
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

189

Manuscript received February 5, 2008

Manuscript revised February 20, 2008

Review of J2ME and J2ME-based Mobile Applications

Anna Isakow and Hao Shi

School of Computer Science and Mathematics
Victoria University, Melbourne, Australia

Summary
The wireless revolution has transformed mobile communication
from only voice-oriented communication with relatively static,
hard-coded functionality into extensible, Internet-enabled
communication with advanced data and software support.
Nowadays, users expect wireless connections to be able to
transfer live video and high-quality audio, as well as download
significantly larger applications and services comparing to those
in the past. There is a great demand for multi-functional mobile
devices capable of hosting a broad range of applications for both
business and consumer use.
Java 2 Platform, Micro Edition (J2ME) offers the wireless
community a standard solution on different platforms without
significant changes to the system. Almost all mobile phones
available on the market support the programming language Java
for J2ME. In this paper, Java 2 platform and J2ME for
development of mobile applications are reviewed. Current
applications for mobile devices using J2ME are present and
possible future mobile applications are addressed for developer
to take advantages of J2ME for future mobile applications.

Key words:
J2ME, mobile applications, wireless communication.

1. Introduction

The wireless communication industry has seen explosive
growth over the last decade. This made wireless
communication one of the fastest growing technology
areas in the world. At the same time, the rapid emergence
of the Internet has changed the landscape of modern
Information Technology (IT). People have become more
and more dependent on the information available on the
Internet and they increasingly want to get access to the
Internet services, not only from their home and office
computers but also from mobile, wireless devices. As a
consequence of that development, the rapid and efficient
deployment of new wireless data and mobile Internet
services has become a high priority for communication
equipment manufacturers and telecommunication
providers.

The wireless revolution has transformed wireless devices
from only voice-oriented communication devices with
relatively static, hard-coded functionality into extensible,

Internet-enabled devices with advanced data and software
support. These devices need to support dynamic
downloading of new software, and need to be capable of
running software developed not only by the device
manufacturers themselves, but also written by other
software developers. This makes the devices much more
dependent on software and requires handling of such
topics like software interoperability, security and
reliability. Java is the programming language which
ideally suites to develop software for mobile devices and
provides many benefits.

As Java is a modern object-oriented language and has far
better features and higher-level programming constructs
than other languages and tools that are used for wireless
software development, it allows software to be developed
more efficiently. Nowadays, almost all mobile phones
available on the market support the programming
language Java for Java 2 Micro Edition (J2ME). J2ME
allows developers to implement platform independent
applications for mobile devices. Java has become the
major object-oriented programming language for
developers to implement new mobile applications, which
benefit from Java’s well-known features for design of
graphical interfaces.

2. Overview of Java 2 Platform

Java platform consists of the Java language, Java Virtual
Machine (JVM), and Java Application Programming
Interfaces (APIs). The Java platform is designed to cover a
wide range of computer hardware, everything from smart
cards through enterprise servers. Therefore, Sun
Microsystems has grouped Java technologies into three
editions. Each of them aims at a specific area of today’s
huge computing industry:

• Java 2 Platform, Enterprise Edition (J2EE) is for
companies which need to provide server solutions
to their customers, suppliers and employees.
J2EE is usually used for servers and enterprise
computers. It is based on J2SE and adds APIs for
server-side computing.

• Java 2 Platform, Standard Edition (J2SE) is
designed for the desktop and personal computer

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

190

market. Most often it runs on top of OS X, Linux,
Solaris or Microsoft Windows (Sun Developer
Network (SDN) n.d.b).

• Java 2 Platform, Micro Edition (J2ME) is a set of
runtime environments and APIs developed for
small devices like PDAs, TV set-top boxes,
mobile phones and other devices. Those devices
cannot support a full J2SE or J2EE
implementation because they lack necessary
resources. J2ME uses subsets of J2SE
components, such as smaller virtual machines and
leaner APIs.

J2ME was designed for needs of:
• Consumers and embedded device manufacturers

who build many different information devices,
• Service providers who use those devices to

deliver content to their customers and
• Content creators who want to make compelling

content for small devices with stringent
restrictions on computational power, battery life,
memory and network bandwidth.

