
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

225

Manuscript received February 5, 2008

Manuscript revised February 20, 2008

The Robust Software Metric Data Model Defined in XML

Ng Keng Yap*, Abdul Azim Abdul Ghani, Ali Mamat, Hazura Zulzalil

*Address: Faculty of Computer Science, Universiti Putra Malaysia, 43300 UPM Serdang, Malaysia
*Tel: +6019-3833969, +603-8946 6502, Fax: +603-89466576

Summary
Software metric data model has always been restructured,
redefined to fit their respective software metrics, and yet it will
never been permanently shaped. It is important to have a generic
data model to handle software measurement data in digital
format that can actually help making software metrics definition
in future much robust, definable and structured. In this paper
software metric data model is defined in eXtensible Markup
Language (XML) with three main characteristics: portability,
extensibility and also reusability. The newly defined software
metric data model is SMML. SMML has been tested via proof of
concepts through build and evaluate methodology. A testing
toolkit and an Application Programming Interface (API) were
produced in helping the evaluation of SMML viability. The
model has been tested robust with its portability, extensibility
and reusability.
Keywords:
Software Metric Database, Software Measurement Data Model,
Software Metric, XML Data Model

1. Introduction

Several studies have been carried out to model software
measurement data [1, 4, 7, 8, 10]. Some of the studies
have been complemented with respective prototypes to
prove their concepts [1,10]. Some of these models,
however, have not mentioned about the underlying data
format used. Nowadays, software development rarely
happens in a homogeneous environment, but in various
heterogeneous and diverse environments comprising
embedded systems, parallel systems, hand-held devices,
network and distributed systems, etc. that run on different
operating systems. Some literatures have also suggested
that data collection should be automated and the metric
data thence collected should be stored in a repository [1,
2]. When development happens in a heterogeneous
environment, automated data collection and direct storage
to the database can be very difficult and troublesome
owing to the architectural difference. In such cases, a low-
level data format may play its role to map and store the
data before storing them into the database. There are
several reasons why a low-level data format in software
measurement is necessary. The following list shows some
fundamental requirements of metric data:
i. the data need to be transferable among measurement

tools from different vendors,
ii. the data need to be portable among different

operating systems,

iii. the data need to be portable to machines with different
architectures, including embedded devices and future
systems,

iv. the data format needs to conform to the principles of
software measurement, to be more specific and
definable via valid software measurement
methodologies (scientific),

v. the measurement data need to be reusable among
related measurement programs, and

vi. the data structure needs to be visible and definable to
man.

In this paper, a data format that can map the metric data
using the eXtensible Markup Language (XML) based on
the measurement concept asserted by Barbara Kitchenham
[5] and ISO/IEC15939 [3, 6] has been proposed. It has
been also made possible to handle software quality
attributes [11]. The data model has been implemented and
tested using the build and evaluates approach by March
and Smith. An application programming interface (API)
was developed and a testing toolkit was implemented to
test for its robustness, portable, extensible and reusable.
The evaluation gives positive results.

The paper organization is as follows: In section 2, some
related works to metric data modelling have been
discussed. In section 3, a much robust software metric
data model has been proposed, and section 4 depicts how
the model was tested against some predefined criteria.
Section 5 concludes and discusses some inconsistency
found in regular software metric and data modelling, and
some possible future work to this model is discussed in
section 6.

2. Related Works

Barbara Kitchenham and Shari Lawrence Pfleeger
suggested a validation framework for software
measurement [5]. They defined the principles and caveats
of software measurement by associating software
measurement with other general scientific measures that
are widely used. Norman Fenton and Shari Lawrence
Pfleeger jointly authored a book on software metric to
define some practical approaches towards software metric
[2]. They again defined a similar software measurement
concept.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

226

Barbara Kitchenham et al. specified a model for software
data sets in order to capture the definitions and
relationships among software measures [1]. The model
also suggested the importance of metadata in the
definition of software measurement. Metadata in software
measurement would define measurement protocols and
data specification. The measurement protocol defined by
Barbara Kitchenham et al. is closely related to the data
collection process. It defines by whom, when and how
software metric data should be collected, whereas data
specification includes (i) the definition of the entities
being measured, (ii) the definition of each attribute
measured on each entity, (iii) the definition of each unit
for each measurable attribute (if applicable), (iv) the scale
type associated with attribute-unit pair, and (v) the
definition of scales.

