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Summary 

Automatic teller machines have given customers banking at 
leisure. Unfortunately such convenience is coming at a price that 
sometimes can be costly. While external ATM problems have 
been causing nightmare to both customers and the banking 
industry, vulnerabilities to ATM systems are enticing unethical 
insiders to cause customers damage from within. Recently, 
researchers detailed an elegant attack that yields a customer’s 
personal identification number in as low as 15 tests. This paper 
demonstrates the attack in simpler terms and then suggests a 
hardening scheme for the vulnerability. The proposed hardening 
scheme is demonstrated at both the hardware and software level.  
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1. Introduction 
Researchers have been concerned with solving security 
issues of Automated Teller Machines (ATM). Attempts 
have been made to eliminate, if not, reduce risks 
associated with the use thereof. This paper will first 
review alternatives to Personal Identification Numbers 
(pin). Such alternatives, according to their proponents, 
will have less probabilities of: theft; cracking; or shoulder 
surfing. The paper will also review a proposed use of the 
reverse of a pin number when an ATM customer is under 
threat by a robber. Finally, the paper will discuss 
published work that enables insiders to crack pin numbers 
and then propose hardening to counter such vulnerability. 
First, are there any alternatives to pin numbers? 

1.1 Alternatives to pin numbers 

Pin numbers are considered by many to be vulnerable 
because customers are likely to choose ones that are easy 
to guess or easily found written down somewhere. Pin 
numbers are also subject to cracking not only by 
outsiders, but also by bank insiders.  

Furthermore, thieves are becoming bolder and creative in 
using skimmers to read the magnetic strip of ATM cards 
which contains account numbers, account types and 
banks numbers. To complete gathering of necessary 
information they use cameras to capture pins numbers. 
The thieves then make duplicate cards and use the pins to 
withdraw thousands of dollars from many accounts in a 

very short period of time directly from the bank ATM 
machine [1]. In search for answers, researcher proposed 
several alternatives and remedies. 

Alternative to numeric pins include graphical passwords. 
Proponents of this alternative expect it to be easier to 
recall, less vulnerable and can have more symbols than 
their numeric counterparts [2]. Others use a series of 
clickable points on an image or require customer-specific 
series of lines drawn on a screen [3]. Yet another 
alternative is the use of icons. The authors claim that it is 
easier to remember a sequence of clickable icons. They 
require permutation of the icons every time a user 
accesses an ATM machine. The authors claim that in 
addition to the aforementioned advantages over the pin 
system, their approach will not suffer from over the 
shoulder surfing as do pin and graphical password 
systems [4].   Although some authors argue that 
graphical passwords are entered on a small screen with a 
reduced observation angle and they dismiss the 
likelihood of shoulder surfing [5]. The next subsection is 
about the protection of customers using their pins at 
ATMs. 

1.2 Use of reverse pin for emergency 
handling 

This subsection was taken from a report prepared in 
support of the case of Mr. Joe Zingher against the 
banking industry [6]. Several websites have posted 
articles related to the case [7-11].   { “ Mr. Zingher 
proposed a protection system for customers of ATMs. 
His system is based on customers' Personal Identification 
Numbers (pin). He envisioned the system to report a 
robbery when a customer enters his/her pin number 
backward. Unfortunately the banking system rejected his 
proposal and left him with no option but to file a law 
suite. In 2005 Mr. Zingher asked me to become a witness 
in his law suite. Interestingly enough I found his idea to 
be feasible and works as follows:  a card holder under 
robbery at an ATM machine should enter the reverse of 
his/her pin number. Such action would honor the 
transaction but at the same time reveal information about 
the location of the incident to the law enforcement 
offices. It would also activate additional cameras in the 
neighborhood. Mr. Zingher was told that his idea would 
require expensive physical reconfiguration of the ATM 
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hardware. Moreover, he was told that an international 
treaty forbids any changes to the existing ATM 
system”}.  Despite the fact that the reverse pin idea is not 
directly related to the main theme of the paper, it leads to 
the analysis in the following subsection. 