The development of specifications for J2SE, J2EE and
J2ME is controlled by the Java Community Process (JCP).
JCP is responsible for the development of Java technology
and approval of Java technical specifications. A
specification begins its life as a Java Specification Request
(JSR). JSRs are formal documents that describe proposed
specifications and technologies to be added to the Java
platform. Before the JSR becomes final and is voted on by
the JCP Executive Committee, formal public reviews of
JSRs have to be conducted. The specification would be
created by an expert group consisting of representatives
from interested companies. Before JSR is finished and can
be used, it has to pass through different stages of the JCP.
Every J2ME specification has an unique JSR number and
can be commonly referred to by that number.

As Fig. 1 illustrates, there are different Java 2 Platform
editions. Each of them defines its own main target market.
As already mentioned above, J2EE is used for servers and
enterprise computers. J2SE supports desktop and personal
computers. J2EE and J2SE are completely separate from
J2ME family tree. At a high level J2ME is targeted at two
broad categories of products: the high-end and low-end
consumer devices.

Fig. 1: Java 2 Platform editions and their target markets

High-end consumer devices are represented by Connected
Device Configuration (CDC). Such devices like TV set-
top boxes, Internet TVs, Internet-enabled screen phones,
high-end PDAs like the Palm Z 22, high-end wireless
communicators and navigation systems are good examples
of CDC-based devices [1].

Connected Limited Device Configuration (CLDC)
represents the low-end consumer devices. Mobile phones,
pagers and personal organizers are examples of appliances
in this category. Practically, the line between the two
categories of J2ME is defined more by the memory budget,
bandwidth considerations, battery power consumption and
physical screen size of the device rather than by its
specific functionality or type of connectivity. This division
in two different groups has become more difficult as a
result of continuing technological development. Finally,
Java Card technology supports development on Java-
based smart cards (Ortiz 2004a). Java Card technology
complements J2ME. It provides smart cards with a
compact Java runtime environment, virtual machine and
programming interface. As Java card technology, J2EE
and J2SE are beyond the scope of this paper, no further
explanations will be made.

3. Java 2 Micro Edition (J2ME)

J2ME (Java 2 platform, Micro Edition) was announced by
Sun Microsystems at the JavaOne Conference in June
1999. The purpose of J2ME is to enable Java systems to
run on small computing devices. It does not define a new
programming language but simply applies existing Java
technology to handheld and embedded devices. Unlike
J2SE or J2EE, J2ME is neither a piece of software, nor is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

191

it a single specification. Instead, J2ME is a platform, a
collection of technologies and specifications that are
designed for different parts of the small device market. It
provides a robust, flexible environment for applications
running on mobile and other embedded devices—mobile
phones, personal digital assistants (PDAs), TV set-top
boxes and printers. It is divided into different and a
steadily growing variety of configurations, profiles and
optional packages. In the following subsections, each of
these key terms will be covered in depth.

3.1 Architecture of J2ME

J2ME has become an organized architecture for electronic
devices. It includes sets of Java APIs for high-end PDAs
and embedded devices and for more constrained devices
such as mobile phones, low-end PDAs and headless
devices, those without display or user interface facilities.
The JCP has defined, not only the many components of
J2ME, but the platform's overall architecture, in the J2ME
Platform Specification. Fig. 2 presents the different
software bundles of J2ME.

Fig. 2: J2ME software layers

At the heart of J2ME are three core concepts:
configurations, profiles and optional packages.
Configuration such as CLDC provides core services for a
broad category of devices. CLDC was designed for

devices which have memory and processor power
constraints. A configuration defines the Java language and
virtual machine features and minimum class libraries that a
device of the same category should have. It specifies a
JVM that can be easily ported to devices supporting the
configuration. A configuration also defines a minimum
platform for a horizontal category of devices, each with
similar requirements on total memory budget and
processing power.

