x)).

where, h*(x) is optimal heuristic, i.e. the true cost of
getting the required distance from x to the goal. In other
words, the error of h should not grow faster than the
logarithm of the “perfect heuristic” h* that returns the
true distance from x to the goal.

2.3 Computation efficiency

Note that the computation time imposes no drawback on
A*. As A* keeps all generated nodes in memory, it may
run out of space long before it runs out of time. To
overcome this problem we use memory bound heuristic
search strategy of A* algorithm. To reduce the memory
requirements for A* we adapt the iterative –deepening to
the heuristic search context. Now, cutoff is selected as
the f – cost (g + h) rather than depth, at each iteration,
the cutoff value is the smallest f-cost of any node that
exceeded the cutoff in the previous node. It avoids the
substantial overhead associated with keeping a sorted list
of nodes.

3.System Framework

The Figure1 shows the framework of our recognized
system. It basically contains three blocks: Domain Class
block, input refining block and recognition engine block
[3], [7]. Domain classes contain the description of a
particular domain. So, a programmer needs only to
interface his code with the desired domain. Thus, it
simplifies the developer’s job. Interface shows the
translation scheme used between domain classes and
recognition engine. It bridges the gap between the two.
Input Refining block takes raw input or a roughly
designed figure and finally gives a noise-free, smooth
and properly drawn figure. The main thing about this
system is that it also displays the name of the recognized
object.’
To explain the working of the recognition system, an
example of a hut is taken. The user draws a rough sketch
of a hut and then system refines it. The input provided by
the input is filtered using Gaussian filter. Then this
filtered image is segmented in order to classify the
elementary shapes from it.

Figure1. System Framework

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

105

The system recognizes all segmented shapes using the
domain description and databases of shapes. Database
contains the sample images with recognized output. The
system edits all the recognized shapes to display a
smoothened figure [8].
The next most important task, the system performs to
make a structure out of the given basic shapes. The
Heuristics inference engine uses the Database set and
takes the edited image as input and makes the complete
structure and also performs semantic checking to clarify
whether the structure shows some meaningful object.

4. Proposed Recognition Engine

The entire process of our proposed recognition engine is
described by a flow chart (Figure2) given below and the
modules involved are explained below.

4.1 Stroke filter Module

The input is fed to the system in the form of sketches and
the sketches are represented in terms of single- stroke or
multi-strokes. A stroke is a set of points from pen-down
to pen-up. At this stage, we need to collect all such
points and then use a filtering mechanism for removing
the noise and smoothening the image (stroke). For this,
we use Binary Division Algorithm to collect only
relevant pixels (a smallest element of an image) from the
whole captured screen.

Figure2. Flow Chart of Recognition Engine

4.1.1 Binary Division Algorithm:

An image can be very small, it may take only 1/25th area
of the screen or it may be too large to be displayed on the
screen. In case, if the image of the sketch is too smaller,
the processing of the whole area of the screen may
reduce the efficiency of the system, so we need a method
to determine only sketched area-pixels. The system uses
an efficient algorithm namely, Binary Division
Algorithm[9], which divides the screen area into two
equal sub-areas. If one of the sub areas does not contain
image it is simply rejected. Now area of consideration is
only the half area of the screen. Now each sub area is
divided in to two equal parts and this process continues
until each smallest area contains single pixel information
only. The whole methodology incorporated in this
algorithm is depicted in Figure3,which is self
explanatory.

1 2

3 4
2

1 2

3 4

Figure3. Process of Division Algorithm

Next we use Gaussian filter as it rotationally symmetric
[10].

4.1.2 Gaussian Filter

The Filter block filters the input signal using a Gaussian
FIR filter. The filter requires the input signal to be up
sampled, so that the input samples per symbol parameter,
N, is at least 2. It requires the input bandwidth to be
same as the bandwidth of the filter. Care should be taken
while determining the frequency of the filter; it should be
twice of the highest frequency of the input signal.

Figure4. Filtering Process

The block's icon shows the “filter's impulse response."
The input signal must be a scalar or a frame-based
column vector.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

106

The input given to the filter is represented as x(t), where t
represents a particular time instant and y(t) denotes the
output of the filter at time instant t. The impulse response
of the Gaussian filter is given as

h (t) = exp(-t2 / 2δ2) / (√(2π) * δ)

where,δ = (√ln(2)) / 2πBT with B as the filter's 3-dB
bandwidth. The group delay parameter g which is the
number of symbol periods between the start of the filter's
response and the peak of the filter's response and N
together determine the length of the filter's impulse
response, which is 2 * N * g + 1.
The output of the filter is calculated using following
equation

y (t) = h(t) * x(t)

Apart from this, we use the concept of filter coefficient
normalization, filter energy and peak amplitude in
designing our system. It can be mentioned here that after
the filter normalizes the set of filter coefficients, it
multiplies all coefficients by the linear amplitude filter
gain parameter.