There are also other measurement models that are used to
model software measurement on specific kinds of
software [4, 8, 9]. Some of these models have roughly
mentioned about their underlying data structures, but no
details have been given on how they designed the data
(structure and relationships). Data defined in different
ways in different proposed models have made the data
difficult to analyze and reuse. It is obvious that software
engineering still lacks scientific methods and notations to
define software measurement functions unlike what is
available to other scientific fields like physics and
chemistry. Measurement units, scales, and protocols that
are applicable in the measurement of the attributes of an
entity must be clearly stated and validated, especially
during data analysis, conversion of software metric units
and execution of software measurement functions.

Some of the measurement paradigms [1, 2] assert the
importance of measurement definition. Measurements are
usually defined in a document called the measurement
plan. During the data collection or measurement plan
execution, this information must be incorporated into or
associated with the data collected. In the measurement
plan, we must mention clearly the protocol, that is, what,
how and when the entity is to be measured. Similar to the
case with metric data, these factors can have a profound
impact upon the data validity during data analysis and
measurement function execution. If possible, the data
should bear a reference to the description of every entity,
or what is specifically known as the metadata.

3. The Robust Data Model

Metadata to the software metric data are obviously
important to denote the aforementioned specifications and
protocols. Storing data in the Relational Database (RDB)
without the associated metadata such as units as well is
protocols is prone to analysis failure. The noted problems

have prompted us to invent a data format that can fulfil
the following requirements:
i. cross-platform, loadable on any open systems and

operating systems,
ii. markup of software metric data with the

aforementioned specifications and protocols,
iii. human and machine readable so that it can support

automated and manual measurements,
iv. formal method of defining measurement plan without

additional documents
v. structured and well-formed data structure that can be

validated

Although there have been several attempts to create
software metric data models [1, 10, 16], none of them
have yet fulfilled all the requirements above. The practical
way of manipulating collected metric data is to export
them into the decision support systems (DSS), project
management systems (PMS), benchmarking tools,
automated tools, expert systems (ES), executive
information systems (EIS) or all other kinds of
information system to aid the software process life-cycle
[14]. Hence, a formal data format must be created for
these integrated systems to communicate and share a
common data source. The proposed data model came
from the advent Web, or more specifically HyperText
Markup Language (HTML) which has created a common
markup for different operating systems and web browsers
to browse common data on the web servers. Markup is the
way of incorporating metadata to data on the web server
so that web browsers are able to interpret the data and
display them in the correct manners and styles. As the
Web's counterpart, markup of metric data may work out in
a similar way. With the advent of XML [12, 13], which is
an extension to HTML, has given us an opportunity to
define software metric data using XML. The XML data
must consist of the following elements:
i. the entity identification that clearly states the

granularity,
ii. the metrics to be applied to an entity or attributes to

be measured,
iii. magnitude or textual value for each metric,
iv. unit associated to each magnitude,
v. annotation or precaution statement for measurement

execution,
vi. time-stamp to state the date of data collection,
vii. version number for collected data,
viii. data collector’s information,
ix. project information.
Appendix I attached at the end of the text shows 2 sample
XML files that map the software metric data. sample.xml
is the implementation of the software metric data model is
an instance that marks up the magnitudes or values for
entity: 'Software Requirement Specification Document,
Chapter 01', Where as, project.xml maps to the project

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

227

related constants or final values. The project.xml is
adapted from the Project Object Model (POM) proposed
by the Apache's Maven Project [15]. Comments are
marked and embraced within <!-- and --> in the XML
files to give more comprehensive explanations.

The following briefs the elements that are used to model
software metric data.

o Entity
As mentioned in Section 2, an entity comprises product,
process and resource. In the development planning, we
decompose the software product into higher grained
granularity, notably submodules, modules, subsystems
and systems; and decompose documentation into chapters
and sections, development process into phases, and
resources into single dependent units. All these
decomposed entities must be clearly mapped to the metric
data. Line 35 of sample.xml shows the said <entity>
element. The <entity> element consists of a name
attribute as the unique id to differentiate one from another.
o Metric
Each entity possesses many attributes. The act to measure
those attributes contributes to the existence of <metric>
elements nested within the <entity> element. <metric>
elements will hold the name of the attributes being
measured, which is unique, and the units are in each and
every magnitude embraced within <value> tags. It is
worth emphasizing that the unit attribute is compulsory
for all magnitudes.
o Magnitude and textual values
Magnitudes or textual values are embraced within the
<value> tags as shown in the lines 38, 41, 45, 48, 53 and
so forth. The <value> tag may have an attribute known as
type to denote the datatypes that are allowed for the metric
and may have attributes called min and max to denote the
higher and lower bounds of the value.
o Unit
As mentioned above, the unit attribute is compulsory for
all magnitudes, and it is often used to denote the scale of
measures.
o Annotation
The annotation is denoted by the <annotation> tag. It
may appear as the first sub-element in the <metric> or
<entity> elements. The purpose of annotation is to give
remarks to the data collector, especially during manual
data collection, about some precautions or caveats that
should be paid particular attention to.