A profile like Mobile Information Device Profile (MIDP)
supports higher-level services common to a more specific
class of appliances. It means that profiles are more specific
than configurations and consist of class libraries which are
more domain-specific than the class libraries provided in a
configuration. A profile is based on the top of a
configuration and adds APIs for user interface, persistent
storage and other classes needed to develop running
programs [2]. A profile is for specific needs of a vertical
market segment or device family. The main goal of a
profile is to guarantee the interoperability within a certain
device family or domain by defining a standard Java
platform for that market. Each family of devices has its
own profile that represents a particular market within a
given configuration. For example, the profile for the cell
phone vertical market is separate from the profile for the
PDA vertical market, but both profiles are based on the
same mobile device configuration. One device can support
multiple profiles.

Optional packages add special services that are useful on
devices of many kinds, but that are not necessarily
available on all of them. Usually, applications are based
on a configuration appropriate to the desired category of
target devices and on a profile that supports the software’s
basic functionality and optional packages which support
needed specialized functions like messaging or multimedia
[3]. A profile is based on top of a configuration and adds
APIs for user interface, persistent storage and other classes
needed to develop running programs. One device can
support multiple profiles.

All that is implemented on a device like configuration,
profile and optional APIs is called a stack (see Fig. 3). For
instance, a device stack could be CLDC/MIDP + Mobile
Media API. This organization supports both reuse and
efficiency and enables developers to put together a
software stack that fits both the capabilities of target
devices and the resource needs of applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

192

Fig. 3: Organization of the J2ME

In addition to J2ME's configurations, profiles and optional
packages as described above, Fig. 2 shows that
applications may include vendor-specific classes when
required. Vendor-specific APIs are extensions to
configurations and profiles. The standard J2ME does not
consist of vendor-specific interfaces, but they can be
added and extend the functionality that's specific to a
given device, for example APIs to control the radio
transceivers of a device [2].

3.2 Configurations

J2ME configurations define the basic functionality of the
Java platform for a broad family of devices with generally
similar capabilities. Sun Developer Network (SDN)
defines configurations as “… specifications that detail a
virtual machine and a base set of APIs that can be used
with a certain class of device.” A configuration defines a
basic J2ME runtime environment which many devices can
implement without changes. This includes the virtual
machine and a set of core classes derived primarily from
J2SE. Thus, a configuration is a complete Java runtime
environment, consisting of three things [4]:

• A JVM to execute Java bytecode
• Native code as an interface to the underlying

system
• A set of core Java runtime classes

The configuration's formal specification defines the
minimum requirements which a device must meet to be
able to use this configuration. Although a configuration
does provide a complete Java environment, the set of core
classes is normally quite small and must be enhanced with
additional classes supplied by J2ME profiles or by
configuration implementer. In particular, configurations
do not define any user interface classes.

Such a configuration might be for devices with less than
512 KB of memory and an intermittent network
connection. So far, two configurations have been defined:
the Connected Device Configuration (CDC) for
programming larger, more powerful handheld devices like
PDAs and the Connected Limited Device Configuration
(CLDC) for the smallest devices that have more limited
resources, like mobile phones [2]. The devices which use
the configurations must have some type of network
connectivity either it is a high-speed fixed link or a slow-
speed wireless link.

Fig. 4: Two different configurations of J2ME

The majority of functionality in CLDC and CDC has been
inherited from J2SE. Each class inherited from the J2SE
environment must be precisely the same or a subset of the
corresponding class in the J2SE environment. Additionally,
CLDC and CDC may implement a number of functions,
not taken from the J2SE, designed specifically to fit the
needs of small portable wireless devices. The relationship
between J2ME configurations and J2SE is presented in
Fig. 5.

Fig. 5: Relationship between J2ME configurations and J2SE

A particular device might meet the basic hardware
requirements of either CDC or CLDC. It can support just
one of them because the devices J2ME is aimed at are
constrained devices. The device manufacturers who most

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

193

likely provide Java runtime environments must decide
which configuration to support [5].

Core Java libraries are normally intimately tied up with the
implementation of a Java virtual machine. This is the most
important reason for the configuration layer in the J2ME
environment. If small differences in the specification of a
configuration are made, it can require a number of
significant changes to the internal design of a Java virtual
machine. Thus, a substantial amount of additional memory
would be required and it could become very expensive and
time-consuming to maintain such modifications. The
smaller the number of configurations is, the better the few
virtual machine implementations can serve the needs of
both a large number of different profiles and a large
number of different hardware types of devices.
Consequently, J2ME environment is absolutely essential
for devices which have to be successful and cost-effective
in the consumer and embedded industry.

