
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

257

Manuscript received February 5, 2008

Manuscript revised February 20, 2008

Performance analysis of Leader Election Algorithms in Mobile
Ad hoc Networks

Muhammad Mizanur Rahman †, M. Abdullah-Al-Wadud ††, Oksam Chae††

Dept. of Computer Science & Information Technology, Islamic University of Technology,
Board Bazar, Gazipur-1704, Bangladesh†

Dept. of Computer Engineering, Kyung Hee University, 1 Seocheon, Kiheung, Yongin, Gyonggi, Korea††

Summary
Leader election is an extensively studied problem in Ad hoc
networks. In our study, we have implemented an extended idea
of an existing leader election algorithm for energy saving to
arbitrary topological changes. In this method, our focus is to
reduce the number of leader election processes; to make it more
energy efficient. Unlike the previous solutions, the algorithm
proposes that each node maintains a list of candidates to
minimize the total number of leader elections. Simulation results
show that this leader election algorithm using candidates has
much fewer leader elections and generates lower messages than
the existing leader election algorithm.
Key words:
Leader Election Algorithm for Ad hoc Networks (LEAA),
Candidate Based Leader Election Algorithm for Ad hoc
Networks (CBLEAA), heart-beat-message, most-valued-node,
computation-index.

1. Introduction

A mobile Ad hoc network (MANET) is a collection of
mobile nodes that can communicate via message passing
over wireless links. Each node communicates directly with
other nodes within a specified transmission range. The
nodes communicate via other nodes if they are not within
a specified transmission range.
Leader election is a fundamental control problem in both
wired and wireless systems (e.g. MANET, Sensor
networks). For example, in group-communication
protocols, a leader election is necessary when a group
leader crashes or departs from the system [1]. Leader
election has a large number of applications such as key
distribution [4], routing coordination [5], sensor
coordination [6] and general control [3, 7]. It can serve for
creating particular tree communication structures [2] and
other standard problems in distributed systems.
The algorithm of the leader election problem [8] elects a
unique leader from a fixed set of nodes. To accommodate
frequent topology changes, leader election in MANET has
to be adaptive. The elected leader should be the most-

valued-node among all the nodes of the network. The
value for the leader node selection is a performance-
related characteristic such as remaining battery life,
minimum average distance from other nodes or
computation capabilities [1].
Many solutions are proposed for leader election, but most
of them are not fit perfectly to dynamic nature of mobile
networks. Leader election algorithm provided in [7],
maintains a directed acyclic graph with a single sink,
which is the leader. However this algorithm [7] is proved
correct for a completely synchronous system with a single
link change. The algorithms proposed in [9, 10] work only
if the topology remains static and hence cannot be used in
mobile networks. Self-stabilizing spanning tree algorithms
[12, 13] assume a shared-memory model and are not
suitable for an Ad hoc network. Besides, several clustering
and hierarchy-construction schemes [11, 14] may be
adopted to perform leader election, but they cannot be
used in an asynchronous mobile system. Leader election
algorithm presented in [1], manages the election process
very efficiently. But the method requires a large number of
leader elections, which is not very supportive to energy
conservation. To solve this problem, we implement an
algorithm which is based on Leader election algorithm
presented in [1], but every node keeps a leader list instead
of a single leader. This algorithm is mainly emphasized for
lower power consumption.
The rest of the paper is organized as follows: section 2
describes the existing leader election algorithm LEAA
while section 3 presents the leader election algorithm
using candidates CBLEAA. In section 4, comparative
performance analysis between the leader election
algorithms is done through simulation. Finally, section 5
discusses about our future work and conclusions.

2. Existing algorithms for Leader Election

In this section, we describe an existing leader election
algorithm LEAA [1], which is based on classical

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

258

termination detection algorithm for diffusing computations
by Dijkstra and Scholten [15]. First we describe the
algorithm for static networks and then for mobile
environments.

