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Summary  
Motivated by the study of the optimization of the quality of 
service for Multiple Input Multiple Output (MIMO) technique in 
a wireless communication system. The capacity of MIMO 
channel in independent Rayleigh channels grows linearly as the 
number of antennas. However, some limitations on the MIMO 
capacity is due to the correlation between individual sub-
channels of the matrix channel. In this paper, we investigate the 
MIMO channel capacity in correlated channels using a new 
correlation matrix model. After some mathematical recalls we 
derive the general upper bound on the MIMO channel capacity. 
We give the analytical results, which measure the effect of 
correlation on the MIMO capacity for a proposal model. Then, 
we use the correlation matrix approach to compute the capacity 
of MIMO with respect to signal-to-noise (snr) and then predict 
the number of antennas. By fixing the snr variable to a specific 
value, we extract information on the optimal numbers of MIMO 
antennas. Finally, we have given the variation of the MIMO 
capacity in the limiting case of N↦∞ for our proposal model and 
the exponential correlation matrix model. 
Key words: 
MIMO system, Wireless communication, channel capacity, 
correlation matrix. 

1. Introduction 

    Digital communication using Multiple Input Multiple 
Output (MIMO) is one of the important techniques used to 
exploit the spatial diversity in a rich scattering 
environment in order to improve the spectral efficiency. 
Due to the great spectral efficiency gain, MIMO systems 
have known a great revival interest nowadays and have 
been defined by IEEE 802.16 [1], for fixed broad band 
wireless access and 3G partnership project (3GPP) for 
mobile applications. Using MIMO, it has been shown in 
[2] that spectral efficiency can be improved significantly 
in a wireless communications in fading environment. 
To study MIMO system, we use Rayleigh model as it is 
the most widely method for indoor and urban channels [3]. 
Our system is then modeled by TR NN *  random matrix 
H. The received vector r is related to the transmitted 
vector e as: 
 

nHer += , 
 
 

 
Where n is the noise vector with covariance matrix σ²

RNI . 

The component gains ijh  of the H  channel are 
independent, identically distributed (iid) and governed by 
circular complex Gaussian random variables with zero 
mean and unit variance. 
From a diagram of a MIMO wireless transmission system 
(see Fig. 1), a compressed digital source in the form of a 
binary data stream is fed to a simplified transmitting block 
encompassing the functions of error control coding and 
mapping to complex modulation symbols (BPSQ, QPSK, 
M-QAM, ...). Each separate symbol streams is mapped 
onto one of the multiple TN antennas. After filtering and 
amplification, the signals are launched into the wireless 
channel. At the receiver, the signals are captured by RN  
antennas and inverse functions are performed to recover 
the message. 
 

                        Fig. 1.  MIMO Architecture 
                                                      
                                                           
Information theory can be used to demonstrate the gain of 
MIMO; if we consider a system with TN  transmitters and 

RN  receivers, the capacity of the system is given by the 
relation [4-6], 
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With unit bit/sec/Hz. Here ( )+  stands for the adjoin 
conjugation, ρ  is the signal to noise ratio (snr) and H  is 

the TR NN *  channel matrix. Note that this equation is 

based on TN  equal power uncorrelated sources. Foshini 
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and Telatar [1] demonstrated that capacity C grows 
linearly in min( TR NN , ). 
MIMO systems advantages are numerous; two of them are 
their ability to turn multi-path propagation, traditionally 
qualified as a problem of wireless communications, into a 
benefit for the user. MIMO may be also used to increase 
operator's revenues. However, the promising advantages 
of MIMO systems over traditional single antenna systems 
depend on different parameters that contribute on the 
limitation on the MIMO channel capacity. Some 
constraints on the MIMO system are imposed by the 
correlation between individual sub-channels of the matrix 
channel [6-7]. The correlation phenomena that appears in 
MIMO channel is one of the parameters that strongly 
affect the performance of these systems. When the 
correlation coefficient increases, the capacity decreases. 
The effect of correlation on the MIMO channel capacity 
has been investigated in details in [5]. But, this method 
does not study the effect the capacity versus the signal to 
noise ratio (snr). Notice also that the uniform correlation, 
in which the correlation coefficients are the same, was also 
considered in the uniform model of [7]. Though modeling 
correlations in a quite reasonable manner, this uniform 
model is however not real because it considers the 
correlation between sub-channels in the same way 
independently of the antenna separation distance. To get a 
more realistic system, we propose a new model where one 
takes into account the rapid attenuation of the correlations 
between distant channels. We notice that this limitation 
has been addressed in [7] where attenuation has been 
modeled by using an inverse power law correlation 