1.3 Usable pin numbers for reverse pin 
actions 

To investigate the problem, it was logical to begin with 
the part that concerns banks the most: their losses. The 
banking industry will definitely be faced with a problem 
of reengineering the pin number system. Obviously there 
are many combinations of four decimal digit numbers the 
bank would have to retire. These are the combinations 
that are palindromes. That is, numbers of the form 
XYYX or XXXX. Out of the 10,000 possible four 
decimal digit numbers, there are 90 of the former and 10 
of the latter. If we exclude these numbers we would be 
left with 9900 non-palindromes. Obviously half of these 
numbers must be eliminated to avoid having a customer 
with a pin equals WXYZ sending a false emergency 
signal ostensibly on behalf of another with pin number 
equals ZYXW or vice versa. Eliminating palindromes, a 
bank would be left with 4950 numbers that could be 
used. However, that is not the end of combinations banks 
have to retire. Our investigation revealed that there are 
banks that do not allow three sets of easy to remember 
numbers [12]. These sets are: the set of identical digits, 
as in 1111; the set of sequences, as in 1234; the set of 
numbers with two or more consecutive zeros. However, 
the first set has already been eliminated as part of the 
palindromes. The second and third sets would have 16 
and 315 members respectively. Therefore we have to 
subtract 331 from 4950. A bank would therefore have 
4619 combinations for pin numbers.  This number is 
definitely less that the number of ATM customers of an 
average bank in the United States. That implies the 
existence of multiple ATM cards with the same pin, 
something banks never disclose. Having given a quick 
overview, subsequent sections will concentrate on the 
pin number problems. 

The rest of the paper is organized as follows. In section 2 
the calculation of pin numbers is reviewed. This is 
followed by protection of the pin number support 
systems in section 3. Section 4 will present 
implementation of a permutation function for hardening 
against the system’s vulnerabilities. Insider’s attempts to 
crack pins are presented in section 5. Finally, the 
conclusion is given in section 6. 

 
2.  Calculation of pin numbers 
 
A customer's pin number is calculated from his/her bank 

account number. First, the account number is encrypted 
using the Digital Encryption Standard (DES). The ASCII 
output of DES is then decimalized, i.e., converted into a 
hexadecimal number. Finally, the four most significant 
digits of the resulting hexadecimal number are extracted 
and used as the pin number. The next subsection will 
address decimalization. 
 
2.1 Decimalization 
 
Since hexadecimal digits include the decimal digits 0 
through 9 and the alphabetical letters A through F, a 
conversion of the letters was necessary. To that end, a 
decimalization table was established. The following is an 
example showing step by step computation of a pin from 
a randomly selected integer N. First, let us discuss the 
value of N chosen for this study. 
 
There is a probability of 1 out of 1016 that N is equal to 
an actual ATM card number. We will not disclose our 
version of the DES cipher of N albeit the chances are 
slim for it to be identical to a real card identifier. 
Besides, we also altered the cipher to further minimize 
the likelihood that both N and its pin match a real ATM 
pair. The next step is to show our randomly selected N 
and the hexadecimal number resulting from conversion 
of the altered cipher of N where: 
        

1. N  =  5432   1254   3405   3879  
2. Hex (DES[N]) =  9B5C  290A  6007  51CD 

 
The most significant four digits of the hexadecimal 
number in (2) are referred to as a prefix. The second and 
fourth digits of the prefix are a "B" and a "C" 
respectively. However, alphabetic letters are unavailable 
on any ATM keypad for practical reasons. Such keypads 
come with the decimal digits only. This is the 
justification behind use of a decimalization table for 
mapping the letters A through F to decimal digits.  Table 
1 shows the Typical Decimalization (Typ-Decim) of 
hexadecimal digits of the first row on the second. For our 
example, the prefix 9B5C would thereby be decimalized 
to a pin equals 9152. All tables are at the end of the 
paper for convenience of the presentation. 
 
Practically speaking, not all banks use the same 
technique for computing a pin. Some assign 
unchangeable pin numbers to their customers. Others 
give customers chances to enter their own. However, 
what a customer enters is not the actual pin used by the 
ATM system. To save time for the reader, we will 
simplify the process by saying that the system firstly 
computes a pin for the customer. Secondly, it subtracts 
the customer's chosen pin from the one generated by the 
system and stores the difference as offset for future 
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references. When a customer enters his/her chosen pin at 
any ATM, the offset is added to it and verification takes 
place.  
 
For example, let us assume that a customer entered 
his/her birth year 1984 for a pin. Assuming N to be the 
account number, the system will generate, as described 
before, a pin equals to say 9152. The customer's chosen 
pin (1984) is subtracted from the system's pin (9152) and 
the difference (7168) is stored as the future offset. The 
next subsection will address pin hacking. 
 