2.1 Leader Election in a Static Network

This algorithm acts under the assumption that nodes and
links never fails. It uses three types of messages, viz.
Election, Ack and Leader. The algorithm works as
follows:
Election: If a leader node doesn’t exist in the network, an
initiator node transmits Election message to the immediate
neighbor nodes. The neighbor nodes propagate the
messages to their neighbors. This process is continued
until all leaf nodes get the Election messages. This phase
is referred as the growing phase of the spanning tree.

Ack: When any node receives an Election message from a
neighbor (not parent), it immediately responds with an
Ack message. Instead of sending Ack message to its
parent, a node waits until it receives Acks from all its
children. On receipt of the Election message, every leaf
node sends an Ack message along with its own ID, to its
parent. The parent node compares its own ID with these
incoming IDs from all its children. Then it selects the
highest one and sends it through the Ack message to its
parent. This process is continued until the initiator node
gets all Acks from all children. This phase is referred as
the shrinking phase of the spanning tree.

Leader: When the initiator node gets Ack messages from
all its children, it selects the highest ID as the leader node.
It then broadcasts this ID in the Leader message to all
nodes of the network.

Figure 1 shows an example of such leader election. In
figure 1(a), node 3 is the initiator that sends Election (E)
message to its neighbor. In figure 1(b), nodes 2 and 5 set
their pointers to point to parent node 3. They get Election
messages from each other and immediately acknowledged.
Immediate acknowledgements are not shown in the figure.
In figure 1(c), a complete spanning tree is created. In
figure 1(d), nodes 7 and 9 send their Ack messages (A) to
their parents with their own IDs. In figure 1(e), nodes 2
and 5 compare their own IDs with the incoming ones and
send the higher IDs in Acks to node 3. In figure 1(f), node
3 selects 9 as the leader ID and broadcasts it via the
Leader message (L).

Fig. 1 An execution of leader election algorithm based on Dijkstra-
Scholten termination detection algorithm.

2.2 Leader election in mobile environment

In this section we briefly describe LEAA. If the leader
node crashes or goes out of the network, a new leader
election is necessary for that network.

The leader node of a connected network periodically (after
each 20 seconds) sends heart-beat-messages to other nodes.
The absence of heart-beat-messages from its leader for a
predefined timeout period (6 times) triggers a fresh leader
election process at a node. Then the election proceeds as
mentioned in the previous section. But when node
mobility, node crashes, link failures, network partitions
and merging of partitions are introduced during the leader
election process, that simple algorithm is not sufficient. To
solve this problem, two extra messages, Probe and Reply
are used.

In the dynamic environment, a number of events may
occur that may change the topology of a MANET. To
handle such situations, LEAA applies the following
techniques in the leader election process.

Handling Multiple, Concurrent Computations: Here
more than one node may concurrently detect leader
departure. These nodes initiate separate leader election
independently that leads to concurrent leader elections. To
handle this situation, the algorithm LEAA requires each
node participates in only one diffusing computation at a
time. To achieve this each diffusing computation is
identified by a computation-index. This computation-
index is a pair, viz. num, ID, where ID represents the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

259

identifier of the node that initiates this computation and
num is an integer as described below.
〈num1, ID1〉 > 〈num2, ID2〉 ⇔ ((num1 > num2) ∨ ((num1 =
num2) ∧ (ID1 > ID2)))

A leader election with higher computation-index has
higher priority than another leader election. When a node
participates in a leader election, hears another leader
election with a higher computation-index, stops its current
execution. Eventually a node with highest computation-
index initiates the leader election process.

Handling Network Partitions: Once a node joins in a
leader election, it must receive Ack messages from all of
its children, before it sends the Ack message to its parent.
However, during the shrinking phase of the spanning tree,
some nodes may go out of the network. To detect such
events, each node sends periodic Probe messages to the
neighbors of the spanning tree. A node which receives the
Probe message, responds with a Reply message. If a node
fails to get Reply message from a node for a certain
timeout period, removes that node from its neighbor list of
the spanning tree. A node must detect this event; otherwise
it never reports an Ack to its parent. Eventually the leader
node cannot be determined.

