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Summary 

Mobile Ad-hoc Networks (MANETs) are highly decentralized, 
independent and self-organizing networks, and these tend to be 
highly unstable with respect to packet delivery, connectivity 
between the nodes and routing between the nodes. It is important 
to study the topological parameters including energy of the 
network to optimize the routing process by means of cross layer 
interaction across the layers of the network. This paper employs 
a semi-analytical approach to analyze topological and energy 
related properties of K-connected MANETs. 
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1. Introduction 

Ad-hoc networks are decentralized, self-organizing, short- 
lived networks capable of forming a communication 
network without relying on any fixed infrastructure. Each 
node in an ad-hoc network is equipped with a radio 
transmitter and receiver that allow it to communicate with 
other nodes over wireless channels. All nodes can function, 
if needed, as relay stations for data packets to be routed to 
their final destination. In other words, ad-hoc networks 
allow for multi-hop transmission of data between nodes 
outside the direct radio reach of each other. 

A lot of research is done in MANETs related to the 
fundamental properties of the networks connectivity, 
routing and security. Mobility of the nodes, 
communication among the nodes through wireless mode, 
and varying transmissions and receiving ranges of the 
nodes introduce extensive dynamicity related to 
connectivity, routing, packet delivery and quality of the 
packets delivered to the nodes in MANETs. Hence there is 
a need to study the stability of the network in terms of 
qualities of service (QoS) related issues like packet 
delivery rate, packet delivery delay, energy of the network, 
reliability and signal interferences impact on quality of 
packets. This paper particularly focuses on K-connected 
MANET topologies. A K-connected topology is one, in 

which, between any two nodes of the network, there are K 
independent routes, so that a very high rate of successful 
packet delivery can be made [25, 26]. 

A lot of research has been done related to node density, 
critical transmission power and critical receiving power 
required for minimal connectivity of the MANETs [1-20]. 
To study the network stability, the basic properties such as 
link formation between the nodes, transmission and 
receiving ranges of the nodes, signal interferences are 
required in advance. Coming to routing, there exist works 
related to efficient routing protocols optimizing the 
routing delays with minimum energy utilization. However, 
the issue of stability due to the mobility of the nodes, 
which in turn affect the routing algorithms, needs to be 
studied. The parameters that need to be evaluated for 
stability include packet delays, total energy utilized to 
deliver packet from source to destination, frequency of 
determining routes between the nodes (which affect 
energy utilized), signal interferences and many more.  

2. Related Work 

Network connectivity is one of the most fundamental 
requirements for a successful MANET. There are several 
factors that affect the network connectivity:  

1. Minimum number of nodes required for 
maintaining connectivity (Node density)[4]. 

2. Minimum number of links in the network so that 
a node can reach any node that it desires. This is 
dependent on the actual positioning of the nodes. 

3. Minimum Degree of a Graph ( )Gδ : Among all 
the nodes of a graph, it is the minimum number 
of neighbors, a node has.  

4. K-connectivity of a network. It denotes the 
number of disjoint paths that exist between every 
pair of nodes. 

The fundamental aspects, which describe the above 
topological attributes of a network, are spatial distribution 
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of the nodes and their transmission range [2-10]. The 
geometry coverage of transmission range of any node is 
assumed to be a disk (circular) with a constant radius. 
Several studies assume that the transmission range of 
every node is uniform and circular. The minimum range r  
required to have a K-connected network for a geometric 
random graph, where r is the Euclidean distance between 
the two nodes such that they can communicate each other, 
is given in [25]. Similarly, the minimum number of 
neighbors should each node be connected to in order that 
the overall network is connected in a multi-hop mode is 
dealt in [26-30].  

In this paper we are utilizing the K-connectivity concept to 
study the stability of the network. The study of K-
connected network topology is of significant importance, 
since it ensures the connectivity of the network and also 
identifies multiple or redundant paths over which routing 
can be done.  

One can examine K-Connected MANET using a 
simulation methodology, in which, a special node is 
designated to compute whether the network is K-
connected or not. From all the nodes, this special node 
receives the number of neighbors’ information and 
computes the connectivity. This information can be sent to 
all other nodes.  From a randomly selected node, flooding 
can be initiated to study various QoS-related parameters. 
Instead of carrying out this large-scale simulation, a semi-
analytic approach is adopted in this paper to study some 
key issues relevant to K-Connected MANETs.   

