
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

236

A Secured Key Generation Scheme Using Enhanced
Entropy

M.S. Irfan Ahmed E.R. Naganathan
Asst. Professor, VLB Engineering

College, Coimbatore
Reader, Computer Science Department

Alagappa University, Karaikudi

Summary
This paper is an efficient and secure way to generate true random
numbers. With an ever increasing repertoire of applications that
incorporate Randomness, there arises a need to ensure that the
Randomness is truly Random at all tenable circumstances.
Through this paper we formulate a method to generate true
random numbers by collecting entropy from devices such as
mouse, keyboard and hard disk. Here, rather than using the data
supplied by the user we concentrate on the timestamps generated
by the user interaction which is an efficient way of generating the
random numbers. The time stamps that are collected are stored in
a separate text file. While processing, the contents of this text file
is XOR’ed with the contents of another file whose contents
include the current state of the system and the usage of the
system by the user. The output from the XOR function is now
given as input to the Secure Hash Algorithm (SHA), a one-way
hashing algorithm that gives an output of 160 bits. This output is
written in a separate file which is the entropy pool, from which
the key of required length is retrieved as per the requirement of
the application. The random numbers that are being used at
present are generated by hardware random number generators
which are almost costly and infeasible for many situations, one
area where the random number generators using “entropy” gain
an edge. Experimental results show that this method generates in
an efficient manner, true random numbers which can be applied
for long term key generation, seeding cryptographic random
numbers used by websites hosting online poker games and
seeding pseudo random numbers for statistical testing.

1. Introduction

Within security today the encryption methodologies and
cryptographic techniques have exploded in both
complexity and usage. The application of these
technologies is to keep secrets safe and secure, but there
are pitfalls involved with utilizing cryptography. This
paper focuses on one of the vital components used in
various security related technologies namely
“randomness”. This component is by nature, complex and
easily misunderstood. One may say that randomness plays
a “key” part in most cryptosystems today.
 “A sequence of independent numbers with a specified
distribution, each number being obtained by chance
and not influenced by the other numbers in the
sequence”.

The definition specifies two important conditions.
 The values are uniformly distributed over a defined

interval or set.
 It is impossible to predict future values based on past

or present ones.
The next question will be, “Why do we need

Random numbers?” The answer is “Statistical and
Security-critical applications often require well-chosen
Random numbers for purposes ranging from
cryptographic key-generation to shuffling a virtual
deck of cards”. Thus the varied need of Random numbers
forces the fact - “Random number generation is not trivial”.

2. Existing Methodology

Most encryption algorithms require a source of random
data, even some symmetric ciphers (where the secret is
shared), either to generate new private/public key pairs, for
session keys, for padding, or for other reasons. Most
computers do not have a hardware based random number
generator (RNG) available, so programmers have had to
resort to software-based techniques, to generate random
numbers as best they can. Because these random numbers
are generated in software, they are very rarely truly
random, they are typically pseudo random (that is they
appear random, but are not totally random)[2]. To generate
random data you need a source of entropy, or random
input.

The reason why this is important is that, for example, the
168 bit 3DES encryption of network packets might not be
working as advertised if the random data it uses to perform
the encryption isn't truly random. If sensitive corporate
data is being moved over the VPN, a good hardware based
RNG is very important. Additionally most software based
RNG's cannot create a lot of good data (most hardware
based RNG's as well have limits), so if the machine is
carrying a heavy crypto workload (say multiple tunnels, or
many SSL based connections for an e-commerce site) we
might need one of the higher end, more expensive
hardware based RNG's. Properly deployed hardware RNG
is a good security enhancement.

Entropy Sources

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

237

3. Random Number Generators

There are essentially three classes of Random number
generators.
INSECURE RANDOM NUMBER GENERATORS
These are the non-cryptographic pseudo-random number
generators. These start with an initial value, usually called
the “SEED”, and use that seed to produce a stream of
numbers which are reproducible when started again with
the same seed.
CRYPTOGRAPHIC PSEUDO-RANDOM NUMBER
GENERATORS
These take a single secure seed and produce as many
unguessable random numbers from that seed as necessary.
These need a high degree of Entropy for them to be
securely seeded.
ENTROPY HARVESTERS
 These try to gather Entropy to seed a
cryptographic pseudo-random number generator. The
combination of an Entropy harvester with a Cryptographic
pseudo-random number generator could be a good
practical compromise.