2.2 Pin Hacking: Brute force approach 
 
Without retiring any number, determination of the right 
pin will take up to 10000 guesses. On the average, the 
same would take up to 5000 guesses. If we retire the 
combinations discussed in section 1.3, we would be left 
with 4619 usable numbers.  In this case a person would 
need up to 4619 tries to determine a pin number. 
Equally, the average number of tries to determine a pin 
would be 2310. Brute force determination of a pin is 
therefore improbable. What makes the situation even 
worse is that one gets only three trials before the card is 
locked up by the ATM machine. That is, one has a 
probability of 1 out of 770 to correctly guess a pin. 
Hence, the system is not as vulnerable from outside as it 
is from inside. Mike Bond and Piotr Zielinski gave a 
more efficient alternative for bank insiders [13]. In the 
next section we will discuss their decimalization table’s 
approach which uses 15 tries to determine a pin. 
 
2.3 Pin Cracking: Digit Decimalization table 
approach 
 
In reference [13] they used the typical decimalization 
table to orchestrate a process for discovering a pin. 
Basically, they assume that an attacker has a Digit 
Decimalization Table (DDT) for each decimal digit. For 
a decimal digit d, the DDT table contains 1’s in columns 
where d appears as their header and 0’s otherwise. For 
example, the DDT for the numbers 7, herein referred to 
as D7, is shown on table 2. 
 
The choice of the number 7 for the DDT is taken from 
reference [13]. According to the reference, an attacker 
can use a Trial Pin (TP) 0000 against D7 to check for the 
existence of the number 7 in the Pin Under Attach 
(PUA). It is clear, according to the authors, that the 
number 7 is not part of the PUA. Hence, with one TP the 
attacker would be able to eliminate the number 7. The 
process continues until the attacker is able to eliminate 
all but the numbers that are part of the PUA. The 
attacker’s next step is to determine the correct order of 
the digits. The complete process won’t be further 

discussed in this paper. Interested readers are referred to 
the original document for more information.  
 
I have to admit my struggle to understand the argument 
used by the authors for retiring the number 7. This may 
be a deliberate deception of readers by the authors to 
avoid explaining the attack via a realistic decimalization 
table. Nevertheless, the authors gave enough clues that I 
will use to discuss a vulnerability that would lead to pin 
cracking and then I will propose a method of hardening 
it.  
 
2.4 Pin cracking via decimalization table 
  
The vulnerability discussed in this paper which may lead 
to cracking a pin depends on two key statements made 
by the authors. These statements are as follows: 

a) A decimalization table is many-to-one mapping 
between the hexadecimal digits and the numeric 
digits. 

b) A decimalization table should not be changed 
without permission. 

 
On the typical decimalization table, every decimal digits 
is listed once except for the digits 0 through 5 which are 
listed twice each.   However, for this section I will use 
table 3 instead of the typical decimalization on table 1.   
 
Let us assume that an insider can change the 
decimalization table. To clarify the process, a DDT for 
all the numeric digits is presented on table 4.                        
 
Without loss of generality, let us assume that an insider 
is to crack a PUA that is equal to 8359. To check for the 
existence of the decimal digit 0 in the PUA, the insider 
would add row D0 from table 4 to the Alt-Decim row of 
table 3 and store the result on a test table as shown on 
table 5.  The only difference between Table 3 and the test 
table  is the decimalization of the digit 9, which changed 
from 0 to 1. Table 5 will definitely fail to decimalize any 
digit to 0. 

 
Authentication of the PUA which is equal to 8359 would 
not be affected because it doesn't need to decimalize a 
digit to 0.  The insider would therefore conclude that the 
digit 0 is not part of the PUA. In a similar manner, one 
can easily see that generating test tables for D1 and D2 
and testing for the digits 1 and 2 respectively would 
reveal that neither would have any effect on the 
authentication of PUA. This leads the attacker to believe 
that the numeric digits 1 and 2 are not part of the PUA. 
However, when the insider generates a test table for D3 
as shown on table 6, the conclusion would be different. 
 
This time the authentication of the PUA would fail 
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because no digit would decimalize to 3. The insider 
would then conclude that the number 3 is part of the 
PUA. The process would continue in a similar manner 
until all the digits that are not part of the PUA are 
eliminated. At this point the insider would have put one 
foot at the door. The next step is to figure out the order 
of the digits, which is discussed in reference [13].  
 