The rest of the paper is organized as follows: In Part 3, 
few basic definitions are captured. Part 4 brings out 
several important properties related to K-connected ad-hoc 
networks through an analytical study. Part 5 focuses on 
simple simulations based on the results derived in Part 4. 
Finally, conclusions are given in Part 6. 

3. Some Basic Definitions  

Since, the analytical examination carried out in the paper 
uses Graph-Theoretic framework, we start with the 
definition of a Graph.  A graph G  is a triplet consists of 
vertex set )(GV , edge set )(GE and a relation that 
associates with each edge, two vertices. An edge between 
two nodes (vertices) i and j is represented as ( )ji, and 
( ) ( ) ( ) ( ){ }. and| ij,ji,Vji,ji,GE =∈∀⊆  Graph G  is 

denoted by ).,( EVG  Two vertices are said to be adjacent 
to each other, if there exist an edge between them. The 
number of edges associated with the vertex is called 
degree of a vertex denote by ( ) ( ).VdorVdG  A graph G  is 
said to be connected, if for every pair of vertices u, v 

belongs to ,G  there exist a path (otherwise the graph is 
disconnected). A disconnected graph has a number of 
components, with each component being a connected 
graph. 
 

K-connected Graph[31]: A graph G is said to be K-
connected, if on removal of any K nodes, the graph will 
become disconnected. The important property of K-
connected graph is that there exist K disjoint paths 
between any two nodes of .G  Figure 1 describes the 
various K-connected networks for K=1, 2 and 3. 

 

 

 
1-Connected 

Graph 
2-Connected 

Graph 
3-Connected 

Graph 

Figure 1: K-Connected Networks (K =1,2,3) 

Energy of a Graph: Let A be the adjacency matrix [31] 
of a graph .G Let ( ) { }nA λλλσ ,........, 21=  be the set of 
ordered eigenvalues of A. Then the energy πE of the 
graph is defined as sum of absolute values of all the 

eigenvalues of A, that is, ∑
=

=
n

i
iE

1
λπ . 

Energy of a Network ( )tEN : The energy of the network at 
any instant of time t  is the sum of product of packets 
transmitted by each of the nodes and of transmission 
energies required by each node to transmit the packets to 

neighbor node.  Compactly, ( ) ( ) E

N

i
tN TiNtE ∑

=

=
1

, where 

( )iNt  is the number of packets generated by node i at time 
t and ET  is the transmission energy required to transmit a 
packet. 

Connectivity Index ( )Gχ : Connectivity Index or Randić 
index was proposed by Randić in 1975. ( )Gχ  of graph G  

is defined as ∑
∈ )( )()(

1
GEuv GG vdud

of vertices Vvu ∈,  
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where )(xdG  denotes the degree of vertex Vx∈ [32] (see 
also our previous work  [1]). 
 
Gauss value of x: denoted by ⎣ ⎦x is the largest integer not 
exceeding x, where x is a real number (that is, ⎣ ⎦  is the 
usual “floor function”) 

Combination ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n  : is the number of ways of selecting r 

objects from n objects. 

4. Study of K-connected Ad-hoc Networks:  

As mentioned earlier, the stability of any Ad-hoc network 
is an important aspect and needs careful study. Since, 
stability is tightly coupled with topology in the following 
we consider K-connected Erdo˝s and Re´nyi random 
graph models. A random graph is consists of N labeled 
nodes connected by n edges, which are chosen 

randomly from the 
2

)1( −NN  possible edges [31]. In 

total there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
n

NN )1( graphs with N nodes and n 

edges, forming a probability space in which every 
realization is equiprobable. The probability of forming 
an edge between any two nodes is p .  

Before studying the parameters related to stability such as 
energy of graph, energy of network, connectivity index are 
evaluated for K-connected network in the next Part, six 
lemmas are given in the following.  These are useful to 
construct K-connected graphs, with K varying from 1 
to 1−N .  As far as we are aware, the Lemmas 2,3,4, and 
5 proved in this Part are novel.  It is worth looking at 
Figure 1 at this juncture, which describes some of the 
various K-connected networks.  