4. Pseudorandom Number Generators
(PRNG’s)

The most widely used technique for pseudorandom
number generation is an algorithm first proposed by
Lehmer, which is known as the linear congruential
method[1] . The algorithm is parameterized with four
numbers, as follows:

m the modulus m > 0
a the multiplier 0 ≤ a < m
c the increment 0 ≤ c < m
X0 the starting value, o ≤ X0 < m
 or seed

The sequence of random numbers {Xn} is obtained via the
following iterative equation: 6

Xn+1 = (aXn + c) mod m

If m, a, c and X0 are integers, then this technique will
produce a sequence of integers with each integer in the
range 0 ≤ Xn < m.

The selection of values for a, c, m is critical in developing
a good random number generator. The value of m should
be large, so that there is the potential for producing a large
series of distinct random numbers [6]. A common criterion
is that m is nearly equal to the maximum representable
nonnegative integer for a given computer. Thus the value
of m equal to 231 is chosen.

5. Cryptographically Generated Random
Numbers

Cyclic Encryption
In this case the procedure is used to generate session keys
from a master key. A counter with period N provides input
to the encryption logic. For example, if 56-bit DES
keys are to be produced, then a counter with period 2^56
can be used[3]. After each key is produced, the counter is
incremented by 1.

ANSI X9.17 PRNG

One of the strongest PRNG’s is specified in
ANSI X9.17.A number of applications employ this
technique, including financial security applications and
PGP.
The ingredients are as follows:

 Input
 Keys

6. Methods For Gathering Entropy

There are essentially two methods for Random
number generation with Entropy collection.
One method is to gather enough Entropy to securely seed a
cryptographic pseudo-random number generator.
Several issues arise when this method of Random number
generation is tried.

 The first issue is the amount of Entropy needed to
securely seed a cryptographic generator. The shortest
possible answer is that as much Entropy is to be given
as the Random number generator can accept[5]. It
should be noted that, for example, a 256-bit number
generated with a 56-bit Entropy seed would contain
no more Entropy than what a 56-bit number would
have had. It is found incredibly hard to determine
what actual amount of Entropy is required? This is
similar to that of exactly estimating the Entropy in a
set of data, discussed earlier, which is found as
essentially impossible.

 Second issue is to obtain a fixed sized seed as

required by the Random Number generators with
maximum available Entropy from a collected set of
Entropy. This is essentially the process of turning the
data with Entropy into a seed. Whitening can
effectively take care of this issue.

 Third, the period of the random number generator

is to be considered if Security is a concern, where the
period refers to the number of unique Random
numbers generated with a given seed. The period can
also be defined as the sequence generated before any
repetition occurs. Usually, this period is required to be
as long as it possibly can be, for example, a period of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

238

264 bytes before repetition can be considered enough if
the number of unnoticed guesses that would be made
to predict the Random number, are supposed to be not
that much larger.

7. Human Interaction

One form of credential is monitoring the frequency of
typing or moving the mouse; this is one type of entropy.
Actual typing of characters; can also be used as there will
be some distinct patterns. Passwords and random input
from users could also be used, but all in all the entropy
gained is quite low.

8. Environmental Gathering

An instance of environment gathering could be using a
microphone to collect ambient noise from a room or even
a remote location. It is best for only one machine to exist
utilizing this form in a given environment, the danger of
more is two may collect the same data and provide
patterns.

9 Computer States

The suggestion for utilizing computer states usually focus
around use of combining interrupts with microsecond
clock data. One interesting idea is to utilize the inherent
randomness of the video buffer or possibly the video
image changes that appear under the mouse pointer. In
addition there are other radical ideas involving the I/O and
hard disk, such as measuring turbulence inside a drive that
is spinning, that data is currently difficult to collect but all
the same it provides entropy. Intel decided that post 8xx
CPU support chips would have a random generator built in
allowing for the collection of random data caused by
frequency chip noise.

10. Quantum Events

This is a more difficult source of information, splitting
atoms and other quantum type events usually only occur in
a controlled scientific research facility.

11. Proposed Model
 The mouse coordinates and the timestamps of the

mouse movements are collected and are written as
long integers in a file called “primary.txt”.

 Similarly the keyboard timestamps along with
characters pressed are also collected and are again
converted as long integers and are written in the file
“primary.txt”.

 The user interaction timestamps when a file is being
read from the hard disk is also collected and again
similarly written to the same file.

