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Summary 
Detection of P and T waves is an important part in the analysis 
and interpretation of ECG. The presented algorithm detects and 
delineates both P and T-waves simultaneously. It employs a 
modified definition of slope, of ECG signal, as the feature for 
detection of ECG wave components. A number of 
transformations of the filtered and baseline drift corrected ECG 
signal are used for extraction of this new modified slope-feature. 
Five feature-components are combined to derive the final feature 
signal. Amplitude threshold of the final feature signal is 
employed for distinguishing P and T waves with respect to 
already detected QRS-complexes. P-wave detection rate of 
96.95% with false positive and false negative percentage of 
2.62% and 3.01% has been reported. Similarly, T-wave detection 
rate of 98.01% with false positive and false negative percentage 
of 3.08% and 1.93% has been reported. 
Key words: 
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1. Introduction 

A standard scalar electrocardiogram consists of P-wave, 
PR-interval, PR-segment, QRS-complex, ST-segment, ST-
interval and T-wave. The P-wave represents atrial 
depolarization, the QRS complex left ventricular 
depolarization and the T-wave left ventricular 
repolarization. 

Different delineation approaches are found in literature. 
Many of these approaches delineate either P or T-waves of 
ECG waveforms, whereas a few approaches delineate both 
P and T-waves. Murthy & Niranjan [1] used discrete 
Fourier transform (DFT) to delineate P and T waves, while 
Murthy and Prasad [2] used discrete cosine transform 
(DCT). Thakor and Zhu [3] used adaptive filters for 
delineation of P-waves. Pietka [4] used a combination of 
syntactic methods and methods based on measurement 
vectors by applying the attribute grammars. Trahanias and 
Skordalakis [5] used attribute grammar for the detection of 
P and T-waves.  

Li et al. [6] proposed a method for detecting 
monophasic P and T-waves. Martinez et al. [7] presented a 
generalized and robust method for delineation of P and T 

waves. Mehta et al. [8] proposed a method for the 
recognition of P and T waves in electrocardiograms using 
fuzzy theory. Carlson et al. [9] proposed classification 
method for P-wave morphology. Botter et al. [10] used a 
neural network with asymmetric basis functions to extract 
the features of the P waves. Yang et al. [11] proposed 
approximating functions for P waves recognition. 

A fuzzy clustering technique using asymmetric basis 
function network approach, is presented by Geva [12]. 
Sovilj et al. [13] used multistage methodology enabled by 
Wavelet Transform to delineate the ECG signal and 
develop a sensitive and reliable P-wave detector. Wong et 
al. [14] applied Discrete Wavelet Transform (DWT) 
analysis, employing Haar Wavelet detecting the T-wave 
peak and the T-wave end.  

Vila et al. [15] presented an algorithm for the detection 
of T -waves based on its mathematical modeling. 
Strumillo [16] proposed nested median filtering for 
detecting T-wave offset in ECG. Sahambi et al. [17], 
validated an algorithm for detecting the peaks, onsets and 
ends of monophasic P and T waves. 

The detection of P and T-waves demands attention on 
the following aspects: 

Filtering: The features extracted, for the detection of 
P- and T-waves in the proposed algorithm, and those for 
the detection of QRS- regions incorporate slope, therefore 
the presence of noise causing unjustifiable magnitude 
variations is undesirable. The filtering, using moving 
averages algorithm, is done prior to the QRS-detection 
[18]. Its performance is found to be satisfactory and no 
additional filtering is required prior to detection of P- and 
T-waves. 

QRS-detection: Since the detection of P- and T-waves 
is done with reference to QRS onset and offset, therefore a 
good QRS-detection rate is a pre-requisite and is fulfilled 
by the algorithm for QRS-detection [19]. 