4.2 Edge detection & Segmentation

The output from the Gaussian filter is taken and
converted from RGB to grayscale thus; it reduces the
memory requirements of the input image. The Canny
edge detector takes single-valued images, also called
monotone images, constant-value images, or flat images.
Instead of issuing an error when an input image is single-
valued, the edge function used with canny edge detection
returns an output image containing all zeros, indicating
that it found no edges. The Canny method finds edges by
looking for local maxima of the gradient of Image. The
gradient is calculated using the derivative of a Gaussian
filter.
The method uses two thresholds, to detect strong and
weak edges, and includes the weak edges in the output
only if they are connected to strong edges(Figure5). This
method is more robust to noise, and more likely to detect
true weak edges.

Figure5.
We define the following for the above purpose.

(i) BW = edge(I, 'canny') specifies the Canny method.
where, BW represents the binary output.

(ii) BW = edge(I, 'canny', thresh) specifies sensitivity
thresholds for the Canny method. thresh is a two-element
vector in which the first element is the low threshold, and
the second element is the high threshold. If we specify a
scalar for thresh, this value can be used for the high
threshold and 0.4*thresh may be used for the low
threshold. If thresh is not specified, or if thresh is empty,
edge function chooses low and high values automatically.

(iii)[BW, thresh] = edge(I, 'canny',...) returns the
threshold values as a two-element vector.
Edge starts with the low sensitivity result and then grows
it to include connected edge pixels from the high
sensitivity result. This helps fill in gaps in the detected
edges [10]. In all cases, the default threshold is chosen
heuristically in a way that depends on the input data.
The edges are to be confirmed in to basic shapes. For this,
the edges need to be segmented so that these shapes can
be recognized into their well known geometric classes.
Here, the system breaks the continuity of the edges while
still maintaining the basic edge continuity so that it can
be classified into the recognized shape. Before
segmentation the system stores the continuity of the
edges into the database.

4.3 Shape Recognition

After getting the edges, some mechanism is required to
detect the elementary shapes like straight line, curve,
circle, rectangle etc. For this, the recognition engine
extracts the geometric features of the shapes to recognize
the basic shapes.
A shape possesses many characteristics that can be used
for matching the shapes, reorganizing the objects and for
measuring the shapes. Geometric features define the
geometric attributes of the shape. These are

a) Perimeter (T): It includes the total length of the shape;
it can be circle, ellipse, quadrilateral etc.

T = ∫ √ { x2(t) + y2(t) } dt
where, t denotes the boundary parameter and x and y are
axes coordinates.

b) Area(A): Denoting R as the object boundary region,
we can find area as

A= ∫∫ R dx dy

c) Radius(r): This is the maximum distance from the
centre of mass to the curve.

d) Height(H): Defines the vertical length of the shape

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

107

e) Width(W): Defines the horizontal distance of the
shape.

f) Corners: These are the locations on the boundary
where the curvature k(t) becomes unbounded and t
represents the distance along the boundary

|k(t)|2 = (d2y/dt2) 2 + (d2x/dt2) 2
g) Roundness or compactness: This is defined as

γ = (perimeter) 2 / (4π (Area))

Heuristic is used in recognizing ambiguous shapes. User
may draw overlapped shapes, intersected shapes or one
shape within another shape (enclosed figures), so it
requires some sort of treatment for discriminating such
shapes. Here, we use a fuzzy-membership rule to classify
the shapes drawn by the user.

4.3.1 Fuzzy Rule:

 The sets for whom the boundary is ill defined are called
as fuzzy-sets. To represent a fuzzy set a grade
membership graph is used. All the members of a fuzzy
set comprise of a membership value between 0
{complete non-membership} and 1 {complete
membership}. Following diagrams illustrate the required
concept on this matter.

If a rectangle is in question, its percentile graph
represents the highest and smallest possibility, using it
the system may answer if the shape is a rectangle or a
circle.
A fuzzy set allows us to represent the set membership as
a possibility distribution [11].
To determine a straight line, we need to calculate its two
parameters: height and width. Then we make a percentile
graph based on height / width ratio. For straight lines, it
results zero. For curved line it gives a value smaller than
one. Similarly, to discriminate the circle, we use its
perimeter (P) and area (A), then calculate P2/A ratio.
Thus, the inference is based on these percentile graphs.
The shape with maximum value is identified as the
recognized shape.

4.4 Structure Matching and Semantic Checking

This stage uses a number of sample states to determine
the best possible output structure. The system is trained

in such a way that it can be used to detect unknown input
with higher efficiency. For example, if a user has drawn
a hut using various straight lines oriented in different
directions, the system is trained to recognize a line, based
on various sample states, the system recognizes that
finally, the connected structure gives a recognized figure
- hut.

Figure6. A* Structure Matching

A set of rules or a grammar is used to make a structure
using the detected shapes in the sketch recognition phase
[12], [13]. This uses the tree structure and uses A*
algorithm to determine the semantics of the structure
(Figure6). The root of the tree is undetected structure and
then, we progress in the downward direction to
determine the possibility of the next node (the basic
geometric shape) using fitness function (heuristic
function) and cost function. The node that costs
minimum value is used and further expanded.
Then, the next least expensive node is selected. This way,
the structure is matched to a complete set of pattern and
recognizes the figure.
Even after the sketch is recognized as a complete
structure still it requires whether the interpretation done
by the system is correct or not. So, the system also
performs semantic checking to check if the recognized
object makes a real meaning.

