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Summary 
A number of network features is used to describe normal and 
intrusive traffic patterns. However the choice of features is 
dependent on which pattern to be detected. In order to identify 
which network features are more important for a particular 
network pattern, we propose an automated feature weighting 
method based on a fuzzy subspace approach to vector 
quantization modeling that can assign a weight to each feature 
when network models are trained. The proposed method not only 
increases the detection rate but also reduces false alarm rate as 
presented in our experiments. 
Key words: 
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1. Introduction 

An anomaly behavior detecting-based intrusion detection 
system builds normal traffic model and uses this model to 
detect abnormal traffic patterns and intrusion attempts. 
The goal of this anomaly detection system is to determine 
whether an unknown network data item belongs to normal 
or to an intrusive pattern [1]-[4]. This is different from 
signature-based intrusion detection. A signature-based 
intrusion detection system constantly scans the network 
and tries to match network traffic with some predefined 
patterns [5]-[7]. The main advantage of this system is that 
it can accurately detect known attacks, while its drawback 
is that it cannot detect novel, previously unseen attacks.  

There are many available features describing network 
traffic. Basic features for a network connection include the 
duration of the current connection, the source IP address, 
the destination IP address, octets transferred (both inbound 
and outgoing), the protocol type, the service port, the 
connection flags etc. Compound features, such as the 
number of connections happened in a fixed time window 
and the number of service ports contacted in the fixed time 
windows, can be calculated from the basic features over 
the time. They are often used to construct traffic profile.  

The selection of features has direct impact on the results of 
anomaly detection. Values of network traffic octets 
features range in several orders of magnitudes, from 
several bytes to 108 bytes. Network also has unique burst 
nature. The number of connections and the volumes of 
octets transferred may be boosted to extraordinary large 

numbers from time to time and cannot be predicted 
beforehand. The reasons which caused the burst are 
diverse, ranging from normal operation to being under 
attacks.  

Current network intrusion detection methods provide low 
detection rates because of this multi-dimensional data 
problem. For example, a simple variant of single-linkage 
clustering was applied in [8] to learn network traffic 
patterns on unlabelled noisy data. The KDD CUP 1999 
dataset [9] was used and this approach achieved from 40% 
to 55% detection rate and from 1.3% to 2.3% false 
positive rate.  

In order to identify which network features are more 
important for a particular network pattern, we considered 
network data as a set X of feature vectors of M dimensions, 
i.e. M features. Each feature vector was considered as a 
point in an M-dimensional space. For example, M = 41 in 
the KDD CUP 1999 dataset used in our experiments. We 
extracted subsets of feature vectors of M’ dimensions 
where M’ < M from the set X. Feature vectors in these 
subsets were considered as points in subspaces of the M-
dimensional space. The choice of M’ features was based 
on the meaning of features and our experience in computer 
network. We then used the same modeling method to 
model the network data subsets and measure the network 
intrusion detection rates for the entire set and all subsets. 
Experimental results showed that the choice of network 
features was dependent on the network attack type to be 
detected. Some features were good for detecting normal 
traffic pattern and other features were good for detecting 
abnormal traffic patterns. 

Therefore we propose an automated feature weighting 
method to find out feature subspaces automatically in the 
entire feature space and then assign weight values to 
network features depending on which subspace they 
belong to. The weighting algorithms based on fuzzy c-
means and fuzzy entropy techniques are proposed. A set 
of M weights for the feature vector set of M features will 
be calculated when we train the normal network model. In 
the detection stage, these weight values are used to 
calculate similarity scores between unknown network data 
and the normal network model. Experimental results show 
that the proposed weighting method not only increases the 
detection rate but also reduces false alarm rate.  
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The rest of the paper is as follows. Section 2 briefly 
reviews current detection methods. Section 3 presents the 
vector quantization (VQ) modeling method. Section 4 
presents the fuzzy c-means-based and fuzzy entropy-based 
subspace methods. Section 5 describes network data and 
attack types, and presents experimental results. Finally, we 
conclude the paper in Section 6. 

2. Current Anomaly Detection Methods 

Anomaly detection systems compute statistical models for 
normal network traffic and generate alarms when there is a 
large deviation from the normal model. Some systems 
have been developed, for example SPADE [10], PHAD 
[11] and ALAD [12]. Other techniques have been 
proposed as detection engines, for example using 
clustering and classification [13], autonomous agents and 
distributed intrusion detection [14], and hidden Markov 
model [15]. A good survey can be found in [16] and [17].  