Removal of baseline drift: In the proposed algorithm, 
the feature extraction for detection of P- and T- waves 
uses computation of gradient, in a sliding window; 
therefore baseline drift causes computation of false 
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gradient. For this reason, two levels of baseline drift 
removal are employed – one prior to the QRS-detection on 
the entire range of sampling instants and another in the 
RR-interval after the QRS-detection [20]. The first level 
minimizes the baseline drift, which is sufficient for the 
QRS-detection. The removal of baseline drift is near total 
after the second level, this is particularly needed for 
detection of low magnitude P-waves and feeble T-waves.  

Feature signal for detection of P- and T-waves: The 
feature extracted from the ECG signal for the detection of 
P- and T-waves should be capable of appreciating the low 
slope and low magnitude of the wave components, as 
contrasted to QRS-complexes containing peaky waves 
with prominent slope and magnitude. Further, to ensure 
sufficient magnitude of the extracted feature, so as to meet 
the thresholding needs, the proposed algorithm extracts 
multiple feature components and combines them to attain 
the final feature signal (referred to as non-QRS feature 
signal FNQ).  

Search interval for P- and T-waves: Since the 
detection of P- and T-waves is done with reference to 
QRS onset and offsets, entire range of sampling instants is 
divided into 3 search intervals for P- and T-waves:  
– First sampling instant to the first QRS-onset  
– All sampling instants between each successive pair of 

QRS-offset and the subsequent QRS-onset, and 
– Last QRS-offset till the last sampling instant. 

2. Procedure 

One way of looking at the ECG is the classification of 
the signal in two parts, namely, QRS-complexes and non-
QRS regions. The QRS-complexes being the most 
prominent parts of the signal are detected first [19]. 
Already detected QRS-complexes become a reference for 
detection of P- and T-waves. The ECG signal part 
between each successive pair of QRS-offset and the 
subsequent QRS-onset constitute non-QRS regions.  

The proposed algorithm first extracts non-QRS feature 
FNQ for detection of P and T waves (non-QRS 
components). FNQ is a combination of five different 
constituent feature components.  

The algorithm then detects and demarcates non-QRS 
wave components in each search interval. This 
demarcation is interim and is done uniformly, on the basis 
of magnitude-threshold of the extracted non-QRS feature 
signal. The interim demarcation is done with rectangular 
marking pulses and given a common name CNQ, that is, 
non-QRS candidates regardless of being a P-wave or a T-
wave.  

The algorithm then identifies the P-waves and T-waves, 
out of these candidates CNQ, on the basis of their spatial 

location, in each search-interval, with respect to the QRS-
onset and QRS-offset. The detected P-waves and T-waves 
are demarcated with marking pulses MPP and MPT 
respectively. In order to distinguish between the identified 
P and T-waves, two different magnitudes MPP and MPT 
are assigned to the marking pulses of P and T-waves 
respectively. This helps in visual distinction between the 
detected P and T-waves. 

The present work has been tested on the entire range of 
dataset 3 of CSE ECG database [21], which contains 125 
cases of 12-lead simultaneously recorded ECG of 10 
seconds duration each, sampled at a rate of 500 
samples/sec. Thus each of the 1500 (125x12) single lead 
records has 5000 sampling instants. 

3. Procedural Steps 

(A) The first set of steps aims at extracting 5 feature-
components fc1 through fc5 so as to compute non-QRS 
feature FNQ which is sum of fc1, fc2, fc3, fc4 and fc5.  
– Here, fc1 is derived from conventional first derivative 

of ECG signal (eqn. 4) 
– fc2 is derived from filtered gradient FG  (eqn. 8)  
– fc3 is derived from product (FG*S) of filtered gradient 

FG and ECG signal S,  (eqn. 10)  
– fc4 is derived from combination of fc1, fc2, fc3 and 

absolute value of ECG signal S (eqn. 12)  
– fc5 is derived from another combination of fc1, fc2, 

fc3 and absolute value of ECG signal abs(S) (eqn. 14)  
The procedures for extraction of these components is 

detailed below: 
1. For computing the first feature-component fc1, feature 

signal F1 is used, which in turn, is derived from y1:  
y1(n) = S(n) – S(n-1);  n=1, 2, …, 5000      … (1) 

where, y1(n) is the first derivative of the ECG signal 
at nth sample point, 

S(n) is the magnitude of ECG signal at nth sample 
point,  

Absolute value of y1(n) is filtered for smoothing it 
using moving averages method with a rectangular 
sliding window of 11 sample points’ size from (n–5) to 
(n+5), with center at (n) (eqn. 2):  