5. Conclusion and Future Work

In this paper we have presented a solution for the
problem of local maxima incurred in Bayesian Network.
The main concept is to use heuristic engine to detect the
structures imposed by the user [14], [15]. The system
first recognizes the basic shapes and then integrates them
to form a complete figure. The structure matching is
done using Heuristic approach, which gives the best
result if it is found; otherwise it is unable to determine

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

108

the true structure. So, care should be taken while
designing the Heuristic engine. The basic techniques
discussed here can be used in the design of a recognition
system with a robust architecture. We provide here the
complete information for the implementation of a highly
efficient, accurate and robust system. It definitely
improves the flexibility to the user, efficiency of the
system and flexibility to the developer. This paper
promises never to be failed at any stage of the
recognition.
Based on the information provided in this paper, an
efficient recognition system can further be developed in
future that may solve the purpose of recognition of
complex shapes.

Acknowledgments

The author would like to express their cordial thanks to
anonymous referees for their valuable suggestions

6. References:

[1] Davis. R., “Sketch understanding in design: Overview of
work at the MIT AI lab.”. Sketch Understanding, Papers
from the 2002 AAAI Spring Symposium, pages 24{31,
March 25-27 2002.

[2] Fonseca. M., Pimetal. C., “CALI: an online scribble
recognizer for calligraphic interface”. Proceedings of
AAAI Spring Symposium on sketch Understanding,
Stanford University, PP.51-58, March 2002.

[3] Alvarado. C. and Oltmans. M., “A Framework for multi-
domain sketch recognition”. Proceedings of AAAI Spring
Symposium on sketch Understandings, Stanford
University, pp.1-8, March 2002.

[4] Alvarado. C., “Multi-domian sketch understanding”’ PhD
thesis, Department of Electrical Engineering and computer
science, Massachusetts Institute of Technology,
September 2004.

[5] Liao. S.Z., Wang X.J., Liang. J. “An incremental approach
to sketch recognition”. Proceedings of the 4th
International Conference on Machine Learning and
Cybernetics, Guangzhou, 18-21 August 2005.

[6] Russell, S.J. and Norvig, P. 1995, “Artificial Intelligence:
A Modern Approach”. Englewood Cliffs, NJ Pretice Hall.

[7] Alvarado C, Davis R., "Sketchread: a multi-domain sketch
recognition engine.” In: Proceedings of UIST ’04, 2004. p.
23–32.

[8] Bimber. O., Encarnao. L.M., and Stork. A., “A multi-

layered architecture for sketch-based interaction within
virtual environments.” Computer and Graphics, 2000.

[9] Foley, J.D., Dam, A.V., Feiner S.K. and Hughes, J.F.,
1999. “Computer Graphics- Principles and Practice”,,
Pearson Education.

[10] Jain, A.K. 1989, “Fundamental of Digital Image
Processing”, Prentice Hall.

[11] Fonseca. M., Jorge J., “Using Fuzzy logic to recognize
geometric shapes interactively” Proceedings of the 9th
IEEE conference on Fuzzy systems, pp. 291-296, 2000.

[12] Hammond T., “A Domain Description Language for

Sketch Recognition”. MIT Artificial Intelligence
Laboratory 200 Technology Square, NE43-809,
Cambridge, MA 02141 March 19, 2003.

[13] Hammond. T.M., Davis. R., “LADDER, a sketching
language for user interface developers”, Computers &
Graphics 29 (2005) 518–532.

[14] Chien C.F., “Modifying the inconsistency of Bayesian
networks and a comparison study for fault location on
electricity distribution feeders”, Department of Industrial
Engineering and Engineering Management”, Int. J.
Operational Research, Vol. 1, Nos. ½, pp. 188-202, 2005.

[15] Rish. I., “An empirical study of the naïve Bayes
classifier”, IBM Technical Report RC22230, 2001.

G. Sahoo received his P.G degree
from Utkal University in the year
1980 and Ph.D degree in the area of
Computational Mathematics from
Indian Institute of Technology,
Kharagpur in the year 1987. He is
associated with Birla Institute of
Technology, Mesra, Ranchi, India
since 1988. He is currently working as

a professor and heading the Department of Computer Science
and Engineering. His research interest includes theoretical
computer science, parallel and distributed computing, image
processing and pattern recognition.

Bhupesh Kumar Singh received B.E. in
(Computer Science & Engineering) from
Government College of Engineering.
Tirunelveli, Anna University, India in
the year of 1999, and doing Ph. D in
Sketch Recognition from BIT Mesra,
Ranchi. Currently working as Senior

Lecturer
 (Selection Grade) in LIMAT, Faridabad,
India, also life membership of International Association of
Engineers (IAENG)

