
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

283

Hardening of Pin Numbers of Automated Teller Machines

Eltayeb Salih Abuelyman
Dean of the College of Computer and Information Sciences

 Prince Sultan University, Riyadh 11586, Saudi Arabia

Summary

Automatic teller machines have given customers banking at
leisure. Unfortunately such convenience is coming at a price that
sometimes can be costly. While external ATM problems have
been causing nightmare to both customers and the banking
industry, vulnerabilities to ATM systems are enticing unethical
insiders to cause customers damage from within. Recently,
researchers detailed an elegant attack that yields a customer’s
personal identification number in as low as 15 tests. This paper
demonstrates the attack in simpler terms and then suggests a
hardening scheme for the vulnerability. The proposed hardening
scheme is demonstrated at both the hardware and software level.

Keywords: Automated Teller Machines, Personal
Identification Number, Decimalization, Hardening, Modulo
arithmetic.

1. Introduction
Researchers have been concerned with solving security
issues of Automated Teller Machines (ATM). Attempts
have been made to eliminate, if not, reduce risks
associated with the use thereof. This paper will first
review alternatives to Personal Identification Numbers
(pin). Such alternatives, according to their proponents,
will have less probabilities of: theft; cracking; or shoulder
surfing. The paper will also review a proposed use of the
reverse of a pin number when an ATM customer is under
threat by a robber. Finally, the paper will discuss
published work that enables insiders to crack pin numbers
and then propose hardening to counter such vulnerability.
First, are there any alternatives to pin numbers?

1.1 Alternatives to pin numbers

Pin numbers are considered by many to be vulnerable
because customers are likely to choose ones that are easy
to guess or easily found written down somewhere. Pin
numbers are also subject to cracking not only by
outsiders, but also by bank insiders.

Furthermore, thieves are becoming bolder and creative in
using skimmers to read the magnetic strip of ATM cards
which contains account numbers, account types and
banks numbers. To complete gathering of necessary
information they use cameras to capture pins numbers.
The thieves then make duplicate cards and use the pins to
withdraw thousands of dollars from many accounts in a

very short period of time directly from the bank ATM
machine [1]. In search for answers, researcher proposed
several alternatives and remedies.

Alternative to numeric pins include graphical passwords.
Proponents of this alternative expect it to be easier to
recall, less vulnerable and can have more symbols than
their numeric counterparts [2]. Others use a series of
clickable points on an image or require customer-specific
series of lines drawn on a screen [3]. Yet another
alternative is the use of icons. The authors claim that it is
easier to remember a sequence of clickable icons. They
require permutation of the icons every time a user
accesses an ATM machine. The authors claim that in
addition to the aforementioned advantages over the pin
system, their approach will not suffer from over the
shoulder surfing as do pin and graphical password
systems [4]. Although some authors argue that
graphical passwords are entered on a small screen with a
reduced observation angle and they dismiss the
likelihood of shoulder surfing [5]. The next subsection is
about the protection of customers using their pins at
ATMs.

1.2 Use of reverse pin for emergency
handling

This subsection was taken from a report prepared in
support of the case of Mr. Joe Zingher against the
banking industry [6]. Several websites have posted
articles related to the case [7-11]. { “ Mr. Zingher
proposed a protection system for customers of ATMs.
His system is based on customers' Personal Identification
Numbers (pin). He envisioned the system to report a
robbery when a customer enters his/her pin number
backward. Unfortunately the banking system rejected his
proposal and left him with no option but to file a law
suite. In 2005 Mr. Zingher asked me to become a witness
in his law suite. Interestingly enough I found his idea to
be feasible and works as follows: a card holder under
robbery at an ATM machine should enter the reverse of
his/her pin number. Such action would honor the
transaction but at the same time reveal information about
the location of the incident to the law enforcement
offices. It would also activate additional cameras in the
neighborhood. Mr. Zingher was told that his idea would
require expensive physical reconfiguration of the ATM

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

284

hardware. Moreover, he was told that an international
treaty forbids any changes to the existing ATM
system”}. Despite the fact that the reverse pin idea is not
directly related to the main theme of the paper, it leads to
the analysis in the following subsection.