∑
+
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=
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abs[y1(i)]F[y1(n)]

11

1 n

ni
 

n=1, 2, …, 5000               … (2) 

Filtered values F[y1(n)] of eqn. (2) are normalized by 
using eqn. (3) to obtain F1(n) as shown in fig. 1(b).  

F1(n) = F[y1(n)]/max(F[y1(n)])  
n=1, 2, …, 5000              … (3) 
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2. Now, fc1(n) is derived from F1(n), by eliminating the 
parts of F1(n) where QRS Marking Pulses MPQ are 
already demarcated [19], and doubling the remaining 
F1(n) for enhancing prominence of the feature-
component:  

⎢
⎢
⎢

⎣

⎡

<

>

=

=

0  F1(n) if                0,

0  (n)F if                0,

0  (n)F if    F1(n),*2

fc1(n) Q

Q

                  … (4) 

The negative values of fc1(n), if any, are discarded as 
indicated by the last part of eqn. (4), because they are 
never used. The values of fc1(n), on and above zero-
line, are preserved as seen in fig. 2(d).  

3. Derive transformed signal ‘TS’ by evaluating the 
following sigmoid function at the signal sample points:  

TS(n) = 1 – {2/(e2S(n)+1)};   
n = 1, 2, …, 5000               … (5) 

4. Evaluate gradient ‘G’ of ‘TS’ with the following 
relation:  

G(n) = TSmax(wn) – TSmin(wn); 
n=1, 2, …, 5000               … (6) 

Where, wn is a sliding rectangular window, of width 11 
samples, from (n-5) to (n+5) with center at the nth 
sampling instant. TSmax is the maximum value of 
transformed signal TS within this window and TSmin is 
the minimum value of TS within this window. 

5. Filter the gradient values by moving averages method 
to evaluate filtered gradient ‘FG’ with a sliding window 
of 11 sample points’ size from (n–5) to (n+5), with 
center at (n), to smoothen it: 
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              … (7) 

6. For computing the second feature-component fc2, the 
filtered gradient FG is used:  

Obtain signal FGhm(n) by shifting FG(n) by half the 
median value ‘m’ of FG(n). The effect of this shifting 
can be appreciated in fig. 2(b) and (c).  
After the shifting FGhm is closer to the zero-line of 

the plot, ensuring detection of genuine threshold values 
only. In case of QRS detection, full median is used for 
shifting the concerned signal [19], whereas in case of 
detection of P- and T-waves half median value is found 
to be more appropriate. 
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0  FG(n) if                0,

0  (n)F if                0,

0  (n)F if      FG(n),

fc2(n) Q

Q

              … (8) 

 

The values of fc2(n), on and above zero-line are 
preserved and the negative values are discarded, using 
eqn. (8) as shown in fig. 2(d). 

7. For computing the third feature-component fc3, 
Filtered Gradient FG of step 5 is used:  

Pre_fc3(n) = FG(n) * S(n);    
n=1, 2, …, 5000                … (9) 
The advantage of the product of FG(n) and ECG 

signal S(n) is that wherever the slope of S(n) is more 
the product is enhanced as seen in fig 3(c)  

The portion belonging to QRS region is eliminated to 
obtain fc3(n) from Pre_fc3 using eqn. (10):  

   

⎢
⎢
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⎣
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<
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=

0  Pre_fc3(n) if                  0,

0  (n)F if                  0,

0  (n)F if   ,Pre_fc3(n)

fc3(n) Q

Q

        … (10) 

The negative values of Pre_fc3(n) are discarded and 
remaining values are preserved as fc3(n) as shown in 
fig. 3(d).   