function jir −  known in the literature as the exponential 
matrix model. 
    In this paper, we develop a matrix model proposal for 
studying the MIMO system in cases where spatial 
diversity does not allow the implementation of several 
antennas such as in 3G generation at the level of user 
equipment (UE). Using a theoretical approach, we 
reconsider the computation of the channel capacity to 
predict the optimal number of antennas in MIMO 
correlated sub-channel systems. 
    The presentation of this paper is as follows. In section 1, 
we give some mathematical tools. In section 3, we study 
MIMO capacity in correlated sub-channel systems. In 
section 4, we introduce our correlated matrix model 
proposal which takes into account strong correlations 
between neighboring sub-channels and neglect distant 
ones. Finally, we compare our model proposal with that of 
[7] and give a conclusion. 

2. Mathematical recalls 

In this section, we recall mathematical properties about 
Jensen's inequality and the concavity of functions. These 
results are useful in the finding of bounds of certain 
performance measures, including MIMO systems. The 
determination of bound permits to bring a complicated 
expression to something simpler and then  allow getting 
more insight in ways to improve the MIMO system 
performances. 
One of the important inequalities to be used in this paper 
is Jensen's inequality. Writing down this inequality, we 
start by giving the definitions of convex and concave 
functions. 
Definition 1:    A real function )(xf  is said to be convex 

over an interval [ ]ba,  if for every 1x , 2x [ ]ba,∈  

and 01 >λ , 12 ≤λ , with +1λ 12 =λ , we have: 

( ) ( ) ( )22112211 xfxfxxf λλλλ +≤+  
 
 In an other way by taking λλ =1  

and λλ −= 12 , we also have, 

( ) ( ) ( ) ( )2121 1)1( xfxfxxf λλλλ −+≤−+  
A function is strictly convex if equality holds only if 

0=λ  or 1=λ . 
Notice that ( )λλ −+ 11x 2x  is simply a line segment 

connecting 1x  and 2x  (in the x direction) and 

( ) ( ) ( )21 1 xfxf λλ −+  is a line segment connecting 

( )1xf  and ( )2xf . Thus, the function ( )xf   is convex if 
it lies below the straight line segment connecting any 
( )yf  and ( )zf  for any points y  and z  in the 

interval [ ]ba, . 

Definition 2:    A real function ( )xg  is said concave if -

( )xg  is convex, that is 

( )( ) ( ) ( ) ( )2121 11 xgxgxxg λλλλ −+≥−+  

Where 1x , 2x  and λ  are as before. Strict concavity of g  
is equivalent to strict convexity of ( g− )  

Examples:     the real functions 2x , xe , x , xLogx  are 

convex while Logx  and x  are concave. 
 
Theorem: Jensen Inequality: 
If the function f  is convex and X  is a random real 
variable: 

( )[ ] ( )[ ]XfEXEf ≤  
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Where E(X) denotes the expectation of the random real 
variable. Put differently, 

( )∑∑ ≤⎟
⎠

⎞
⎜
⎝

⎛

k
kk

k
kk xfxpxpf  

  
Where ∑ = 1kp  and where we have set ( )kk xpp = .  

If f  is strictly convex, then the equality 

( )[ ] ( )[ ]XfEXEf =  follows from the identity 

( ) YYE =  with Y  standing for X  or ( )Xf .  
If  f  is concave, then 

( ) ( )EXfXEf ≤  
Notice moreover that the Jensen inequality is important in 
the sense that it allows us to pull a function g outside of 
the summation and permits simplifications in the analytic 
computations generally difficult to handle exactly. 

3. MIMO capacity 

    For narrow bandwidth, the MIMO channel is modeled 
by a TR NN *  random matrix H , and the received vector 

y  (dimension RN ) is given by the equation below: 

nHxy +=             (2) 

Where n  is the noise vector (dimension RN ) and x  the 

transmitted vector (dimension TN  ). When the bandwidth 
is large, Orthogonal Frequency Division Multiplexing 
(OFDM) [8] can be used to divide the large bandwidth 
into narrow ones [2]. Eq (2)  remains valid for each sub-
band. 