As CLDC and CDC have been developed for usage on
different platforms, there are many differences between
them. Firstly, CLDC is targeted towards small devices
with limited resources like mobile phones. CDC targets a
larger device with more capabilities like newer
smartphones and PDAs. Secondly, many CDC
applications are written like J2SE systems but with a
subset of APIs available in J2SE. As Figure 5 illustrates,
CDC includes the entire CLDC and contains more J2SE
classes in the core runtime library than CLDC. The CLDC
supports only a minimal set of classes.

3.3 J2ME Profiles

Although, the configurations provide the foundation for
Java programming on small computing devices, they do
not provide enough functionality for the development of
software. A profile extends a configuration, adding
domain-specific classes to the core set of classes. It means
that profiles provide classes for specific uses of devices
and define functionality missing from the base
configuration functions like user interface classes,
persistence mechanisms, control of application life cycle,
network connections. While they provide important and
necessary functionality, not every device will support
every profile. In Japan, for example, NTT DoCoMo has
released a number of Java-enabled mobile phones based
on the CLDC but with their own proprietary profile [6].
Applications written for these devices will not work on
mobile devices that support different profiles like Mobile
Information Device Profile (MIDP). Profiles are specific
to the size of the device (amount of memory) on which a
system runs and are associated with certain configurations.

3.3.1 The purpose of a profile

While a configuration defines a minimum level of Java
support across a family of devices, a profile defines the
application programming interfaces (APIs) for devices
with similar uses. A device can use only one configuration
but many different profiles can be based on the same
configuration. Applications are built on top of profiles. Fig.
6 illustrates the architecture of configurations and profiles.

Fig. 6: Profile architecture

Applications can access three different sets of APIs: the
API of the configuration, those of the profile or several
profiles and native APIs. Native APIs depend on the
device and are provided by the implementer of the runtime
environment, which is typically the manufacturer of the
device.

3.3.2 Types of profiles

As already mentioned, configurations do not provide any
classes for managing the application life cycle, for driving
the user interface, for maintaining and updating persistent
data locally on the device or for accessing information that
is stored on a network server [2]. Therefore, that type of
functionality is provided by profiles or optional packages.
A profile adds domain specific classes to the core set of
classes provided by the configuration. Those classes are
for specific uses of devices and provide functionality
which is not defined by the underlying configuration.
There are many different kinds of profiles, which have
been defined or are still in development through the Java
Community Process (JCP). The following profiles are
available:

• The Mobile Information Device Profile (MIDP)
which is based on the CLDC and provides a

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

194

standard Java runtime environment for today's
most popular mobile information devices, such as
mobile phones and mainstream PDAs.

• The Information Module Profile (IMP) is also
based on CLDC and is a subset of MIDP.

• The Foundation Profile (FP) that adds additional
J2SE classes to the CDC but no user interface
classes. It acts as a foundation for building other
profiles.

• The Personal Profile (PP) is based on CDC and
provides the J2ME specification for devices that
need a high degree of Internet connectivity and
web fidelity.

• The Personal Basis Profile (PBP) supports
graphics, images and widgets on devices that
require a simple user interface, such as
automotive devices, consumer devices and simple
appliances [2]. PBP is also located on top of CDC.

Fig. 7 illustrates how profiles relate to their underlying
configurations and each other.

Fig. 7: J2ME Profiles

There are two standard CLDC-based profiles like MIDP
and IMP and three CDC-based profiles such as FP, PBP
and PP. In order to be able to develop software, the
configurations, profiles and perhaps device-specific
classes are required. User interface classes are a good
example for device-specific classes. User interface classes
are not included in the configuration because not every
device supports a user interface. Multiple profiles can
exist on top of the same configuration, as in case of MIDP
and IMP. They can also depend or build on each other like
the profiles of CDC. The PP extends the PBP, which in

turn is on top of and depends on the FP. Fig. 8 illustrates
the relationship between IMP and MIDP.