8. For computing the 4th and 5th feature-components fc4 
and fc5, combinations of fc1, fc2, fc3 and absolute 
value of ECG signal abs(S) are used. Pre_fc4(n) signal 
is obtained using eqn. (11): 

Pre_fc4(n)=[fc1(n)+fc2(n)+fc3(n)+abs(S(n))] * abs(S(n));
        … (11) 

⎢
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0  Pre_fc4(n) if                  0,

0  (n)F if                  0,

0  (n)F if   ,Pre_fc4(n)

fc4(n) Q

Q

          … (12) 

9. A slightly different combination, by dropping the last 
factor of eqn. (11), is used to compute Pre_fc5(n): 

Pre_fc5(n)=[fc1(n)+fc2(n)+fc3(n)+abs(S(n))]  
            … (13) 

After eliminating the feature-component parts 
corresponding to QRS marking pulses and discarding 
negative values, if any, the final values of fc5(n) are 
preserved as shown in fig. 6(d). 
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0  Pre_fc5(n) if                  0,

0  (n)F if                  0,

0  (n)F if   ,Pre_fc5(n)

fc5(n) Q

Q

              …(14) 

After evaluating all the five feature-components fc1 
through fc5, shown in fig. 6, they are combined to yield 
the pre-final non-QRS feature signal Pre-FNQ, by 
algebraically summing them all:  

Pre_FNQ(n)=fc1(n)+fc2(n)+fc3(n)+fc4(n)+fc5(n)  
 … (15) 

Pre_FNQ, in turn, is used to evaluate the final non-QRS 
feature signal FNQ by truncating the values exceeding 1 
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and retaining all the other values of Pre-FNQ lying between 
0 and 1, including both these extreme values: 

⎢
⎢
⎢

⎣

⎡

<

>

≤≤

=

0 (n)Pre_F if                   0,

1  (n)Pre_F if                    1,

1  (n)Pre_F  0  if   (n),Pre_F

(n)F

NQ

NQ

NQNQ

NQ … (16) 

Pre_FNQ(n) and FNQ(n) are shown in fig. 7(b) and (c).  

It can be clearly seen that the P and T-waves regions 
have been enhanced substantially.  

 

 

Fig. 1(a) ECG signal S (b) Filtered feature signal F1(c) F1NQ is F1 after 
eliminating FQ (d) The first Feature-Component fc1 

 

 

Fig. 2(a) ECG signal S (b) Filtered Gradient FG (c) FGhm is FG after 
treating with half the median value (d) Second feature-component fc2 

after eliminating FQ  

 

Fig. 3(a) ECG signal S (b) Filtered Gradient FG of ECG signal S (c) Pre-
fc3 before eliminating FQ (d) The third Feature-Component fc3 after 

eliminating FQ 

 

 

Fig. 4(a) ECG signal S (b) Absolute value of ECG signal S (c) Pre-fc4 
before eliminating FQ (d) The fourth Feature-Component fc4 after 

eliminating FQ 

 

 

Fig. 5(a) ECG signal S (b) Absolute value of ECG signal S (c) Pre-fc5 
before eliminating FQ (d) The fifth Feature-Component fc5 after 

eliminating FQ 
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Fig. 6(a) The First Feature-Component fc1 (b) Second Feature-
Component fc2 (c) Third Feature-Component fc3 (d) Fourth Feature-

Component fc4 (e) Fifth Feature-Component fc5  

 

Fig. 7(a) ECG signal S (b) Pre-final non-QRS feature signal Pre_FNQ (c) 
The final non-QRS feature signal FNQ 

4. Non-QRS Feature Extraction Algorithm 

1. Acquire drift free ECG signal S(n); 
 n=1, 2, …, 5000  
2. Extract feature signal F1(n), using eqn. (1), (2) and 

(3)  
3. Derive first feature-component fc1 using eqn. (4) 
4. Derive transformed signal TS(n) by evaluating the 

sigmoid function using eqn. (5)  
5. Evaluate gradient G(n) of transformed signal TS(n) by 

using eqn. (6) with a rectangular sliding window wn:  
G(n) = TSmax(wn) – TSmin(wn);   