 Then Batch processing, namely processing in blocks
is done in the inputs from mouse and keyboard.

 After that, the process of “whitening” is done so as to
increase the entropy available in each bit.

 Then the system state and the user’s usage of the
system are written in a file called “ntuser.txt” by the
operating system. Instead of directly using this file we
copy this file into another text file known as
“system.txt”.

 Then the contents of the two files namely,
“primary.txt” and “sytem.txt” are XOR’ed and the
output is converted into long integers and written into
a file called “xor_op.txt”.

 Then this file is fed as an input to the Secure Hash
Algorithm (SHA), a one-way hashing function which
produces a 160-bit output. This is done so as to hide
the internal state of the pool. The output from the
SHA is written into a file called as “pool.txt” which
acts as the entropy pool.

 Then the retrieval of keys can be done for any length.
The length of the keys retrieved depends on the
requirement of the application.
The subtle point to be noted is that the Entropy does

not come from the “data” supplied by the User interaction
rather it comes from the corresponding “time-stamps”. The
simple reason is that if it is actually the data that is
considered for Entropy, then any user who has access to
the system, not necessarily an administrator, can dump in
his/her own data that at the end decides the series of bytes
to be added to the Entropy pool. The User who caused it
overrides the ultimate requirement - “unpredictability”.

Mouse Key Board Hard Disk

Primary.txt Secondary.txt

System state

Xor_op.txt

Secure Hash Algorithm
(SHA)

ENTROPY POOL

Required key length retrieval

Whitening

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

239

12. Results and Discussions

When we hit the ESC key, the next screen opens where we
collect the mouse entropy

Figure-1 Mouse entropy collection

3) If we want to collect keyboard entropy again, we need
to press the ESC key.
4) Then when we press the RIGHT mouse button, we can
collect the Hard disk entropy.

Figure-2 Disk Entropy Collection

5) Then the contents are sent to the XOR algorithm after
which it is fed to the SHA.

Figure-3 XORing and giving input to SHA

6) Then the key is retrieved as per the requirements of
application.

Though this kind of guessing Keystroke timing need
effective brute force attacks and duly careful research in
Keystroke studies, the possibility of such an attack is not
infeasible. This requires a detection of such an attack and a
subsequent counter measure by introducing further
Randomness[7]. Suppose that the adversary somehow
collected information about what actually is going to be
typed. Consider the typed words to be “evil” and “good”.
The “| =” represent the guessed timing interval between
Keystrokes. The antagonist can guess the Keystroke
timings as follows.

1) "evil"

Left hand strokes: ‘e’, ‘v’.
 Right hand strokes: ‘i’, ‘l’.

e press |
e release | =========
 v press | ===============
 i press | ====
 v release | ==
 i release | ====
 l press | =======
 l release | ============

 2) "good"

 Left hand strokes: ‘g’, ‘d’.
 Right hand strokes: ‘o’.

 g press |
 g release | ========
 o press | ====
 o release | =====
 o press | =======
 d press | =========
 o release | =======

d release |
==============

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

240

13. Conclusion
Through our paper, we have suggested an efficient way to
generate secure true random numbers. This collection of
time stamps and comparing them offers an effective
solution for “key stroke timing’ attack which has been a
problem to all the other similar random number generators.
The usage of SHA to hash the contents before retrieving
them makes guessing of the internal state of the entropy
pool almost next to impossible. Also, as the system state is
taken into consideration it is absolutely impossible to
guess the key that is being generated. Therefore our paper
upholds and follows strictly the main characteristic of a
random number namely, “unpredictability”.

References
[1] Seth Hardy, 2004,” Pseudo Random Number generation,

Entropy Harvesting and Provable security in Linux.
[2] S.Micali, and C.P.Schnorr, “Efficient, perfect random number

generators” Crypto’88 conference Proceedings.
[3] Entacher, Karl. 1998. Bad Subsequences of Well-Known

Linear Congruential Pseudorandom Number Generators.
ACM transactions on Modeling and Computer Simulation.
vol. 8, no. 1, pp.61-70.

[4] Fog, A. 2001. Pseudo random number generators.
http://www.agner.org/random.

[5] Chris Thorn,2003, “Randomness and Entropy- An
Introduction”, SANS Institute.

[6] Leif Svalgaard, 2003, “Generating a truly Random Number”
[7] William Stallings,” Cryptography and Network Security,

Principles and Practices”, Third Edition.