 

Lemma 1: Minimum number of edges required for K-
connected graph is [ ] 

⎪
⎩

⎪
⎨

⎧

 
⎥⎦
⎥

⎢⎣
⎢

2
KN

 for K>1 (1)
 N-1 for K=1 

 

 

Lemma 2: Minimum number of edges that needs to be 
added to construct a K+1 connected graph G from K-
connected graph G is  

⎥⎦
⎥

⎢⎣
⎢

2
N  (2)

 
Proof: From lemma 1, the minimum number of edges 
required to construct K-connected graph G is greater than 

or equal to ⎥⎦
⎥

⎢⎣
⎢

2
KN . 

For K+1 connected graph G’, the number of edges 
required is at least 

⎥⎦
⎥

⎢⎣
⎢ +

2
)1( NK

 (3)

Subtracting (3) from (2), we get, least number of edges 
required to construct K+1 connected graph from K-
connected graph G. Therefore, we get  

( )
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢ +

22
1 KNNK ( )

⎥⎦
⎥

⎢⎣
⎢ −+

≤
2

1 KNNK
 (4)

      
( )

⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢ +

22
1 KNNK

⎥⎦
⎥

⎢⎣
⎢≤

2
N

 
(5)

 

Hence the proof.  

 
Lemma 3: The number of possible K-connected graphs 

with minimum number of ⎥⎦
⎥

⎢⎣
⎢

2
KN

 edges is less than or 

equal to 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧ ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
1N
1NN

For K=1 

(6)( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥⎦
⎥

⎢⎣
⎢

−

2

1
KN
NN

For K>1 

 

Proof: We know that, for any graph G, edges can be 
selected randomly from ( )

2
1−NN  edges. For K=1, the 

graph should be at least minimally connected. We know 
that any minimally connected graph is a tree. Hence a 
graph with N nodes is said to be minimally connected, 
when number of edges in G should be N-1. Number of 1-

connected graphs with at least N-1 edges is
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
1N
1NN . 
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For K>1, we know that, there are ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
n

1NN  possible 

graphs with N nodes and n edges. So to construct a K-

connected graph we require at least ⎥⎦
⎥

⎢⎣
⎢

2
KN  edges. Among 

these, there are graphs which are not connected and also 
not K-connected. (Refer to Figure 1 for example.) Hence 
total number of labeled K-connected graphs is less than or 

equal to 
( )

.
2 ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥⎦
⎥

⎢⎣
⎢

−
KN

1NN

 
 

Lemma 4: The probability of constructing random K-
connected graph ( K > 1) is less than or equal to  

( )

( )( )

∑
−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥⎦
⎥

⎢⎣
⎢

−

2

1
2

1

2

2
1

1NN

n n

NN

KN

NN

 
(7)

 

Proof: We know that probability of an event occurring is 
the ratio of number of desired outcomes to total number of 
possible outcomes. That is the number of desired 
outcomes (K-connected graphs) is less than or equal to  

( )
.

2

2

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥⎦
⎥

⎢⎣
⎢

−

KN

1NN
 (8)

This is probability of selecting 

2
KN  edges from ( )

2
1−NN  

edges. The total number of 
possible outcomes (possible 

networks) is the summation of 
number of ways of selecting 

one edge, 2 edges and so on till 

( )
2

1−NN
( )( )

∑
−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −2

1
2

11NN

n n

NN

(9)

 

Hence, the result. 

Lemma 5: The maximum number of packets transmitted 
from the nodes in order to send a packet from one node to 
another node in an N-1 connected network through 
flooding is  

( ) 1)2(1 +−− NN  (10)

 

Proof:  Flooding is a routing mechanism in which the start 
node broadcasts the packets to all its neighbor nodes. On 
receiving a packet, each neighbor node transmits again to 
its’ neighbor nodes except to the source node. Every 1−N  
connected graph G is complete, where each node of G has 
an association with 1−N  other nodes. From source node, 

1−N  packets are routed to all the 1−N  nodes of the 
network.   

Upon receiving the packet from the source node, except 
destination node, remaining  2−N  nodes will transmit 
the packets to remaining 13 +−N   nodes (including 
destination node). 
So totally  ( ) ( )( )221 −−+− NNN  packets are 
transmitted. 