Filter the gradient G(n) by moving averages method 
to evaluate filtered gradient FG(n) using eqn.(7)  

6. Derive second feature component fc2(n) using eqn.(8)  
7. Derive third feature component fc3(n) using eqn.(9) 

and (10)  

8. Derive fourth feature component fc4(n) using 
eqn.(11) and (12)  

9. Derive fifth feature component fc5(n) using eqn.(13) 
and (14)  

10. Derive desired feature signal FNQ(n) corresponding to 
non-QRS regions of the ECG signal by eliminating 
those portions of Pre_FNQ(n) which represent the 
already detected QRS complexes, using eqn. (15) and 
(16). The final values of FNQ(n) lie between 0 and 1 
on account of truncation done by eqn. (16) as shown 
in fig.7(c). 

5. Algorithm for Detection of P and T-waves  

1. Discard those portions of FNQ(n) whose magnitude is 
less than 2% of its maximum, so that small random 
variations in signal are dropped. Mark the portions of 
FNQ(n) greater than 2% of its maximum, with 
rectangular marking pulses CNQ(n) with fixed peak 
magnitude of 0.5 as non-QRS candidates and assigned 
a fixed peak magnitude of 0.5 to CNQ(n) and 0 where 
FNQ(n) is less than 2%. These demarcated rectangular 
pulses CNQ(n) are the candidate P and T waves (Fig. 8).  

2. Identify and demarcate P-waves and T-wave out of 
candidates CNQ(n) with respect to each of the already 
detected QRS-complexes as reference.  
Particularly here, when each single QRS is taken as 
reference, two types of search interval are sufficient for 
coverage of the entire range of 5000 sampling instants 
of a case: 

– First search interval, from 1st sampling instant to the 
first QRS-onset, because this is the only interval where 
the algorithm searches for P- and T-waves occurring 
before the reference QRS, and 

– Second search interval from the reference QRS-offset 
till the last sampling instant, as all the P- and T-waves 
occurring after the reference QRS are covered under 
this interval. 

(a)  Detection of P- and T-waves, out of candidate CNQ(n), 
occurring before the first QRS-complex (ref. Fig. 8):  

if (Q_count = = 1) 
if (CNQ = = 0.5) & (abs(CNQ_end – QRS_end) >= 
0.66*rr1_av) & (QRS_begin > CNQ_end) & (FNQ  > 0.10) 

set T(i) = 0.6;                 … (17) 
elseif (CNQ= =0.5) & (abs(CNQ_end–QRS_end) 
<=0.33*rr1_av) & (QRS_begin > CNQ_end) & (FNQ > 
0.05) 

set P(i) = 0.3;               … (18) 
end 

end 

where, i = sampling instants from CNQ_begin to CNQ_end 
and  Q_count = 1 refers to first QRS-complex 
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CNQ are candidate P- and T-waves, FNQ is non-QRS 
feature, abs(x) is absolute value of x,  rr1_av is average 
value of RR1 (ref. Fig. 8), QRS_begin and QRS_end are 
the beginning and end of rectangular QRS marking pulses 
respectively,  

CNQ_begin and CNQ_end are the beginning and end of 
rectangular CNQ marking pulses respectively,  

P(i) and T(i) are the detected P- and T-waves 
respectively.  
 
(b)  Detection of P- and T-waves, out of CNQ(n), occurring 

after each reference QRS-complex (ref. Fig. 8):  
if (CNQ= =0.5) & (abs(CNQ_end – QRS_end)<= 0.66*rr1_av) 
& (QRS_end < CNQ_end) & (FNQ > 0.10)     

set T(i) = 0.6;                 … (19) 
elseif (CNQ= =0.5) & (abs(CNQ_begin–QRS_end) >= 
0.66*rr1_av) & (QRS_end < CNQ_end) 

set P(i) = 0.3;                 … (20) 
end 
where, i = sampling instants from CNQ_begin to CNQ_end 

3. Club deserving but split up P-waves or T-waves within 
each RR-interval. If they are not covered under the 
clubbing logic, then eliminate one with lower peak 
value of FNQ – because multiple P-waves or T-waves 
cannot exist in one RR-interval. 
Three search intervals are taken to cover entire range 
of 5000 sample points with reference to RR-intervals:  

– First search interval from first sampling instant to 
the beginning of first QRS, 

– Search intervals from first to last RR-interval, 
taking two adjacent QRS at a time iteratively, and 

– Last search interval from end of the last QRS to 
the last sampling instant.  