Handling Partition Merges: Node mobility can merge
network partitions, when at least two nodes from different
partitions come in the communication range of each other.
In this case both nodes exchange each other’s leader
information. The node having lower leader ID accepts the
other leader as the new leader of its partition and
propagates the message to other nodes of that partition.

Node Crashes and Restarts: If a node failure creates
network partitions, appropriate actions are taken as
described earlier. When a node recovers from a crash,
becomes a node without leader and so starts a new election
to find its leader.

3. Proposed Algorithm

This algorithm is based on LEAA, which is described in
the previous section. In this algorithm, we propose a list of
leaders instead of just one leader to be maintained in every
node. Here we want to take the advantage of having
multiple candidates. Each node contains a leader list of
five nodes (in descending order) as the threshold value,
where the first node is considered as the active leader of
the network. If the first one is absent for a specified period,
the second becomes the active leader and so on. If we
consider more candidates than this threshold value, there

is a possibility of message overhead, which consumes a lot
of energy.
We follow the assumptions and constraints that are
mentioned in [1]. We assume MANET is an undirected
graph. Here vertices represent the mobile node and an
edge represents the communication link between any two
nodes within communication range. Thin arrows represent
the direction of flow of messages and thick arrows
indicate pointer of child node to parent. In this algorithm,
we apply the following constraints:

 All nodes have unique identifiers
 We consider the node’s ID (identifier) as the key

 value for leader election (for simplicity to descri
be and simulate), i.e. the node having the highest
 ID in a network is considered as the most-value
d-node (leader).

 Links are bidirectional and FIFO (First in First o
ut).

 Node mobility can change topology arbitrarily, i
ncluding network portioning/merging. Furtherm
ore, node can crash and come back to its original
 network at any time.

 Each node has a large buffer to avoid buffer ove
rflow at any point in its lifetime.

3.1 Candidate based leader election algorithm
(CBLEAA)

We implement a candidate based leader election algorithm
based on LEAA. Here every node maintains Leader list
(L) and Set the size of L to 5 (Threshold value). Empty ID
is denoted by -1 in L.

1. Check the existence of the leader in the network, after
the heart-beat-message interval (20 seconds).
 1.1 If Leader doesn't exist in the network after the
specified period (Six times heart-beat-message interval)

 (a) Select an initiator node
 (b) Initiator node sends the Election message to all of

its children. This process is continued until these
messages reach to all leaf nodes.

 (c) For the leaf nodes, l, in the network
I. Add l to its own Leader list, L.

II. Send L to its parent within Ack message.
III. Parent node sorts (in descending order) i

ts ID with the contents of L. The node pr
opagates L to its parent. Repeat this proc
ess until the initiator node gets all the Le
ader lists from each branch.

IV. In this shrinking phase of the spanning tr
ee, each node sends periodic Probe mess
age and waits for Reply message from th
e neighbors, to maintain the connectivity

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

260

 among the nodes.
 (d) Initiator node selects the highest-valued-L from the
collected Leader lists and send this
 to all the nodes of the network, within Leader
message.

 1.2 If at least one leader exists in kth (position in L) level
of the Leader list
 (a) The corresponding leader node broadcasts heart-
beat-message.

(b) Update Leader list by setting the active leader
of kth level of L in the first position by shifting
the invalid leaders of L for future rejoin operation.

1.3 If several active leaders of different networks, exist

in the same network
 (a) Multiple Leaders lists from previous networks
combine and select new five candidate nodes by keeping
the active leaders in sequence (in descending order) in the
front positions of the list. After that the first positioned
node of the list becomes the active leader node.

3.2 Leader election in mobile environment

We now describe how this algorithm accommodates
arbitrary changes in topology introduced by node mobility.
Our algorithm shares the idea of multiple concurrent
computation, network partitioning and merging, node
crashes and restarts during the leader election process,
provided by LEAA.