The popular network databases for system evaluation are 
the KDD CUP 1999 dataset [9] and the DARPA 1999 
dataset [18]. A simple variant of single-linkage clustering 
was applied in [5] to learn network traffic patterns on 
unlabelled noisy data. The KDD CUP 1999 dataset was 
used but it was not clear that what features were selected. 
This approach achieved from 40% to 55% detection rate 
and from 1.3% to 2.3% false positive rate. NATE 
(Network Analysis of Anomalous Traffic Events) in [19] 
and [20] was proposed to select some of the traffic records 
to improve the detection performance. The selected 
features include the frequency of TCP flags, the average 
and total number of bytes transferred, the percentage of 
session control flags, and also network packet header 
information. The dataset was MIT Lincoln lab data [18]. 
CLAD (Clustering for Anomaly Detection) in [5] used k-
NN algorithm and an unsupervised training process. 
CCAS [21] was proposed for supervised clustering and 
classification. They chose clustering method because it 
relies very little on the distribution models of data. Weka 
data mining tools [22] was used and selected features were 
time stamps, protocol, destination IP, Source IP, Service 
port, number of packets, duration, and the country of 
source IP address. However it is unclear that how 
symbolic values (protocol) were handled.  

3. Vector Quantization Modeling 

Vector quantization (VQ) modeling is an efficient data 
reduction method, which is used to convert a feature 
vector set into a small set of distinct vectors using a 
clustering technique. Advantages of this reduction are 

reduced storage and computation. The distinct vectors are 
called codevectors and the set of codevectors that best 
represents the training set is called the codebook. Since 
there is only a finite number of code vectors, the process 
of choosing the best representation of a given feature 
vector is equivalent to quantizing the vector and leads to a 
certain level of quantization error. This error decreases as 
the size of the codebook increases, however the storage 
required for a large codebook is non-trivial. The VQ 
codebook can be used as a model in pattern recognition. 
The key point of VQ modeling is to derive an optimal 
codebook which is commonly achieved by using a 
clustering technique [24].  

 

 

Fig. 1  Block diagram of a typical network anomaly detection system 
using vector quantization (VQ) modeling. 

VQ modeling can be summarized as follows. Given a 
training set of T feature vectors }x,...,x,x{ 21 TX = , 
where each source vector ),...,,(x 21 tMttt xxx=  is of M 
dimensions. Let }c,...,c,c{ 21 K=λ  represent the 
codebook of size K, where ),...,,(c 21 kMkkk ccc= , k = 1, 
2, …, K are code vectors. Each code vector kc  is assigned 
to an encoding region kR  in the partition 

}{ 21 K,...,R,RR=Ω .  Then the source vector tx  can be 
represented by the encoding region kR  and expressed by 

ktV c)x( =   if  kt R∈x   (1) 

The codebook is built using K-means partition described 
as follows. Let ][ ktuU = be a matrix whose elements are 
memberships of tx  in the nth cluster, k = 1, 2, …, K, t = 1, 
2, …, T. A K-partition space for X is the set of matrices U 
such that [24] 
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where )x( tkkt uu = is 1 or 0, according to whether tx  is 

or is not in the kth cluster, tu
K

k
kt ∀=∑

=1
1  means each tx  is 

in exactly one of the K clusters, and kTu
T

t
kt ∀<< ∑

=1
0  

means that no cluster is empty and no cluster is all of X 
because of 1 < K < T. 

The VQ method is based on minimization of the sum-of-
squared-errors function as follows 

∑∑
= =

=
K

k

T

t
ktktduXUJ

1 1

2);,( λ   (3) 

where λ is a set of prototypes, in the simplest case, it is the 
set of cluster centers }c,...,c,c{ 21 K=λ , and ktd is the 
Euclidean norm of )cx( kt − . Minimizing );,( XUJ λ  
over the variables U and λ yields the following equations   
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4. Fuzzy Subspace Methods for VQ  

We present the fuzzy subspace methods based on fuzzy c-
means (FCM) and fuzzy entropy (FE) for VQ. 

4.1 Fuzzy C-Means Subspace Modeling 

Let ],...,,[ 21 MwwwW =  be the weight vector for M 
dimensions and α be a parameter weight for mw .  