Fig. 8: IMP and MIDP relationship

3.3.3 Optional Packages

Optional packages are important components of the J2ME
architecture. They extend profiles in their functionality. As
they provide support in relatively narrow areas of
functionality some devices and applications need them but
other don't, such as messaging, multimedia and location
services. With optional packages taking over such burdens,
profiles can concentrate on supporting only those
capabilities that most or all devices in a category need.
They can supply the runtime environment, while optional
packages supply specific kinds of functionality. This
approach allows to include capabilities that were not even
envisioned when the profiles were designed. An optional
package provides functionality that may not be associated
with a specific configuration or profile. One example of an
optional package is the Bluetooth API, which provides a
standardized API for using Bluetooth networking.
Bluetooth API could be implemented on top of any
combination of configurations and profiles.

An optional package is also a set of APIs, but unlike a
profile, it does not define a complete application
environment. An optional package is always used in
conjunction with a configuration or a profile. It extends
the runtime environment to support device capabilities that
are not universal enough to be defined as part of a profile
or that need to be shared by different profiles like the
Wireless Messaging API (WMA). WMA is a set of classes
for sending and receiving Short Message Service (SMS)
messages. Because the WMA is an optional package, it
can be included on any J2ME device with SMS
capabilities, not just MIDP enabled mobile phones. If

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

195

WMA were part of a specific profile, such as MIDP, its
use would have been limited to that profile and its
supersets [7].

All J2ME optional packages are defined by the JCP,
making them standard APIs. As the term implies,
inclusion of these packages is optional. Handset
manufacturers may choose to include them in a particular
product and in extensible environments such as PDAs
developers may elect to include them. For example, a
particular MIDP handset could add support for Bluetooth
connectivity by including the Java APIs for Bluetooth and
support for enterprise integration by including the Web
Services API.

Optional packages depend on what kind of functionality is
necessary. Some of them are specialized in CLDC
environments, some in CDC, some in both. There is an
increasing number of optional packages:

• Java APIs for Bluetooth (JABWT)
• Wireless Messaging API (WMA)
• Mobile Media API (MMAPI)
• Web Services API for J2ME (WSA)
• Location API for J2ME
• JDBC Optional Package for CDC/Foundation

Profile
The complete list of optional packages is available at
http://developers.sun.com/mobility/apis/.

4. J2ME-based mobile applications

Nowadays, everybody uses the Short Messaging Service
(SMS) to communicate via messages with other telephone
subscribers. It is the cheapest, quickest and easiest way to
use mobile communication. According to Informa’s World
66 Cellular Data Metrics, worldwide SMS traffic in the
first quarter 2007 was up year-on-year growth by around
50 % to more than 620 billion messages. Global mobile
data revenues from services other than SMS exceeded
US$10 billion in the first quarter 2007. The total of
US$11.3 billion compares with US$8.1 billion in the first
quarter 2006 [8]. It means that nearly one third of mobile
data revenues now come from non-SMS services,
suggesting operators to make investments in advanced
technologies like mobile payments, cameras, MP3-Players,
navigational utilities and games.

•

Fig. 9: Currently very popular mobile phone Sony Ericsson W660

Devices combining these features are called smartphones.
As all latest mobile phones offer at least several of
functions named above, smartphones are often equated
with mobile phones (see Fig. 9). In this paper, both terms
are also used synonymously.

4.1 Current J2ME applications

Current mobile phones dispose of a variety of platform
dependent software for example organizer, games and
address book. Through the invention of programming
language Java for mobile phones, it additionally became
possible to implement platform independent systems.
Nowadays, support of J2ME is a permanent feature of new
mobile phones. The majority of J2ME programs are games
like puzzles, flight emulators and sport games. Some of
the games are already installed on the mobile phone when
customers buy them. Games which are not included in the
purchase pack, can be directly downloaded from the
Internet and installed. Such games enjoy great popularity
especially among young people.