Leader election process: Figure 2(a) to 2(c) show the
growing phases of the spanning tree. Every node
maintains a Leader list. In our example we use the size of
the Leader list as 5. Figure 2(d) shows that the leaf nodes
7 and 9 add their IDs in the list and send these to their
parents in the Ack messages. Figure 2(e) shows that the
initiator receives two lists from its two branches and they
are A (7, 2, -1, -1,-1) and A (9, 5, -1, -1,-1). From these
two lists, the initiator node selects the Leader list L (9, 7, 5,
3, 2) and broadcasts to all nodes of the network. Like
LEAA, here all nodes send periodic Probe messages and
wait for the Reply from the neighbors of the spanning tree,
to maintain the connectivity.

Unlike LEAA, in the following section, we will
see how this algorithm manages network partitions and
merges other than the leader election process time.

Fig. 2 The leader election process by CBLEAA

Handling Network Partitions: In figure 3, we see the
advantage of having multiple candidates. In figure 3(a), all
nodes of the network maintain the same Leader list, where
the active leader is 50. But as node 3 disappears, two
networks are created. In figure 3(b), on the right network,
nodes 50, 20, 17 exist. So this network does not modify
the Leader list. But on the left network, the first three
candidate IDs are absent in the leader list. So after the time
out of three levels of leader nodes checking, node 10 sends
the heart-beat-message to all nodes of the network. So
unlike LEAA, a new leader election is not necessary here.
To reduce the waiting time, all nodes update their Leader
lists by shifting the invalid IDs to the end of the Leader
lists. But we shouldn’t delete these nodes from the Leader
lists for a while, for future rejoin.

Fig. 3 Handling network partitions by CBLEAA.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

261

Handling Partition Merges: Network merging can be
managed efficiently by this method. In figure 4(a), there
are three networks and they maintain the Leader lists L (10,
7, 5, 2, and 1), L (25, -1, -1, -1, -1) and L (50, 20, 17, 1, -
1). According to our algorithm every node in the merged
network has finally L (50, 25, 10, 20, 17), where nodes 50,
25 and 10 were the active leaders. After the merging
operation node 50 becomes the active leader. This process
is shown in Figure 4 (b).

Fig. 4 Handling partition merges by CBLEAA.

4. Simulation result

We compare the performance between LEAA and
CBLEAA through simulations. Both leader election
algorithms are implemented in C++. Here MANET size is
2000*2000 square meters. In the simulation, nodes can
move from 1 m/sec (Vmin) to maximum 19 m/sec (Vmax).
To see the effect of transmission range over the algorithms,
we use transmission ranges of 200, 250 and 300 meters.
We set message traversal time between the two nodes to
0.03 second as default value. We allow the number of
nodes (N) up to 120 in the simulation area. Due to the
node mobility, several nodes can go out of the simulation
area and can enter into the simulation area at any time. As
the requirement of the existing algorithm, each simulation
runs for the duration of 100 minutes. Finally the
simulation results are taken from the averaged values of
20 simulations run times.

Impact on Node Density: In order to study the impact of
node density, we vary the maximum node speed Vmax.
The graphs in figure 5 show the Election Rate for three
different values of Vmax viz. 3m/s, 9m/s and 19m/s. In
these graphs, we see the Election Rate of node first

increases with node density (N), and then start decreasing
with any further increase in N. This is because when N =
20, most of nodes are expected to be isolated. But as N
increases, there are few networks with few nodes. Node
mobility causes frequent leader departures and hence
Election Rate increases. But after a certain threshold, the
node density becomes very high and most of the nodes
belong to large networks. As networks remain connected
for long duration, Election Rate drops. From figure 5, we
see the candidate based method has much lower Election
Rate than that of the existing method.

