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Summary 
 
Wireless communication systems based on multiple-input 
multiple-output (MIMO) technology and orthogonal frequency 
division multiplexing (OFDM) have the potential to achieve 
enormous increase in the capacity and link reliability. In order to 
realize such systems, channel estimation is crucial. In this paper, 
an adaptive channel estimation and tracking scheme based on 
recursive least squares (RLS) algorithm is proposed for MIMO 
OFDM-based wireless local area networks (WLANs). Preamble-
aided channel estimation is performed in time-domain (TD). The 
estimator is then extended to perform decision-directed (DD) 
channel tracking during data transmission. The channel is 
assumed to be constant during one OFDM symbol and evolving 
in time according to the first-order Markov process. Different 
training rates at different Doppler frequencies were investigated. 
Simulation results show that the proposed estimation scheme has 
excellent performance measured in terms of the mean squares 
error (MSE) and the bit error rate (BER), provided that the 
forgetting factor of the RLS algorithm is optimally selected. 
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1. Introduction 

 
Orthogonal frequency division multiplexing (OFDM) is 

an attractive technique for high data rate transmission over 
frequency-selective fading channels due to its capability to 
combat the intersymbol interference (ISI), low complexity, 
and spectral efficiency [1]. Using multiple-antennas 
(known as multiple-input multiple-output (MIMO) 
technology) at both the transmitter and receiver results in 
further increase in the capacity, provided that the 
environment is rich scattering [2].  

The combination of MIMO and OFDM, referred to as 
MIMO OFDM, has been proposed as a very promising 
system for enhancing the capacity and improving the link 
reliability for future broadband wireless communication 
[3]. However, to obtain the promised capacity and to 
achieve maximum diversity gain, MIMO OFDM systems 
require accurate channel state information (CSI) at the 
receiver, in order to perform coherent detection, space-
time decoding, diversity combining, and spatial 
interference suppression [4]. 

In MIMO OFDM systems, channel estimation based on 
either least squares (LS) or minimum mean squares error 
(MMSE) methods has been widely explored and several 
estimation schemes have been proposed [5], [6].  

Channel estimation based on adaptive filtering has been 
proposed as an appropriate solution for estimating and 
tracking the time-varying channels in mobile environments. 
For example, in [7], a frequency-domain (FD) adaptive 
Wiener filter channel estimator for OFDM systems has 
been proposed, where the normalized least-mean-square 
(NLMS) and recursive least squared (RLS) algorithms are 
used to estimate the time-varying channel. In [8], a two-
dimensional RLS adaptive channel estimator for OFDM 
systems that exploit the time-domain (TD) and FD 
correlations was proposed. In [9], flat-fading MIMO 
channel tracking based on decision-directed (DD) RLS 
algorithm was considered. 

Channel estimation in TD is attractive over its 
counterpart in FD due to its lower computational 
complexity, accuracy, and effective channel impulse 
response tracking especially when the channel is time-
varying [10].  

In this paper, adaptive TD channel estimation and 
tracking, based on exponentially weighted (EW) RLS 
algorithm, is investigated for MIMO-extended OFDM-
based WLAN systems (IEEE 802.11a standard). The 
estimated channel impulse response (CIR) is Fourier 
transformed and zero forcing (ZF) equalization is 
performed in FD. The time evolution of the channel is 
modeled according to the first-order Markov process, and 
the time variations of channel estimates are tracked 
through applying the DD method. The computational 
complexity is significantly reduced by recursively 
updating the channel estimates and by applying the matrix 
inversion lemma.  

The rest of this paper is organized as follows. In Section 
II, MIMO OFDM system model is briefly introduced. In 
section III, the EW-RLS estimator is derived. In Section 
IV, first-order Markov process is described. Simulation 
results are presented for 22×  MIMO OFDM WLAN 
system in Section V, and conclusions are drawn in Section 
VI.   
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2. System Model 
 
2.1 Wireless Channel Model 
 

Assume sufficient antenna element spacing so that the 
subchannels between different transmit-receive antenna 
pairs are spatially uncorrelated, and have impulse 
responses of equal maximum resolvable paths L . Each 
subchannel is assumed to be slowly time-varying 
frequency-selective fading so that it can be considered as a 
constant during one OFDM symbol. The time-variant 
complex baseband CIR between the pth transmit and the 
qth receive antennas can be described as 
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where )(lβ  and lτ  represent the gain and the delay of 

the path l, respectively, and )(tδ  is the Dirac delta 
function. The path gains )(lβ ’s are modelled as 
independent and identically distributed (i.i.d.) wide-sense 
stationary (WSS) complex Gaussian random variables 

with zero-mean and variance 2
lσ .  They are represented as 
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where )(lα , lθ , and lDf , denote the amplitude, the 
phase, and the Doppler shift of the lth path, respectively. 
Assuming isotropic scattering, the autocorrelation of the 
path gains is expressed as [11] 
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where 2
lσ  is the power of the lth path gain, )(0 xJ  is the 

Bessel function of the first kind of order 0, and maxDf  is 
the maximum Doppler frequency which is related to the 
velocity ν  of movement and the wavelength λ  of the 
carrier frequency by λν /max =Df .  
 