One way to guard against cracking pin numbers via the 
decimalization table is to ensure that a single person is 
not allowed to make changes to the table according to the 
authors. Although this measure is reasonable, it may not 
be guaranteed all the time. A solution to this problem is 
proposed in the following section.  
 
3.  Protection of the decimalization table 
 
What concerns us here is that the typical decimalization 
table, or any alternative to it, should not be stored in their 
original form. Encryption was suggested by the authors 
to address such a vulnerability. However, a bijective 
function is proposed in this document to permute the 
hexadecimal entries of the table for hardening the 
vulnerability. Entries should be permuted in a way that 
even an insider would not be aware of. The use of a 
function f that maps each of the Hex-Dig digits to a 
unique hexadecimal digit is suggested for that purpose.  
 
Our proposed solution will depend on the fact that all the 
hexadecimal digits are members of the set of residues 
modulo 16. Henceforth, we will use properties of the set 
of residues modulo 16 to find a non-trivial permutation of 
these residues as discussed in the nest subsection. 
 
3.1 Permutation of the hexadecimal digits 
 
Let us denote the set of integers modulo 16 by Z16 and the 
required permutation function by f where f maps its 
domain Z16 to its range Z16  which is denoted as follows. 
 

f :  Z16    Z16  
 
For f to map a digit to its inverse the set Z16 must be a 
mathematical field. However, for Z16 to be a field the 
function f must map each element in Z16 to a unique 
inverse in a one to one onto manner.   
 
The function f is a one to one onto function defined as 
follows: for any element p in Z16 there exists an element C 
in Z16 such that f(p) is equal to C where f(p) is given by: 
 
f(p) = 3* p MOD 16 – 2 *(p MOD 2)     
                                                      p < 16    (1) 
 
To prove that C is the inverse of p, and vice versa, we 

need to show that:   
 f(C)   = f{ f(p)} =  p                                   (2) 
 
 
To show that p = f{ f(p)}  =f(C), the proof will be broken 
into two cases: the first is when p is equal to e where e is 
an even integer. The second is when p is equal to an odd 
integer o. However, before we proceed with the proof we 
need to remind the reader that in modulo arithmetic and 
for any mathematical operation # and integers a, b and 
Z, the following is valid: 
 
(a # b) MOD Z ={ a MOD Z# b MOD Z}MOD Z 
 
Case 1:  p = e 
 
Given e an even integer, equation 1 can be reduced to the 
following: 
 f(e) = 3 * e MOD 16                                  (3) 
 Thus, we need to show that:  f(C)   =  e   given  f(e)  =  C 
Since in general  f(C) = f{f(p)},  and  p = e, it follows that: 
        f(C) = f{f(e)} 
                = 3*{f(e)} MOD 16 
                = 3{3* e MOD 16} MOD 16 
                = 9* e MOD 16     
                = 8* e MOD 16 + e MOD 16 
                =  e 
 
Case 2:  m = o 
 
Given o an odd integer, equation 1 can be rewritten as 
follows: 

f(o) = 3* o MOD 16 – 2 (o MOD 2) 
Thus, we need to show that:  f(C)   = o given  f(o) =  C 
Since in general  f(C) = f{f(p)},  and p = o, it follows that: 
f(C) = f{f(o)} 
    = 3[3* o MOD 16 – 2*(o MOD 2)]MOD 16    
         – 2*[3 o MOD 16–2(o MOD 2)]MOD 2 
     =  9*o MOD 16 – 6 (o MOD 2)  –  
                  2[3 o MOD 2] 
              =  9* o MOD 16 – 6 – 2                           
              =  o MOD 16 + 8 o MOD 16 – 8 
              =  o  + 8 MOD 16 – 8  
              =  o 
 
To guarantee that inverses are unique one needs to show 
that f(w) is equal to f(y) if, and only if, w is equal to y. 
This condition is trivial in modulo arithmetic since both w 
and y belong to the field Z16. 
 
The hexadecimal digits would then be permuted by the 
function f as shown on table 7 below. The proposed 
solution will harden all but pins that are formed from the 
digits 0, 1, 8, and 9. Since there are 4! or 24 different 
permutations of four digits, it follows that the hardening 
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would cover more than 99% of the pin numbers. This 
solution can easily be realized via software. In the next 
section, a possible scenario for hardware implementation 
is presented. 
 