The logic for clubbing the deserving waves (separately for 
P-waves and T-waves), in all the three search intervals, is:  

(a) The first search interval is identified by the condition: 
if (Q_count = = 1) 

When this condition is true, the first QRS is reached 
and the first search interval, from the 1st sampling instant 
to the beginning of the first QRS, is available.  

If two P-waves are detected closely, such that, there 
lies a non-zero value of FNQ or S in between then these P-
waves should be clubbed to make them one by reducing 
the detection threshold (if the threshold is reduced for all 
cases the delineation of other cases is adversely affected):  
if (wp1 > 0) & (wp2 > 0) 

if (wp1 + wp2 + pp1 <= 100) & ((min(FNQ(j)) >= 0.3) OR    
(min(abs(S(j))) >= 0.5)) 

set p(j) = 0.3;               … (21) 
     end 
end 
Where, j = sampling instants from P1_end to P2_begin; wp1 & 
wp2 are widths of p-waves to be clubbed, pp1=pp-interval

 

Fig. 8   (a) QRS 1 is first QRS-complex, CNQ are demarcated candidate non-QRS  
 (b) P is CNQ detected as P-wave, T is CNQ detected as T-wave by the algorithm. 

Note:  (1) Peak magnitude of various rectangular marking pulses is kept different to make them easily distinguishable 
 – it is assigned as 1 for QRS (fig. 8a & b), 0.5 for CNQ (fig.8a), 0.6 for T-waves and 0.3 for P-waves (fig. 8b). 

(2) RR is RR-interval, RR1 is interval from QRS_offset to next QRS_onset and RR1/2 is half of  RR1. 
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Similarly, if two T-waves are detected closely, such 
that, there lies a non-zero value of FNQ or S in between 
then these T-waves should be clubbed to make them one 
by reducing the detection threshold, with the following 
logic: 
  if wt1 > 0 & wt2 > 0 

if (wt1 + wt2 + tt1 <= 120) & ((min(FNQ(k)) >= 0.5) 
OR (min(abs(S(k))) >= 0.7)) 

T(k) = 0.6;               … (22) 
end 

  end 

where, k=sampling instants from T1_end to T2_begin; wt1 & 
wt2 are widths of p-waves to be clubbed, tt1=tt-interval 

(b) The second search interval is identified by the 
condition: 

if (wq1> 0) & (wq2 > 0) 
Where wq1 and wq2 are the widths of two continuous 

QRS-complexes, their non-zero values are indicative of 
their existence and therefore the search interval RR1 
between them is available. The logics for clubbing the 
split up P- or T-waves remain identical as in step 3(a) 
above. 

(c) The third search interval is identified by the condition:  

if (Q_count = = Q_No) 
Where, Q_count is the QRS-to-QRS progressive count 

and Q_No is the total number of QRS-complexes detected 
in a case. When the two become equal, the last QRS is 
reached and the last search interval from QRS_offset to 
5000th sampling instant is available. The logics for 
clubbing the split up P- or T-waves remain identical as in 
step 3(a) above. 

6. Graphical Results of P and T-wave Detection  

The graphical results of the P and T-wave detection are 
shown in figures from 9 to 12. It is clearly seen from these 
figures that all the varieties of slope, magnitude and 
polarity of the P and T-waves are successfully detected 
and delineated.  