This is equal to  ( ) 12)1( +−− NN  (11)

 

Lemma 6: Let G be a graph with vertices ,.......,, 321 Nxxxx  
and ).(.....)()( 21 Nxdxdxd ≤≤≤    Suppose for some K, 

,0 NK ≤≤ such that ,1)( −+≥ Kjxd j  

)(11 1+−−−= KNxdNjfor K , then G is K-connected. 

This lemma was proved by Bondy in 1969 [ 31].  

In the next section, the simulation of a K-Connected 
network and analysis based on these lemmas is presented. 

5. Simulation and Analysis of K-connected 
Ad-hoc Networks:  

In order to study some properties mentioned earlier, we 
have simulated the relevant aspects of K-connected ad-hoc 
network, based on results of previous lemmas using 
MATLAB. The simulation process starts with a minimal 
1-connected network with N (which is fixed for each 
simulation) number of nodes.   Then progressively, K-
connected network is built.  The methodology adopted is: 

1 Choose two nodes randomly and add the link 
between them. 

1. Compute energy of a graph, energy of the 
network and connectivity index. 
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2. Compute the connectivity of the network (using 
the Algorithm given in 5.1). 

3. If the resultant topology is K+1 connected and 
the network topology is not fully connected, then 
goto step 1. 

4. Plot the graphs. 

 

5.1 Algorithm to compute the K-connectivity of the 
given network (Based on Lemma 6) 

Input: Adjacency matrix of the given network. 

1. The NN × adjacency matrix ., )( NXNjiaA = of a 
given network is with 1, =jia , whenever two 
nodes i and j are connected by a link and 0 
otherwise. 

2. Compute the degree of the each node of the 
network by taking the row sums of Α . Row iR  
sum gives the degree of node i denoted by id . 

3. Arrange the degrees of the node in ascending order. 

4. Check for each node, whether 
,1)( −+≥ Kjxd j )(11 1+−−−= KNxdNjfor K  

If all the nodes satisfy this condition, then the network is 
K-connected. 

Some simulations have been carried out for various sizes 
of the network from 30 nodes to 100 nodes. As links are 
added randomly and whenever the network reaches higher 
connectivity various parameter like connectivity index, 
energy of graph, number of links are computed and stored. 
Figure 2 shows the scheme of simulations. Figure-3 
demonstrates the effect of connectivity versus links, 
graph-energy and connectivity index respectively. It is 
observed that as connectivity (K value) increases, the 
number of links and connectivity index also increases.  
The graph energy remains almost constant and starts 
decreasing once connectivity reaches peak value. The 
characteristics of these graphs may be used effectively to 
control the topology of the network and can also be 
utilized to get information on parameters of the wireless 
network such as packet delivery ratio, signal interference, 
noise level of wireless channels, routing efficiency and 
fault tolerance capability of the network.  The work in that 
direction is undergoing. 

  

 
Figure 2: Simulation of K-connected Network 

Figure-4 demonstrates similar graphs with links are 
plotted in X axis and other parameters as Y-axis. The 
behavior is similar to the previous graphs. 

Figure-5 demonstrates the bar chart taking into account the 
effect of connectivity with respect to links and graph 
energy. From the graph it is clear that variations are 
uniformly progressive, except for the graph energy which 
decreases as connectivity reaches maximum. 

Figure-6 demonstrates all the similar eight graphs for the 
case of 100 nodes in the network. The behavior is very 
similar to the graphs obtained for 30 nodes network. These 
observations can be very useful inputs to the topology 
control process and optimizing routing protocols. These 
are the two key areas of research in MANETs.  

6. Conclusion 

The analysis of various topological parameters of adhoc 
network along with energy is an important input to the 
topology control, and also for analyzing various QoS 
parameters with respect to routing and fault tolerance. The 
study presented in this paper provides a good platform for 
the examination of the said issues.  
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Figure 3: Connectivity Vs Various Parameters With Number Of Nodes Is 30. 

 
Figure 4: Graphs Demonstrating Link Vs Various Parameters With Number Of Nodes Is 30. 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008 

 

207

 
Figure 5: Bar Graphs Demonstrating Connectivity versus Links and Graph Energy Parameters. 

 
Figure 6: Simulation Results for Network with 100 Nodes. 

 