4.  Implementation of the permutation 
function 
 
Logically, the next step is to suggest a hardware 
implementation for the function. However, at this point, 
only the Boolean equations that can be used to derive C 
from p or vice versa are discussed. In a follow up paper, 
the complete details will be provided. 
 
To demonstrate the results and without loss of generality, 
the number 13 (D16) is our p. From equation 1 we have: 
     C   =  f(p)  
           = f(13)  
           =  3 * 13 MOD 16 – 2(13 MOD 2) 
           =  39 MOD 16 – 2  
           = 5. 
Conversely: from equation 2 we can show that 
      p  =  f(c) 
          = 3 *5 MOD 16 – 2(5 MOD 2)  
          = 15 MOD 16 – 2  
          =  13. 
 
Let us assume that C and p are expressed in binary as 
C1C2C3C4 and p1p2p3p4 respectively. Furthermore, let us 
assume that for any digit d, d’ represent the complement 
of d then: 
C1 =  p'1p2p'3  + p1p'2 + p2p3                    (4) 
C2 =  p2 @  p3                                             (5) 
Ck =  pk                                         for k = 3,4            (6) 
  
Where the @ character is used to represent the 
exclusive-or operator. 
 
Now from the implementation equations 4, 5, and 6 we 
can find the value of C when  p = 1310 = 11012 as follows: 
  
 C1 =  p'1*p2*p'3  + p1*p'2 + p2*p3 = 0  + 0 + 0    
     = 0 
 C2 =  p2 @p3 =  1 @ 0 = 1  
 C3 = 0 
 C4 = 1  
 
We can also go back to find P from C = 01012  as follows: 
 
P1 =  C'1*C2*C'3  + C1*C'2 + C2*C3  
    = 1  + 0 + 0  
    = 1 
P2 =  C2 @ C3   
    =  1 @ 0  
    =  1  

P3 = 0 
P4 = 1  
 
This shows that P = 11012 
 
5. Detection of insider’s attempts 
 
The function f was used to compute entries of the third 
row from the firs and the results are shown on table 8.. An 
insider would be familiar with the first two rows of the 
table. However, he/she would not see rows three and four. 
The hardened decimalization would use the first, third and 
fourth rows of the table. Further information about the 
implementation and improvement of the process to harden 
against all possible combinations will be given in a future 
paper. 

 
6.  Conclusion 
This paper proposed a hardening against a systematic 
attack that renders Personal Identification Numbers of 
ATM customers to interested bank insiders. The attacker 
manipulates stored data in a way that enables him/her via 
the process of elimination to determine the four digits of a 
pin number. The attacker then uses other techniques to 
find the correct order of the digits. The proposal suggests 
encoding of vulnerable data in a simple but hard to detect 
way, thereby complicating the cracking process. The 
encoding will provide protection to 99% of the space of 
pin numbers.  
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Table 1.  Decimalization of Hexadecimal numbers 

 

 
 

Table 2. Decimalization table for the number 7. 

 

 

 

Table 3. Altered Decimalization Table 

 
Alt-Decim 6 3 8 5 9 1 4 3 2 0 6 8 5 9 4 7 
D0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
D1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
D2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
D3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
D4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
D5 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 
D6 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
D8 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
D9 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

 
Table 4.  Digit decimalization table for the numeric digits 

 
 

 

 
 

Table 5. Test table for D0 

 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

D7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F 
Alt-Decim 6 3 8 5 9 1 4 3 2 0 6 8 5 9 4 7 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Alt-Decim 6 3 8 5 9 1 4 3 2 1 6 8 5 9 4 7 
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Table 6 Test table for D3 

 

 

 

Table 7. Permutation of the Hexadecimal digits 

 

 

 

 
Table 8.  Permuted Decimalization Table 

 

 

 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Alt-Decim 6 4 8 5 9 1 4 4 2 0 6 8 5 9 4 7 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Perm-Hex 0 1 6 7 C D 2 3 8 9 E F 4 5 A B 

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F 
Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
Perm-Hex 0 1 6 7 C D 2 3 8 9 E F 4 5 A B 
Per-Decim 0 1 6 7 2 3 2 3 8 9 4 5 4 5 0 1 