Fig. 9 illustrates the example of detection where both 
the P and T-wave are normal and erect, whereas Fig. 10 
illustrates the detection of normal and inverted P and T-
wave. Fig. 11 shows detection of feeble P-waves and T-
waves, whereas the detection of tall and prominent T-
waves is shown in fig. 12 as well as the detection of very 
feeble P -waves in the presence of these huge T-waves. 

 
 

 

Fig. 9(a) ECG signal S (b) Already demarcated QRS marking pulses MPQ superimposed over signal S (c) Final non-QRS feature signal FNQ and non-QRS 
candidates CNQ shown as rectangular pulses  (d) Rectangular non-QRS marking pulses MPNQ, delineating P and T waves, superimposed over signal S 
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Fig. 10(a) ) ECG signal S  (b) Already demarcated QRS marking pulses MPQ superimposed over signal S  (c) Final non-QRS feature signal FNQ and non-

QRS candidates CNQ shown as rectangular pulses  (d) Non-QRS marking pulses MPNQ, delineating P and T waves, superimposed over signal S 

 
Fig. 11(a) ECG signal S  (b) Already demarcated QRS marking pulses MPQ superimposed over signal S  (c) Final non-QRS feature signal FNQ and non-

QRS candidates CNQ shown as rectangular pulses  (d) Non-QRS marking pulses MPNQ, delineating P and T waves, superimposed over signal S 

 
Fig. 12(a) ECG signal S  (b) Already demarcated QRS marking pulses MPQ superimposed over signal S  (c) Final non-QRS feature signal FNQ and non-

QRS candidates CNQ shown as rectangular pulses  (d) Non-QRS marking pulses MPNQ, delineating P and T waves, superimposed over signal S 
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7. Analytical Results of P and T-Wave 
Detection 

The detection results of P and T-waves are summarized 
in Table 1 and 2 respectively: 

7.1 Testing results of P-wave detection 

Table 1 presents the number of actual P-waves, number 
of P-wave detections, true positive (TP), false negative 
(FN) and false positive (FP) detections for the entire CSE 
ECG library dataset-3. The standard parameters of the 
performance measurement of the P-wave detection results, 
the detection rate (DR) and positive predictivity (+P), are 
also shown in Table 1.  

The table clearly shows that very good overall 
detection rate of 96.95% and positive predictivity of 
97.35% is achieved for P-waves. A total of 3.01% FN and 
2.62% FP detections are found for P-waves, which is 
considerably low indicating the performance of the 
algorithm.  

7.2  Testing results of T-wave detection 

Similarly, Table 2 presents the number of actual T-
waves and number of T-wave detections, TP, FN and FP 
detections with a 98.01% overall DR and 96.98% overall 
+P for the entire CSE dataset-3.  

A total of 1.93% FN and 3.08% FP detections are 
found in case of T-wave detections by the presented 
algorithm, which is considerably low indicating good 
performance of the algorithm. 

Table 1.  Combined overall results of P-wave detection for the entire CSE dataset-3 

Actual  
No. Of   

P-waves 

True 
Positive

TP 

False 
Negative 

FN 

False 
Positive

FP 

Total
Errors

TE 

%FN %FP Detection 
Rate 

DR 

Positive 
Predictivity 

+P 

16301 15810 491 427 918 3.01% 2.62% 96.95% 97.35% 

Table 2.  Combined overall results of T-wave detection for the entire CSE dataset-3 

Actual  
No. Of   

T-waves 

True 
Positive

TP 

False 
Negative 

FN 

False 
Positive

FP 

Total
Errors

TE 

%FN %FP Detection 
Rate 

DR 

Positive 
Predictivity 

+P 

17833 17479 354 549 903 1.93% 3.08% 98.01% 96.98% 

 
 
8. Conclusion 

Most of the work reported in the literature either deals 
with P-wave detection or T-wave detection. Both P and T-
wave detection, if found in the literature, generally use 
different approaches to delineate them.  

It is the effort of this work to detect and delineate both 
P and T-waves simultaneously using uniform strategy and 
with good detection rate as seen in Table 1 and 2. 
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