4.2 Future J2ME systems

Mobile phone industry is one of the most dynamic areas.
In no other economic sector new products come more
quickly on the market having such short innovation cycles
like mobile devices. By the end of 2006, there were a total
of nearly four billion mobile and fixed line subscribers and
over one billion Internet users worldwide. This included
1.27 billion fixed line subscribers and 2.68 billion mobile
subscribers [9]. The number of mobile subscribers has
exceeded the number of fixed line subscribers for many
years. Entirely new and interesting systems can be
developed using J2ME, especially location-based

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

196

applications. The economic potential of this kind of
software cannot be exactly estimated but the number of
software based on GPS (Global Position System) and
position determination increases continually.

4.2.1 Navigation

Based on GPS information, different services can be
developed which should show the current user position on
the map and navigate to a certain place. These services
would help tourists to orient themselves in a foreign city.
Useful applications would be indication of the next free
parking lot or nearest cash machine, the position of hotels
or restaurants next to the user location like shown in Fig.
10.

Fig. 10: Navigation software installed on a NOKIA N95

A more complicated service is an early-warning-system
for traffic congestion. User would register on a remote
server. A GPS receiver could determine the current driver
location and the data could be transmitted to the server.
The server should recognize the traffic jam on the way to
the specified destination, address a warning to the driver
and send a suggestion for a new route.

While currently introduced navigation systems are only
applicable outside of buildings, it would be also useful to
be able to navigate within buildings. Many applications
require indoor positioning capabilities such as emergency
calls, indoor routing, product tracking or location sensing
billing. Indoor Locating System software could help
people in orientation in large buildings like museums,
galleries, supermarkets, libraries and conferences. If a
customer cannot find a certain product in a supermarket,

the mobile phone could guide him to the very shelf. A
fairgoer would find the necessary booth using a map
shown on his mobile device or guided by voice command
on his phone.

4.2.2 Shopping

An important area of J2ME applications is also the mobile
shopping. The mobile phone could display its owner
information about special discounts at supermarkets of the
customer’s choice. It could also locate the nearest cheap
gas station. Another useful service for countries like
Germany where shops are not opened around the clock
could help in finding an emergency-pharmacy opened at
night hours and on the weekends.

Fig. 11: Discounts at a supermarket

Mobile advertisements and mobile shopping are related to
each other. One possibility would be to display customers
current discounts on their mobile phones when they enter
a supermarket. Fig. 11 illustrates the prototype for this
kind of future J2ME applications.

Another useful functionality is to customize advertising
depending on consumer behaviour. A consumer in a
bookstore might be able to compare the cost of buying a
book at the store with the costs of ordering it online and
receiving it in a few days or in an hour.

4.2.3 Entertainment

In our society, entertainment and fun are rated high. There
are probably just a few cases when a mobile phone is
essential for survival for example for a sick person.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

197

Nevertheless, not many people would want to do without
it. Mobile devices make the communication between
people more spontaneous and simpler. These features are
exactly what customers expect from mobile services.
Therefore, it is not remarkable that the majority of J2ME
applications have been designed for entertainment for
example the Phantom Solitaire game presented in Fig. 12.

Fig. 12: Phantom Solitaire game on the display of a mobile phone

On the one hand, J2ME makes it possible to design and
implement simple services like call up movie reviews,
check information on events or display opening hours of a
restaurant. On the other hand, more complex systems can
be developed, e.g. interactive city guides or balance the
checking accounts. Although, many J2ME developers
have tried to realize this idea, the software they
implemented is not platform independent.

Another example for entertainment software is a dating
service. In this way, couples could receive a message as
soon as they are near each other. The system Buddy
Finder should work in similar way. It should display the
location of registered friends and make it possible to guide
to or invite each other to a spontaneous meeting.

4.2.4 Safety and emergency

Many people see the mobile phone as a perfect companion
in emergency cases like car accidents when quick help is
required. If the exact location can be determined via GPS
or other technologies, ambulance would know the position
of injured people and apply first aid more quickly. In this
context, an important application would also be for car
drivers. It should give the alarm to the nearest hospital, if
the car is involved in an accident for example when
airbags have been released and the driver does not respond
to the request of the system. In the same way, a stolen car
could be localized and returned to the owner without much
investigating effort of the police.