The equation (3) is modified as follows  

∑∑ ∑
= = =

=
K

k

T

t

M

m
ktmmkt dwuXWUJ

1 1 1

2);,,( α
α λ  (6) 

where 1>α , ktmd  is the mth component distance of the 
distance ktd  between tx  and kc  

22 )( tmkmktm xcd −= , ∑
=

=
M

m
ktmmkt dwd

1

22 α  (7) 

and weight values satisfy the following conditions: 

∑
=

=∀≤≤
M

m
mm wmw

1
1,10   (8) 

The basic idea of the fuzzy c-means subspace K-Means-
based (FCMS-KM) VQ method is to minimize  

);,,( XWUJ λα  over the variables U, W, and λ  on the 
assumption that matrix U identifies the good partition of 
the data, and that matrix W identifies the good dimension 
of the data. 

The FCMS-KM VQ modeling algorithm is summarized as 
follows: 

1. Given a training data set }x,...,x,x{ 21 TX = , 
where ),...,,(x 21 tMttt xxx= , t = 1, 2,…, T. 

2. Initialize memberships ktu , 1 < t < T , 1 < k < K, 
at random satisfying (2) 

3. Initialize weight values mw , 1 < m < M at 
random satisfying (8) 

4. Given α > 1 and ε > 0 (small real number) 
5. Set i = 0 and );,,()( XWUJ i λα  to a large number. 

Iteration: 
a. Compute cluster centers using (4) 
b. Compute distance components ktmd and 

distances ktd  using  (7)  
c. Update weight values  

      

∑
=

−
= M

n
nm

m
DD

w

1

)1/(122 )/(

1

α
   

∑∑
= =

=
K

k

T

t
ktmktm duD

1 1

22   (9) 

d. Update membership values using (5) 
e. Compute );,,()1( XWUJ i λα

+  using (6) 
f. If 

ε
λ
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α

αα >
−

+

+
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i
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set );,,();,,( )1()( XWUJXWUJ ii λλ αα
+= ,    

i = i + 1 and go to step (a). 

4.2 Fuzzy Entropy Subspace Modeling 

Let ],...,,[ 21 MwwwW =  be the weight vector for M 
dimensions and β be a parameter weight for mw . The 
equation (3) is modified as follows 
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where 0>β , ktmd  is the mth component distance of the 
distance ktd  between tx  and kc  

22 )( tmkmktm xcd −= , ∑
=

=
M

m
ktmmkt dwd

1

22  (12) 

The basic idea of the fuzzy entropy subspace K-means-
based (FES-KM) VQ method is to minimize 

);,,( XWUJ λβ  over the variables U, W, and λ on the 

assumption that matrix U identifies the good partition of 
the data, and that matrix W identifies the good dimension 
of the data. 

The FES-KM VQ algorithm is summarized as follows 

1. Given a training data set }x,...,x,x{ 21 TX = , 
where ),...,,(x 21 tMttt xxx= , t = 1, 2,…, T. 

2. Initialize memberships ktu , 1 < t < T , 1 < k < K, 
at random satisfying (2) 

3. Initialize weight values mw , 1 < m < M at 
random satisfying (8) 

4. Given β > 0 and ε > 0 (small real number) 
5. Set i = 0 and );,,()( XWUJ i λβ  to a large number. 

Iteration: 
a. Compute cluster centers using (4) 
b. Compute distance components ktmd and 

distances ktd  using  (12)  
c. Update weight values  
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d. Update membership values using (5) 
e. Compute );,,()1( XWUJ i λβ

+  using (6) 
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set );,,();,,( )1()( XWUJXWUJ ii λλ ββ
+= ,    

i = i + 1 and go to step (a). 

4.3 Network Anomaly Detection  

Assuming λ is the normal model. Given an unknown 
network feature vector x, the task is to determine x is 
normal or intrusive. The following algorithm is proposed 

1. Given an unknown network feature vector x and 
the normal model λ  

2. Set a threshold value θ 
3. Calculate the minimum distance between x and λ  

        )c,x(minmin k
k

dd =    (15) 

where d(.) is defined in (7) or (12) and kc is the 
kth code vector in λ. 

4. If θ<mind  then x is normal else x is intrusive  
 
It can be seen that when the threshold value increases, the 
anomaly detection rate and the false alarm rate also 
increase. If the false alarm rate is fixed, we can determine 
the corresponding values for the threshold value and the 
anomaly detection rate. 

5. Experimental Results  

5.1 Network Data and Attack Types 

We consider a sample dataset, which is the KDD CUP 
1999 dataset [9]. The raw network traffic records have 
already been converted into vector format. Each feature 
vector consists of 41 features. The meanings of these 
features can be found in [9]. In this paper, we ignore 
features with symbolic values. The attacks listed in feature 
vectors of KDD CUP 1999 dataset come from MIT 
Lincoln intrusion detection dataset web site [18]. The 
labels are mostly the same except a few discrepancies. In 
addition to the attack labels, the KDD CUP 1999 dataset 
has also the label normal, which means that the traffic is 
normal and free from any attack.  
 