o Version number
Version number is used to differentiate among different
collections of data in the <meta> element. Version
numbers that appear in the <tool>, <entity>, <function>
elements are used to denote the version of the automated
tool used, the entity, and function used for derived

measure respectively.
o Time-stamp
A time-stamp is very important in data collection to
denote the date of the data collection. The <timestamp>
element is used for the said purpose and placed within the
<meta> tags.
o Collector’s Information
The Collector’s information for a piece of metric data is
very handy when we need to contact the collector if we
have any doubts about the data. The <collector> element
will hold the collectors personal information: <name>,
<user_id>, <email>, <designation>, <organization>
and <contact>. If the data have been collected with an
automated tool, then the name of the tool and its version
number must be enclosed within the <meta> element.
o Project Information
The project information is the data regarding the project,
which are considered constant, or final, which means
these values cannot be reassigned. The Project
information is adapted from the Project Object Model
(POM) proposed by Apache's Maven Project [15]. The
project.xml file is an example adapted from POM. POM
can be added to the sample.xml or have it referred to
associate the data with a particular project.

4. Build and Evaluate SMML

The proposed data model was tested with Build and
Evaluate approach proposed by March and Smith for
design sciences was adopted. Build refers to the
construction and realization of the software metric data
model, i.e. SMML, and the implementation of the model
in SMML API. This phase confirms that the model can be
constructed and implemented. The SMML API and
SMML Toolkit were implemented as per Fig. 1.

Fig. 1: The architecture of SMML implementation.

 Software (Metric specimens)

Software engineering tools (SMML Toolkit, CASE,
project management tools, measurement and testing

tools, etc.

SMML API

DBMS B DBMS A
Legacy
DBMS

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

228

The above architecture depicts where SMML API plays
its role in filling up the gap between structured software
metric data in RDBMS and software engineering tools.
The SMML API is implemented in Java programming
language. It helps in transforming structured data from the
RDB databases into XML format like appendix 1. The
extraction, transformation and loading of data from the
RDB to the XML data can be partial and selective based
on criteria such as by project, date or module. SMML API
adopted their respective JDBC technology to fill up the
communicate gap between itself and different RDB
provided by different vendors. Software engineering such
CASE tools, project management tools, etc can be
developed and extended it capability to adopt software
metric data model with SMML API to gain access to RDB.
The comprehensive data model was implemented in order
to enable evaluation of the model in latter stage.

Evaluate refers to the development of criteria and the
assessment of the output performance against those
criteria of the model. There were three main
characteristics were tested in during the evaluation phases.
In order to evaluate the SMML API, the realization of the
model, we developed the SMML Toolkit using SMML
API to manipulate software metric data. The SMML
Toolkit was then tested for the follow criteria to see if the
implemented model complies with the criteria: portability,
extensibility and reusability. Portability was tested at three
levels namely operating system, database as well as
application levels. SMML Toolkit was tested based on the
test cases defined to evaluate if SMML Toolkit conforms
to all the aforementioned criteria. The test cases used
were:
a. Test case 1: The SMML Toolkit must be able to run

on several common environments, Microsoft
Windows, Linux distro Fedora Core 4 were selected
in the experiment. VMware WorkstationTM system
virtualization was used to enable multiple operating
systems to run on a single Pentium 4 machine. These
operating systems were used through out the
evaluation process which includes Test Case 1, 2, 3, 4,
5.

b. Test case 2: SMML Toolkit must be able to be used
by other. It was used in the Web Usability Testing
Tool developed by Kamsiah Mohamed [15]

c. The application made use of the SMML API, keeps
metric data in SMML API objects for analysis
purpose.

d. Test case 3: SMML Toolkit must be able to extract,
transform and load data even if different databases
are used. SMML Toolkit was tested on MySQL and
Microsoft SQL Server via their respective JDBCs.

e. Test case 4: SMML Toolkit must be able to load and
merge two or more data chunks, and save them into
the database.

f. Test case 5: SMML Toolkit must allow new metric
definition to be extended to the data model.

The test cases were running on a personal computer with
Pentium 4 processor, 512 megabytes of memory, with
VMware WorkstationTM virtualization installed with
Linux Fedora Core 4 and Microsoft Windows XP
Professional. The experiment shown positive results as
Table 1 below:

Table 1: Evaluation Result

Linux Windows
Ex Tr Ld Ex Tr ld

Test case 1
Test case 2
Test case 3
Test case 4
Test case 5

Legends:
 : The test case ran with positive result.