Vmax = 3m/s (Low speed)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 20 40 60 80 100 120 140
Number of nodes in Simulation (N)

M
ea

n
el

ec
tio

n
ra

te
 (p

er
 m

in
)

LEAA CBLEAA

(a)

Vmax = 9m/s (Average speed)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140
Number of nodes in Simulation (N)

M
ea

n
el

ec
tio

n
ra

te
 (p

er
 m

in
)

LEAA CBLEAA

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

262

Vmax = 19m/s (High speed)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140
Number of nodes in Simulation (N)

M
ea

n
el

ec
tio

n
ra

te
 (p

er
 m

in
)

LEAA CBLEAA

(c)

Fig. 5 Average Election Rate Vs Vmax. Here Vmin = 1 m/sec and transm
ission range of each node is 250 meter.

Impact on transmission range: We study the impact o
f Transmission range (Tx) on Election Rate for three dif
ferent choices of Tx, viz. 200m, 250m and 300m. From
the graphs of figure 6, we see increased transmission ra
nge of nodes leads to a higher Election Rate when N is
small (i.e. N = 20). This is because, for large value of T
x, there are fewer isolated nodes, but each network has f
ew nodes. Due to node mobility here Election Rate is hi
gher. But for large values of N, the Election Rate beco
mes smaller with increase in Tx. The reason is the netw
ork sizes are larger for large values of Tx and partition
occurs less frequently. As before, in these graphs, we s
ee that CBLEAA has significant performance advantag
e over LEAA. Here we see for all values of Tx, Election
 Rate by the candidate based method is much smaller th
an that of the existing method. These graphs also show
that large transmission range is ideal for leader election
 methods.

5. Conclusions and future work

Energy saving is an important research area for Ad hoc
and Sensor networks. To achieve this purpose, we tried
to derive leader election algorithm, which successfully
guarantees that every node must have leader in any situ
ation and save energy in mobile Ad hoc networks. For s
aving energy our focus is to reduce the number of leade
r elections processes. Because leader election needs thr
ee phases of transmissions and receptions of messages t
hat use a lot of energy. Our simulation results show that
 the candidate based algorithm (CBLEAA) has signific
ant energy saving feature than that of other traditional a
lgorithms. Another important fact is that energy effecti
ve candidate based algorithm is particularly simple and

straight for understanding. Our future plan is to evaluat
e the run time complexity of this algorithm. We have al
so plan to implement the practical protocol.

Impact on transmission range by LEAA

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 20 40 60 80 100 120 140
Number of nodes in Simulation (N)

M
ea

n
el

ec
tio

n
ra

te
 (p

er
 m

in
)

Tx = 200 m Tx = 250 m Tx = 300 m

(a)
Impact on transmission range by CBLEAA

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100 120 140
Number of nodes in Simulation (N)

M
ea

n
el

ec
tio

n
ra

te
 (p

er
 m

in
)

Tx = 200 m Tx = 250 m Tx = 300 m
(b)

Fig. 6 Average Election Rate Vs Tx. Here Vmin = 1 m/sec
 and Vmax = 3m/s.

References
[1] Vasudevan, S., Kurose, J, Towsley, D. Design and Analysis

of a Leader Election Algorithm for Mobile Ad Hoc Networks.
Proceedings of the 12th IEEE International Conference on
Network Protocols (ICNP) (2004) 350-360

[2] Y. Afek and A. Bremler. Self-stabilizing unidirectional
network algorithms by power supply. Chicago Journal of
Theoretical Computer Science, December 1998.

[3] O. Bayazit, J. Lien, and N. Amato. Better group behaviors in
complex environments using global roadmaps. 8th
International Conference on the Simulation and Synthesis of
living systems (Alife ‘02), Sydney, NSW, Australia, pp. 362-
370, December 2002.