  The most widely used model for indoor or urban 
channels is the Rayleigh model [9]: the ijh components of 

H  are independent identically distributed (i.i.d) and are 
circular complex Gaussian random variables with zero 
mean and variance 2σ . When the transmitted signal 
vector x  is composed of i.i.d equal power components 
each with a Gaussian distribution and the receiver knows 
the channel, the capacity of MIMO system for 

NNN TR ==  is [2]: 

⎟
⎠
⎞

⎜
⎝
⎛ += +HH

N
IC ρdetlog2          (3) 

 

Where I  is the NN *  identity matrix; ρ  describe the 
average signal to noise ratio (snr); H  is the normalized 
channel matrix and ( + ) means adjoin conjugate.  Here we 
consider the normalization condition as follow: 

∑
=

=
N

ji
ijh

N 1,

2
11

                    (4) 

Where ijh  denote the gains between the jth  transmit and 

the ith  receive of MIMO system. When the parallel sub-

channel are uncorrelated ( IH = ),  
N
ρ

 denotes the 

signal to noise ratio per receive branch.  A rough way to 
investigate the MIMO channel capacity in the MIMO 
channel capacity in correlated channels is to assume that 
all the received powers are equal. In this case, 

∑ =
j

ijh 1
2

 and Eq (1) is reduced to [7]: 

⎟
⎠
⎞

⎜
⎝
⎛ += C

N
IC ρdetlog2              (5)           

Where C is the normalized channel correlation matrix, 
C　　 

is the component of C defined as: 

∑=
k

jkikij hhC *                 (6) 

 
Where (¤) denotes complex conjugate. The equation (5) is 
justified because of the assumption of equal received 
powers. 
Also, we can deduce from Eq (6) that 　　　　= 　¤　　.. 

In the case of random (stochastic) channel, also the 
capacity 
is random. The capacity ergodic can be defined [3]. 
Referring 
to the mathematical recall in section 1, we can obtain the 
upper bound on the mean (ergodic) capacity as: 

⎥⎦
⎤

⎢⎣
⎡ +=≤= C

N
ICCC u

ρdetlog2       (7) 

denotes the expectation over the channel matrix. For 
simplicity, we assume further that the channel is 
deterministic, and the same results hold true for uC . If 
we denote by A the matrix under the determinant in Eq (7), 
we obtain:  
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( ) N
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ρdet           (8) 

With   

          BN=det(M)                           (9) 

                                  = 
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And 
1

1
−

⎟
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⎞

⎜
⎝
⎛ +=

NN
b ρρ

 

 

By substituting Eq (9) in Eq (7), the MIMO capacity can 
be cast as the sum of two terms like 

( )NB
N

NC 22 log1log +⎥⎦
⎤

⎢⎣
⎡ +=

ρ
         (10) 

From Eq (10), it is easy to see that The first term denotes 
the MIMO capacity of N parallel independent sub-
channels [2] 0=ijC and the second one captures the 
effect of the sub-channel correlation. The first term is 
positive while the contribution of the correlation is 
negative due to  the property 0log px  for 10 pp x . 

At high snr ( 1≈b ), NB  depends only on the correlation 
matrix. It is then an interesting issue to determine the 
MIMO capacity in a correlated channel. In this regards, 
the evaluation of the matrix NB  turns out to be a crucial. 

4. Correlation Matrix Model 

    In this section, we propose a new correlation matrix 
model which takes into account the distance between 
different branches at transmitter/receiver. For our model, 
the components of C are given by: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

→

≤→
=

−−

jiC
jie

C
ji

ijC

ij
f*

)(

       (11) 

 
Where C  is the correlation coefficient of neighboring 
receive branches. The above model may be not the exact 
one for some real world scenarios but this is simple model 
which allows us to investigate the impact of correlation on 
the MIMO capacity. We note, however, that the proposal 
model 
is physically reasonable because of closely dependency of 
correlation and distance between receive antennas 
(correlation decreases with increasing distance between 
receive antennas). From mathematical point of view, the 
proposal model decreases rapidly with the distance 
between receive antennas. This model may be a realistic 
model for some real-world scenarios such as in 3G 
because of electromagnetic interaction of antenna 
elements on small platform (on User Equipment: UE) and 
the implementation of diversity at user mobile (UE) in 3G 
cannot support the number of antennas as in the base 
station (Node B). 
    Now, substituting Eq (11) back into NB  and using 
some transformations of the determinant (we multiply the 
second row by Ce−  and subtracts it from the second row 
an so on ), then, we obtain the following NB : 
BN=det ( 