Ex : Extracting data from the RDMBS
Tr : Transforming to XML format and vice versa
Ld : Loading back to RDB

5. Discussion and Conclusion

The use of XML in software metric data will definitely
make software metric data more definable and unified for
all software engineering processes. It also reduces the
incompatibility of the software metric data during analysis.
Current stage of research will test on the feasibility of
XML in metric data mapping. There are still many factors
to be taken into the account to make it more flexible
across software engineering processes, such as
measurement instrument to units and scales standard,
scientific methodologies used in software engineering, etc.
These factors give a great impact to the software metric
data analysis. Research to make this technique more
reliable and definable is necessary so that the software
industry can meet a consensus on the standardized data
format for software metric in future.

6. Future Works

This model is tested using Build and Evaluate approach.
SMML Toolkit were used to evaluate the SMML API.
More tools can be developed using SMML API to ensure
that data are exported to relational database easily
regardless the variant of RDB. With the advents object
oriented database and OR mapping tools, SMML API can
be extended to enable software metric data to be stored on
object oriented database.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

229

Acknowledgement
This project is funded by the Ministry of Science,
Technology and Innovation (formerly known as the
Ministry of Science, Technology and Environment),
Malaysia under its Intensification of Research in Priority
Areas (IRPA) research grant. We sincerely thank all
parties who have been involved and rendered their
supports directly or indirectly to the development of this
project. Should some credits go to them.

REFERENCES
[1] B.A. Kichenham and R.T. Hughes (2001). “Modeling

Software Measurement Data”. IEEE pp788-804.
[2] N.E. Fenton and S.L. Pfleeger (1998). “Software Metrics:

A Rigorous and Practical Approach”, PWS.
[3] ISO/IEC15939:2001 (2001). International Standard,

Software Engineering-”Software Measurement Process”.
[4] D. A. Lamb and J. R. Abounader (1997). "Data Model for

Object-Oriented Design Metrics," Queen's University,
Kingston, ON.

[5] B.A. Kitchenham, S.L. Pfleeger and N.E. Fenton (1997).
“Towards a Framework for Software Measurement
Validation”, IEEE Transactions on Software Engineering,
21(12), pp929-944.

[6] J. McGary, D. Card, C. Jones, B. Layman, E. Clark, J.
Dean and F. Hall (2001). “Practical Software
Measurement”, Addison-Wesley.

[7] L. Olsina, G. Lafuente, O. Pastor (2002). “Towards a
Reusable Repository for Web Metrics”, Journal of Web
Engineering 1(1): 61-73.

[8] L. Olsina, G. Rossi (2002). “Measuring Web Application
Quality with WebQEM”. IEEE MultiMedia 9(4), 20-29.

[9] S. H. Kan (1995). “Metrics and Models in Software
Quality Engineering”, Addison-Wesley.

[10] B.A. Kitchenham, S.G. Linkman, A. Pasquini, and V.
Nanni (1997). “The SQUID Approach to Defining a
Quality Model”. Software Quality Journal, 6, pp 211-233.

[11] ISO/IEC 9126-1:2001 (2001). International Standard,
Software Engineering - “Product Quality - Part 1: Quality
Model”.

[12] D. C. Fallside (2001) “XML Schema Part 0: Primer”,
http://www.w3.org/TR/xmlschema-0.
Last access: July 2007.

[13] Apache Software Foundation, “Maven Project”,
http://maven.apache.org. Last access: July 2007.

[14] A.W.B. Peter Hitchcock, R. Weedon, A.N. Earl, R.P.
Whittington and D.S. Robinson (1986). "The Use of
Databases for Software Engineering," British National
Conference on Databases pp. 55-70.

[15] Kamsiah Mohamed, and Abdul Azim Abd. Ghani, and
Hazura Zulzalil , and Azrina Kamaruddin , (2004)
Usability Metrics for Web Site: A Case Study. In:
Proceedings of the Joint Conference on Informatics and
Research on Women in ICT (RWICT) 2004 , 28 - 30 July
2004 , Putra World Trade Center, Kuala Lumpur,
Malaysia .

Ng Keng Yap is a tutor at the
Faculty of Computer Science and
Information Technology, Universiti
Putra Malaysia. He is a Master
Science holder, graduated from the
same university with his research
dissertation entitled ‘Development
and Evaluation of a Software
Metric Markup Language’. He

has 7 years of working experience as a system analyst. He
is currently working on research related to data model to
be used spanning across software engineering process, in
making the software measurement data much more
structured and usable.