2.2 MIMO OFDM Systems  
 

A typical baseband MIMO OFDM system with tM  
transmit antennas, rM  receive antennas, and K subcarriers 
is depicted in Fig. 1. The TD 1×K  received signal 

)(~ mqy  at the qth receive antenna at time m is a noisy 

superposition of the transmitted signals from tM  transmit 
antennas, and can be represented in a matrix-vector form 
as 
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where 
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denotes a LN ×  Toeplitz matrix containing delayed 
versions of the input data sent from the pth transmit 
antenna, in which 
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Fig.1. Baseband MIMO OFDM system model 
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is an 1×L  CIR between the pth transmit and the qth 
receive antennas. The 1×K  vector )(mqv  represents 
additive white Gaussian noise (AWGN) at the qth receive 
antenna with complex elements that are independent and 
identically distributed (i.i.d.) Gaussian with zero mean and 
variance 2

vσ . 
The FD received signal at the qth antenna over the kth 

tone at the time m, ),( kmYq , can be expressed as 
 

∑
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where ),( kmX p , ),(, kmH qp , and ),( kmVq  denote 
the kth data sample of the transmitted OFDM symbol from 
the pth antenna, the channel coefficient of the kth tone 
between the pth transmit and the qth receive antennas, and 
the AWGN at the q th receive antenna on the kth tone, 
respectively.  
 
3. MIMO Channel Estimation and Tracking 
   

In this section, the adaptive EW-RLS estimator is 
presented. The channel estimates are updated recursively 
upon receiving new training symbols. Synchronized 
replicas of the training symbols, locally stored at the 
receiver will act as references. In the following, the RLS 
estimator is derived. 
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3.1 RLS Estimator Derivation 
 

To derive the EW-RLS-based MIMO OFDM channel 
estimator, first, we define the estimation error, and then the 
cost function (defined as the weighted sum of error 
squares) is optimized against the taps of the channel under 
estimation. Since channel estimation is carried out during 
the time interval of one OFDM symbol, the time index m 
will be omitted in the following. The a posteriori 
estimation error is defined as the difference between the 
noisy received signal and its estimate. In TD, it can be 
expressed in a matrix-vector form as 

qnqqqq nnnnn ,
~)(~)(~)(~̂)(~)( hyyye X−=−=        (6) 

where n  denotes the observation time index and 
Hnn )](~,),1(~),0(~[)(~ XXX L=X  is an 

LMn t×+ )1(   input matrix with 
H
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t
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21 xxxX L=  representing an 

LM t×1  vector of the relative inputs into the adaptive 

filter at the instant i. The vectors  )(ipx  may written 

as )]1(,),1(),([)( +−−= Lixixixi pppp Kx , and 
TT
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T

qn
T
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,2,1,, hhhh L=  is a 1×LM t  

vector that contains the stacked vectors of the CIRs from 
the transmit antennas to the qth receive antenna, which are 
under estimate at time instant n, with pqn,h  denotes a 

1×L  vector of the CIR between the pth transmit and qth 
receive antennas, and is defined 
as T

pqnpqnpqnpqn Lhhh )]1(,),1(),0([ ,,,, −= Kh . 

The estimation error )(nqe  is used to recursively adjust 

the adaptive filter tap-weight vector qn,
~h , which 

corresponds to the taps of the channel under estimation. 
The optimum channel estimate can be obtained by 
minimizing the exponentially weighted cost 
function )(nJ q , which is defined as 

)(nJq = 
2

,
2 ~)(~)(~)( qnq nnn hyΛ X−          (7) 

where ]1,,,,[)( 12 λλλ L−= nndiagnΛ  is an 
)1()1( +×+ nn  weighting matrix with λ  is a positive 

scalar called forgetting factor ( )10 <<< λ . The 

optimum estimates of the subchannels, pqn,h , that 

minimize )(nJ q  are found by setting the partial 

derivatives of )(nJ q  with respect to pqn,
~h equal to zero. 