2
1 Ceb −−  ( ) Ceb −−1 0 … 0 

( ) ⎟
⎠
⎞⎜

⎝
⎛ − −− 2* 1 CC ebeb 2

1 Ceb −−  ( ) Ceb −−1  … 0 

( ) ⎟
⎠
⎞⎜

⎝
⎛ − −− 2*2 1 CC ebeb ( ) ⎟

⎠
⎞⎜

⎝
⎛ − −− 2* 1 CC ebeb

 2
1 Ceb −−  … 0 

… … … … …
( )( ) 1* −

−
n

Ceb  ( )( ) 2* −
−

n
Ceb  ( )( ) 3* −

−
n

Ceb  … 1 

)               (12)                                 
 From NB , it's difficult to derive a closed form analytical 
expression. But a simple form expression can be used in a 

practically case of high snr ( 1>>
N
ρ

), when 11 <<− b . 

In this case, 
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    For 1>>N , we obtain: 
 

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −+≈ − 2

2 11log Ce
N

NC ρ
    (15) 

In the limit case of  ∞→N , we obtain from Eq (15) 

⎟
⎠
⎞⎜

⎝
⎛ −≈ − 2

2

1
log

CeC ρ
         (16) 

 
 
And 

2ln
ρ

=∞C               (17) 

 
 

5. Illustration of Results 

    To show how to predict the number of antenna in a 
MIMO system, we give the following figure (fig2) 
illustrating the variation of the capacity MIMO with 
respect to snr (signal to noise ratio). We recall that we 
have set the value of the correlation coefficient to 0.2. 
     

 
     Fig. 2.    MIMO capacity in terms of snr for different N                                                            
  
    From fig2, we learn the following: 

(i) For given snr and for a desired value of MIMO 
capacity, we can determine the number of 
antennas to install. Choosing a MIMO 
performance with MIMO capacity as: 

410*4)( ≥snrCN  
 
    At snr=6dB, we find that the required number of 
antennas is at least 10=N . As we can see, this number 
is too high because of the required high performance of 
MIMO capacity. Relaxing this requirement by choosing 
for instance 410)( ≥snrCN we get 4=N . The number 

of antennas strongly depends then on the precision 
of )(snrCN . 
    (ii) Knowing that the choice of the MIMO capacity 
depends on the type of service we want to send on the 
channel (voice, data, and image), we can, by help of Fig. 2, 
determine the optimal value of the received antennas. 
    (iii) To optimize the number of antenna in a MIMO 
system, the same analytical approach may also be used for 
other correlation model such as uniform, exponential, ..., 
    Bellow, we give the figure3 describing the variation of 
capacity C with respect to signal-to-noise ration (snr) 
respectively for our proposal model and the exponential 
model of [7], this figure shows the MIMO capacity of a 
deterministic channels and by using approximate formulas 
in the limiting case of ∞→N  (Eq. 16). The MIMO 
channel capacity ∞C  evaluated using the exponential 
correlation matrix model [7] is also shown for comparison. 
We recall also that the used coefficient of correlation is set 
to 0.5 for the two models. As we can see from this figure 
that our proposal model predicts lower capacity because 
the correlation matrix model of our model between distant 
receive branches decrease rapidly. 
     

Fig. 3.  MIMO capacity for proposal model and 
exponential        matrix model     

6. Conclusion 

In this paper, we have presented a review of MIMO 
system and the impact of wireless channel correlation. We 
show that MIMO channel capacity depends substantially 
on the correlation between individual sub-channels of the 
matrix channel. By using the Jensen inequality, we 
estimate the upper bound of MIMO channel capacity. 
Then, we have proposed a new correlation matrix model 
and we derive the analytical formula for the MIMO 
channel capacity. To predict the optimal number of 
antennas in a correlated MIMO channel, we use the 
correlation matrix approach to compute the capacity of 
MIMO with respect to signal-to-noise (snr) and then 
predict the number of antennas. By fixing the snr variable 
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to a specific value, we extract information on the optimal 
numbers of MIMO antennas. Finally, we show that the 
exponential correlation matrix model predicts higher 
channel capacity than our proposal model because the 
correlation coefficient in our model decreases rapidly. 
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