1.3 Usable pin numbers for reverse pin
actions

To investigate the problem, it was logical to begin with
the part that concerns banks the most: their losses. The
banking industry will definitely be faced with a problem
of reengineering the pin number system. Obviously there
are many combinations of four decimal digit numbers the
bank would have to retire. These are the combinations
that are palindromes. That is, numbers of the form
XYYX or XXXX. Out of the 10,000 possible four
decimal digit numbers, there are 90 of the former and 10
of the latter. If we exclude these numbers we would be
left with 9900 non-palindromes. Obviously half of these
numbers must be eliminated to avoid having a customer
with a pin equals WXYZ sending a false emergency
signal ostensibly on behalf of another with pin number
equals ZYXW or vice versa. Eliminating palindromes, a
bank would be left with 4950 numbers that could be
used. However, that is not the end of combinations banks
have to retire. Our investigation revealed that there are
banks that do not allow three sets of easy to remember
numbers [12]. These sets are: the set of identical digits,
as in 1111; the set of sequences, as in 1234; the set of
numbers with two or more consecutive zeros. However,
the first set has already been eliminated as part of the
palindromes. The second and third sets would have 16
and 315 members respectively. Therefore we have to
subtract 331 from 4950. A bank would therefore have
4619 combinations for pin numbers. This number is
definitely less that the number of ATM customers of an
average bank in the United States. That implies the
existence of multiple ATM cards with the same pin,
something banks never disclose. Having given a quick
overview, subsequent sections will concentrate on the
pin number problems.

The rest of the paper is organized as follows. In section 2
the calculation of pin numbers is reviewed. This is
followed by protection of the pin number support
systems in section 3. Section 4 will present
implementation of a permutation function for hardening
against the system’s vulnerabilities. Insider’s attempts to
crack pins are presented in section 5. Finally, the
conclusion is given in section 6.

2. Calculation of pin numbers

A customer's pin number is calculated from his/her bank

account number. First, the account number is encrypted
using the Digital Encryption Standard (DES). The ASCII
output of DES is then decimalized, i.e., converted into a
hexadecimal number. Finally, the four most significant
digits of the resulting hexadecimal number are extracted
and used as the pin number. The next subsection will
address decimalization.

2.1 Decimalization

Since hexadecimal digits include the decimal digits 0
through 9 and the alphabetical letters A through F, a
conversion of the letters was necessary. To that end, a
decimalization table was established. The following is an
example showing step by step computation of a pin from
a randomly selected integer N. First, let us discuss the
value of N chosen for this study.

There is a probability of 1 out of 1016 that N is equal to
an actual ATM card number. We will not disclose our
version of the DES cipher of N albeit the chances are
slim for it to be identical to a real card identifier.
Besides, we also altered the cipher to further minimize
the likelihood that both N and its pin match a real ATM
pair. The next step is to show our randomly selected N
and the hexadecimal number resulting from conversion
of the altered cipher of N where:

1. N = 5432 1254 3405 3879
2. Hex (DES[N]) = 9B5C 290A 6007 51CD

The most significant four digits of the hexadecimal
number in (2) are referred to as a prefix. The second and
fourth digits of the prefix are a "B" and a "C"
respectively. However, alphabetic letters are unavailable
on any ATM keypad for practical reasons. Such keypads
come with the decimal digits only. This is the
justification behind use of a decimalization table for
mapping the letters A through F to decimal digits. Table
1 shows the Typical Decimalization (Typ-Decim) of
hexadecimal digits of the first row on the second. For our
example, the prefix 9B5C would thereby be decimalized
to a pin equals 9152. All tables are at the end of the
paper for convenience of the presentation.

Practically speaking, not all banks use the same
technique for computing a pin. Some assign
unchangeable pin numbers to their customers. Others
give customers chances to enter their own. However,
what a customer enters is not the actual pin used by the
ATM system. To save time for the reader, we will
simplify the process by saying that the system firstly
computes a pin for the customer. Secondly, it subtracts
the customer's chosen pin from the one generated by the
system and stores the difference as offset for future

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

285

references. When a customer enters his/her chosen pin at
any ATM, the offset is added to it and verification takes
place.

For example, let us assume that a customer entered
his/her birth year 1984 for a pin. Assuming N to be the
account number, the system will generate, as described
before, a pin equals to say 9152. The customer's chosen
pin (1984) is subtracted from the system's pin (9152) and
the difference (7168) is stored as the future offset. The
next subsection will address pin hacking.

2.2 Pin Hacking: Brute force approach

Without retiring any number, determination of the right
pin will take up to 10000 guesses. On the average, the
same would take up to 5000 guesses. If we retire the
combinations discussed in section 1.3, we would be left
with 4619 usable numbers. In this case a person would
need up to 4619 tries to determine a pin number.
Equally, the average number of tries to determine a pin
would be 2310. Brute force determination of a pin is
therefore improbable. What makes the situation even
worse is that one gets only three trials before the card is
locked up by the ATM machine. That is, one has a
probability of 1 out of 770 to correctly guess a pin.
Hence, the system is not as vulnerable from outside as it
is from inside. Mike Bond and Piotr Zielinski gave a
more efficient alternative for bank insiders [13]. In the
next section we will discuss their decimalization table’s
approach which uses 15 tries to determine a pin.