[4] B. DeCleene et al. Secure group communication for Wireless
Networks. In proceedings of MILCOM 2001, VA, October
2001

[5] C. Perkins and E. Royer. Ad-hoc On-Demand Distance
Vector Routing. In proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, New
Orleans, LA, February 1999,pp. 90-100

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

263

[6] W. Heinzelman, A. Chandrakasan and H. Balakrishnan.
Energy-Efficient Communication Protocol for Wireless
Micro sensor networks. In proceedings of Hawaiian
International Conference on Systems Science, January 2000.

[7] N. Malpani, J. Welch and N. Vaidya. Leader election
Algorithms for Mobile Ad Hoc Networks. In fourth
International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, Boston, MA,
August 2000.

[8] N. Lynch. Distributed Algorithms. 1996, Morgan Kaufmann
Publishers, Inc.

[9] R. Gallager, P. Humblet and P. Humblet and P. Spira. A
Distributed Algorithm for Minimum Weight Spanning Trees.
In ACM Transactions on Programming Languages and
Systems, vol.4, no.1, pages 66-77, January 1983.

[10] D. Peleg. Time Optimal Leader Election in General
Networks . In journal of Parallel and Distributed Computing,
vol.8, no.1, pages 96-99, January 1990.

[11] D. Coore, R. Nagpal and R. Weiss. Paradigms for Structure
in an Amorphous Computer. Technical report 1614,
Massachussetts Institute of Technology Artificial Intelligence
Laboratory, October 1997.

[12] Y. Afek, S. Kutten and M.Yung. Local Detection for Global
Self Stabilization. In Theoretical Computer Science, Vol 186,
No. 1-2, 339 pp. 199-230, October 1997.

[13] S. Dolev, A. Israeli and S. Moran. Uniform dynamic self-
stabilizing leader election part 1: Complete graph protocols.
Preliminary version appeared in proceedings of 6th
International Workshop on Distributed Algorithms (S. Toueg
et.al., eds.), LNCS 579, 167-180,1992),1993.

[14] C. Lin and M. Gerla. Adaptive Clustering for Mobile
Wireless Networks. In IEEE journal on selected areas in
communications,15(7): 1265-75, Sep 1997.

[15] E.W. Dijkstra and C.S. Scholten. Termination detection for
diffusing computations. In Information Processing Letters,
vol. 11, no. 1, pp. 1-4, August 1980.

Muhammad Mizanur Rahman received
his B.Sc. (Hons) degree in computer
science from the University of Dhaka,
Bangladesh in 2003 and MS in Computer
Engineering from Yeungnam University in
2006. In 2004, he joined as a lecturer in the
Faculty of Computer Science and
Engineering, University of Development
Alternative, Bangladesh.. In 2006, he

joined as a Faculty member in Computer Science and
Information Technology, Islamic University of Technology,
Bangladesh. His research interest includes Wireless Networking,
Digital image processing.

M. Abdullah-Al-Wadud received his B.S.
degree in computer science and M.S. in
computer science and engineering from the
University of Dhaka, Bangladesh in 2003
and 2004, respectively. In 2003, he joined
as a lecturer in Faculty of Sciences and
Information Technology, Daffodil
International University, Bangladesh. In
2004, he joined as a lecturer in Faculty of

Sciences and Engineering, East West University, Bangladesh.
Currently he is pursuing his PhD degree in Department of
Computer Engineering, Kyung Hee University, South Korea. His
research interest includes image enhancement, medical image
processing, and pattern recognition.

Oksam Chae received his B.S degree in
electronics engineering from Inha
University, South Korea in 1977. He
completed his MS and PhD degree in
electrical and computer engineering from
Oklahoma State University, USA in 1982
and 1986 respectively. During 1986-88 he
worked as research engineer in Texas

Instruments Image Processing Lab, USA. From 1988, he is
working as a professor in Department of Computer Engineering,
Kyung Hee University, South Korea. His research interest
includes multimedia data processing environment, intrusion
detection system, sensor networks and medical image processing
in dentistry. He is a member of IEEE, SPIE, KES and IEICE.