Furthermore, there is still need for applications which
could help in handling with results of natural disasters.

Team leaders of rescuers could be informed about the
position of action forces and could coordinate it in a better
way. Mobile phone of a rescuer could show on its display
the position of the next electricity or water connection.
However, usage of GPS services requires the intact mobile
phone infrastructure. If mobile transmission system does
not work, a sophisticated system will not be much help.

The research of current and future J2ME applications has
clearly shown that mobile systems based on location
arouse a great deal of interest of mobile subscribers.
Nevertheless, up to date, there are only a few Location
Based Services available on the market. In 2006, the first
mobile phones with an integrated GPS receiver came into
the market. Conditioned by the availability of this
technology on mobile phones, it is expectable that indoor
and outdoor Location Based Applications will become
more popular in the near future.

5. Conclusion and Future Work

In this paper, Java 2 platform is introduced and Java 2
Platform, Micro Edition (J2ME) for developing mobile
applications is extensively reviewed. It aims at developers
to take full advantage of J2ME in their mobile applications.
J2ME supports persistent storage of data which is enough
to save configuration data constantly for current and future
mobile applications. J2ME consists of a variety of optional
packages which provide special APIs. Those APIs can
support the future of mobile applications development.
Due to maturity of GPS (Global Position System),
location-based mobile applications will become more
important in the coming years. The project priority should
be given to location-based mobile applications which can
display various maps such as road maps and weather maps.
It is expected that J2ME and its offspring will offer the
most ubiquitous solution for future mobile applications
with the continuous improvement in mobile devices.

References
[1] Riggs, Taivalsaari, VandenBrink, 2001, Programming

Wireless Devices with the Java 2 Platform, Micro Edition,
Addison-Wesley Pearson Education, New York, US.

[2] Ortiz, 2004a, A Survey of J2ME Today, Sun Developer
Network (SDN), viewed 13 August 2007,
http://developers.sun.com/mobility/getstart/articles/survey/.

[3] Ortiz, 2006, Summary of CLDC-Based Profiles, Sun
Developer Network (SDN), viewed 23 August 2007,
http://developers.sun.com/ mobility/midp/ttips/cldc/.

[4] Giguere, 2002a, J2ME Core Concepts, viewed 21 August
2007, http://www.ericgiguere.com/articles/j2me-core-
concepts.html.

[5] Giguere, 2000, Java 2 Micro Edition: Professional
Developer’s Guide, Electronic Resource, viewed 20 August
2007, http://library.vu.edu.au.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

198

[6] Giguere, 2001, Java 2 Micro Edition Basics, viewed 22
August 2007,
http://www.ericgiguere.com/books/midp/midp-chapter-
1.pdf.

[7] Giguere, 2002c, J2ME Optional Packages, Sun Developer
Network (SDN), viewed 27 August 2007,
http://developers.sun.com/mobility/midp/articles/optional/.

[8] Grenville, 2007, Stats & Research: SMS Traffic Up 50%,
viewed 17 October 2007,
http://www.160characters.org/news.php?action=view&nid=
2325.

[9] ITU, 2007, Next-generation networks set to transform
communications, International Telecommunication Union,
viewed 18 October 2007,
http://www.izmf.de/download/Studien/ITU.pdf.

Ms. Anna Isakow is a final year
Business Computer Science student at
University of Applied Sciences
Regensburg in Regensburg, Germany.
She was supervised by Dr. Hao Shi as an
international exchange student at Victoria
University from August 2007 to
November 2007 and successfully
completed her minor thesis with topic

“J2ME – specification, development and operation using the
example of smart devices.”

Dr. Hao Shi is an Associate Professor
in School of Computer Science and
Mathematics at Victoria University,
Australia. She completed her PhD in the
area of Computer Engineering at
University of Wollongong in 1992 and
obtained her Bachelor of Engineering
degree at Shanghai Jiao Tong
University, China. She has been actively
engaged in R&D and external

consultancy activities. Her research interests include p2p
Network, Location-Based Services, Web Services,
Computer/Robotics Vision, Visual Communications, Internet
and Multimedia Technologies.