By solving the resulting equations for the optimum pqn,ĥ , 
we have  

)(ˆ)( , nn qn ZhR =         (8) 

where )(nR  is an LMLM tt ×  EW autocorrelation 

matrix of the inputs )(~ nX , and is defined as 
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and )(nZ  is an 1×LM t  vector of EW cross-correlation 

between the inputs )(nX and noisy received signal 

)(nyq , and is defined as 
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Hence, the channel estimate qn,ĥ  can be obtained by 
solving (8) as 
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where TT
qMn

T
qn

T
qnqn t

]ˆ,,ˆ,ˆ[ˆ
,2,1,, hhhh L=  is a 

1×LM t  vector of MIMO channel estimate at time 
instant n at the qth receive antenna. The computation 
complexity of (11) is significantly reduced by recursively 
updating the inverse of the matrices )(nR and the 
vectors )(nZ as 
 

)(~)(~)1()( nnnn H XXRR +−= λ        (12) 

 )()(~)1()( nynnn q
HXZZ +−= λ        (13) 

 
The inverse of the recursion in (11) can be avoided by 
invoking the matrix inversion lemma [12], to obtain 

)1()(~)()1()( 11111 −−−= −−−−− nnnnn H RXGRR λλ   
(14) 

Finally, the time update of the subchannels estimates qn,ĥ , 
at time n, can be easily shown to be given by 
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where )(nG is referred to as the gain vector  and is given 
by 
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3.2 First-order Markov Model 
 

Assuming that the CIR taps are slowly varying and fade 
at the same Doppler rate, then it may be possible to 
statistically describe such variations according to the first-
order Markov process as follows [13] 

)()()1( nnn ωAhh +=+   (17) 

where )(nh  is the optimum channel estimate at 
time n, )(nω  denotes the process noise 
vector, IA a=  is state transition matrix with 

)2(
max0 sD TfJa π=  is a constant parameter which is 

very close to unity, 
maxDf  denotes maximum Doppler 

frequency, and sT  is the OFDM symbol duration. 
 
4. Simulation Results 

 
For the simulations, 22× MIMO OFDM system with 

K = 64 subcarriers and a cyclic prefix of length CPN = 8 
samples is considered. Channel bandwidth B = 20 MHz 
and sampling frequency 20=sf  MHz are set as in IEEE 
802.11a standard [14]. Quadrature phase-shift keying 
(QPSK) modulation is used. The CIRs between transmit-
receive antenna pairs are assumed to be uncorrelated with 
maximum length of 8=L  taps. The performance is 
evaluated in terms of the MSE of the channel estimate, 
which is defined as }|)(ˆ)({| 2nnEMSE hh −= , and the 
system BER, for different Doppler frequencies. The MSE 
results are obtained by running Monte Carlo simulations 
on 10000 channel realizations, and the BER performance 
is measured by averaging over 1000 OFDM blocks. The 
optimum forgetting factor is selected via 
simulations to be 995.0=λ  and perfect 
synchronization between the transmitter and the receiver is 
assumed. 

The MSE of channel estimates versus SNR are shown in 
Figs. 2 and 3, while the BER performance versus SNR is 
shown in Figs. 4 and 5, for different Doppler frequencies 
and training rates of 10% and 4%, respectively. 

From Figs. 2 and 3 we observe that the MSE 
performance of the estimator is almost the same when the 
channel is experiencing low Doppler frequencies, 
regardless of training rate. However, very small 
degradation in the MSE of the channel estimates is noticed 
for training rate of 4%, compared to 10%, especially at 
high SNR and higher Doppler frequencies. This increase in 
the MSE pertains mainly to the decision errors created 
during the operation of channel estimator in the DD-mode.  
In Figs. 4 and 5, the BER performance versus SNR, with 
DD channel tracking. The BER for perfectly known 

channel is also demonstrated to give a lower bound for 
channel tracking performance. As it can be noticed, the 
BER curves obtained with channel tracking (solid curves) 
are very close to those obtained with perfect channel 
(dashed curves), especially at low Doppler frequencies 
(low mobility) and low SNR. However, small degradation 
in the BER relative to that of perfectly known channel has 
occurred at high SNR and higher Doppler frequencies. 
This degradation is mainly due to the decision error 
propagation arising when the estimator switches its 
operation into the DD-mode and also due to the mismatch 
between the actual time-correlation of the channel taps and 
the assumed first-order Markov process model used. 
 

 
Fig. 2: MSE of channel estimates of the DD EW-RLS estimator with 10% 

training data. 
 

 
Fig. 3: MSE of channel estimates of the DD EW-RLS estimator with 4% 

training data. 
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Fig. 4: The BER performance vs. SNR, with DD EW-RLS channel 

tracking and 10% training data. 
 

 
Fig. 5: The BER performance vs. SNR, with DD EW-RLS channel 

tracking and 4% training data. 
 
5. Conclusion 
 

In this paper, adaptive TD channel estimation and 
tracking based on EW-RLS algorithm is investigated for 
MIMO OFDM WLAN systems. The computational 
complexity is significantly reduced by recursively 
updating the channel estimates and by applying the matrix 
inversion lemma. Simulation results show that the 
proposed estimator has excellent performance (very close 
to the ideal) over slowly to moderate time-varying 
channels and at low SNR. In channels where higher 
Doppler frequencies are experienced, the performance can 
be improved by increasing the training rates. 
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