5.2 Anomaly Detection and False Alarm Results  

The proposed method for network intrusion detection was 
evaluated using the KDD CUP 1999 data set for training 
and the Corrected data set for testing. For training, the 
number of feature vectors for training the normal model 
was set to 5000. The testing data set contains 60593 
feature vectors for the normal network pattern, and 
224385 feature vectors for all attacks.  
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We also conducted a set of experiments for the network 
data using the normalization technique as follows 

m

mtm
tm

xx
σ

μ−
=' ,     ∑

=
−=

T

t
mtmm x

T 1
||1 μσ  (16) 

where tmx is the mth feature of the tth feature vector, 

mμ the mean value of all T feature vectors for feature m, 
and mσ  the mean absolute deviation.  

Table 1. Anomaly detection results (in %), where α = 4.0 and β = 2.0. All 
network data were normalized. Codebook size = 4 

 
Modeling False Alarm Rate (in %)

0.0 0.1 1.0 10.0 100.0
KM VQ 45.6 46.1 46.7 48.4 77.4 

FES-KM VQ 50.8 56.2 57.0 60.1 83.6 
FCMS-KM VQ 98.0 98.1 98.3 98.4 98.8 

 
Table 2. Anomaly detection results (in %), where α = 4.0 and β = 2.0. All 

network data were normalized. Codebook size = 8 
 

Modeling False Alarm Rate (in %) 
0.0 0.1 1.0 10.0 100.0

KM VQ 45.9 50.8 54.2 60.3 79.6 
FES-KM VQ 54.7 79.8 83.4 84.1 88.6 

FCMS-KM VQ 98.2 98.3 98.3 98.5 98.9 
 

Table 3. Anomaly detection results (in %), where α = 4.0 and β = 2.0. All 
network data were normalized. Codebook size = 16 

 
Modeling False Alarm Rate (in %) 

0.0 0.1 1.0 10.0 100.0
KM VQ 64.9 81.2 82.1 83.3 94.8 

FES-KM VQ 66.8 81.7 84.0 84.3 95.3 
FCMS-KM VQ 98.8 98.9 98.9 98.9 99.2 

 
Table 4. Anomaly detection results (in %), where α = 4.0 and β = 2.0. All 

network data were normalized. Codebook size = 32 
 

Modeling False Alarm Rate (in %) 
0.0 0.1 1.0 10.0 100.0

KM VQ 83.5 84.7 86.5 87.0 95.0 
FES-KM VQ 84.3 85.1 86.6 87.0 95.4 

FCMS-KM VQ 98.9 99.0 99.0 99.0 99.3 
 

Anomaly detection rates versus false alarm rates are 
presented in Tables 1, 2, 3, and 4 where the codebook size 
is set to 4, 8, 16, and 32, respectively. We chose 5 false 
alarm rates (in %) which were 0.0, 0.1, 1.0, 10.0, and 
100.0 to compare the corresponding anomaly detection 
rates for the K-means VQ modeling and the two proposed 
FCMS-KM VQ and FES-KM VQ modeling. The ideal 
value for false alarm rate is 0.0, and from the four tables, 
we can see that the FES-KM VQ performed better than the 
KM VQ modeling and the FCMS-KM VQ modeling 
outperformed the KM VQ modeling. Moreover, the 

FCMS-KM VQ modeling achieved very high detection 
rates even with the smallest codebook size. 

All the considered methods could not achieved the highest 
anomaly detection rate of 100% even though we changed 
the threshold value to accept all attack patterns (i.e., the 
false alarm rate is 100%). With codebook size of 32, the 
FCMS-KM VQ modeling achieved very good results even 
with the lowest false alarm rate. The training data set 
contained 5000 feature vectors.  

5. Conclusion  

We have proposed two automated feature weighting 
methods based on fuzzy c-means and fuzzy entropy 
modeling to assign fuzzy weight values to network 
features depending on which subspace they belong to. We 
have used the KDD CUP 1999 dataset as the sample data 
to evaluate the proposed methods. The fuzzy c-means 
subspace VQ modeling outperformed the standard K-
means vector quantization modeling. For further 
investigation, we will consider other automated weighting 
subspace methods that can assign different weights to 
clusters even in the same dimension. 
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