Abdul Azim Abdul Ghani is an
associate professor cum dean at the
Faculty of Computer Science and
Information Technology, Universiti
Putra Malaysia. His research
interests are software metrics,
software ethics and cyberlaw
besides software requirement
engineering.

Ali Mamat is an associate professor
in computer science at Universiti
Putra Malaysia, Serdang, Malaysia.
He obtained his PhD in computer
science from University of Bradford,
U.K. His interests include databases,
XML and semantic web.

Hazura Zulzalil is a lecturer at
the Department of Information
Systems, Faculty of Computer
Science and Information
Technology, University Putra
Malaysia (UPM).
She received her First Degree in
Computer Science and Master of
Science (Software Engineering)
from UPM.

Currently, she is pursuing a PhD Degree at Faculty of
Computer Science and Information Technology, UPM.
Her research interests include software metrics,
software quality, software product evaluation and
multi-criteria aggregation procedure.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

230

Appendix I

sample.xml file

1. <?xml version="1.0"?>
2. <data>
3. <!-- this portion hold the metadata of this data collection -->
4. <meta>
5. <!-- Information on data collection personnel -->
6. <collector>
7. <name> </name>
8. <user_id> </user_id>
9. <email> </email>
10. <designation> </designation>
11. <organization> </organization>
12. <contact> </contact>
13. </collector>
14. <!-- if automated tool is used, this element will hold its information -->
15. <tool>
16. <name> </name>
17. <version> </version>
18. <vendor> </vendor>
19. <type> </type>
20. <description> </description>
21. </tool>
22. <!-- time-stamp of the data collection -->
23. <timestamp> </timestamp>
24. <!-- version of this data collection -->
25. <version> </version>
26. </meta>
27. <!-- The POM element goes here, please refer to POM below.
28. Alternative way of defining POM is using include tag like this:
29. <include url="http://202.184.29.77/~wbc/project.xml" /> -->
30. <project>
31. ...
32. ...
33. ...
34. </project>
35. <entity name="SRS_Chap01" version="1.0">
36. <annotation>Software Requirement Specification Document, Chapter 01</annotation>
37. <metric name="size" unit="page">
38. <value type="int"/>
39. </metric>
40. <metric name="manpower" unit="man">
41. <value type="int"/>
42. </metric>
43. <metric name="dayUsed" unit="day">
44. <annotation>{dayUsed: 1, 2, 3 ...}</annotation>
45. <value type="int"/>
46. </metric>
47. <metric unit="manday" name="effort">
48. <value type="double" format="##0.00">
49. <?smml version="1.0" function="manpower*dayUsed"?>
50. </value>
51. </metric>

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

231

52. <metric type="indirect" unit="page/manday" name="productivity">
53. <value>
54. <function language="java">
55. size/effort
56. </function>
57. <!--<?smml version="1.0" function="size/effort"?> -->
58. </value>
59. </metric>
60. </entity>
61. </data>

project.xml file

1. <!-- Project Object Model (POM) adapted from Apache's Maven project. -->
2. <project>
3. <version></version>
4. <name></name>
5. <id></id>
6. <currentVersion></currentVersion>
7. <organization>
8. <name></name>
9. <url></url>
10. </organization>
11. <inceptionYear></inceptionYear>
12. <package></package>
13. <shortDescription></shortDescription>
14. <description></description>
15. <url></url>
16. <cvsWebUrl></cvsWebUrl>
17. <issueTrackingUrl></issueTrackingUrl>
18. <siteAddress></siteAddress>
19. <siteDirectory></siteDirectory>
20. <distributionDirectory></distributionDirectory>
21. <cvsRoot></cvsRoot>
22. <cvsModule></cvsModule>
23.
24. <distributions>
25. <distribution>
26. <id></id>
27. <version></version>
28. <tag></tag>
29. </distribution>
30. </distributions>
31. <branches/>
32. <mailingLists>
33. <mailingList>
34. <name></name>
35. <subscribe></subscribe>
36. <unsubscribe></unsubscribe>
37. <archive></archive>
38. </mailingList>
39. </mailingLists>
40. <developers>
41. <developer>
42. <name></name>

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

232

43. <id></id>
44. <email></email>
45. <organization>
46. <name></name>
47. <url></url>
48. </organization>
49. </developer>
50. <developer>
51. <name></name>
52. <id></id>
53. <email></email>
54. <organization>
55. <name></name>
56. <url></url>
57. </organization>
58. </developer>
59. </developers>
60. <dependencies>
61. <dependency>
62. <name></name>
63. <type></type>
64. <version></version>
65. <jar></jar>
66. </dependency>
67. </dependencies>
70. ...
71. </project>