2.3 Pin Cracking: Digit Decimalization table
approach

In reference [13] they used the typical decimalization
table to orchestrate a process for discovering a pin.
Basically, they assume that an attacker has a Digit
Decimalization Table (DDT) for each decimal digit. For
a decimal digit d, the DDT table contains 1’s in columns
where d appears as their header and 0’s otherwise. For
example, the DDT for the numbers 7, herein referred to
as D7, is shown on table 2.

The choice of the number 7 for the DDT is taken from
reference [13]. According to the reference, an attacker
can use a Trial Pin (TP) 0000 against D7 to check for the
existence of the number 7 in the Pin Under Attach
(PUA). It is clear, according to the authors, that the
number 7 is not part of the PUA. Hence, with one TP the
attacker would be able to eliminate the number 7. The
process continues until the attacker is able to eliminate
all but the numbers that are part of the PUA. The
attacker’s next step is to determine the correct order of
the digits. The complete process won’t be further

discussed in this paper. Interested readers are referred to
the original document for more information.

I have to admit my struggle to understand the argument
used by the authors for retiring the number 7. This may
be a deliberate deception of readers by the authors to
avoid explaining the attack via a realistic decimalization
table. Nevertheless, the authors gave enough clues that I
will use to discuss a vulnerability that would lead to pin
cracking and then I will propose a method of hardening
it.

2.4 Pin cracking via decimalization table

The vulnerability discussed in this paper which may lead
to cracking a pin depends on two key statements made
by the authors. These statements are as follows:

a) A decimalization table is many-to-one mapping
between the hexadecimal digits and the numeric
digits.

b) A decimalization table should not be changed
without permission.

On the typical decimalization table, every decimal digits
is listed once except for the digits 0 through 5 which are
listed twice each. However, for this section I will use
table 3 instead of the typical decimalization on table 1.

Let us assume that an insider can change the
decimalization table. To clarify the process, a DDT for
all the numeric digits is presented on table 4.

Without loss of generality, let us assume that an insider
is to crack a PUA that is equal to 8359. To check for the
existence of the decimal digit 0 in the PUA, the insider
would add row D0 from table 4 to the Alt-Decim row of
table 3 and store the result on a test table as shown on
table 5. The only difference between Table 3 and the test
table is the decimalization of the digit 9, which changed
from 0 to 1. Table 5 will definitely fail to decimalize any
digit to 0.

Authentication of the PUA which is equal to 8359 would
not be affected because it doesn't need to decimalize a
digit to 0. The insider would therefore conclude that the
digit 0 is not part of the PUA. In a similar manner, one
can easily see that generating test tables for D1 and D2
and testing for the digits 1 and 2 respectively would
reveal that neither would have any effect on the
authentication of PUA. This leads the attacker to believe
that the numeric digits 1 and 2 are not part of the PUA.
However, when the insider generates a test table for D3
as shown on table 6, the conclusion would be different.

This time the authentication of the PUA would fail

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

286

because no digit would decimalize to 3. The insider
would then conclude that the number 3 is part of the
PUA. The process would continue in a similar manner
until all the digits that are not part of the PUA are
eliminated. At this point the insider would have put one
foot at the door. The next step is to figure out the order
of the digits, which is discussed in reference [13].

One way to guard against cracking pin numbers via the
decimalization table is to ensure that a single person is
not allowed to make changes to the table according to the
authors. Although this measure is reasonable, it may not
be guaranteed all the time. A solution to this problem is
proposed in the following section.

3. Protection of the decimalization table

What concerns us here is that the typical decimalization
table, or any alternative to it, should not be stored in their
original form. Encryption was suggested by the authors
to address such a vulnerability. However, a bijective
function is proposed in this document to permute the
hexadecimal entries of the table for hardening the
vulnerability. Entries should be permuted in a way that
even an insider would not be aware of. The use of a
function f that maps each of the Hex-Dig digits to a
unique hexadecimal digit is suggested for that purpose.

Our proposed solution will depend on the fact that all the
hexadecimal digits are members of the set of residues
modulo 16. Henceforth, we will use properties of the set
of residues modulo 16 to find a non-trivial permutation of
these residues as discussed in the nest subsection.

3.1 Permutation of the hexadecimal digits

Let us denote the set of integers modulo 16 by Z16 and the
required permutation function by f where f maps its
domain Z16 to its range Z16 which is denoted as follows.

f : Z16 Z16

For f to map a digit to its inverse the set Z16 must be a
mathematical field. However, for Z16 to be a field the
function f must map each element in Z16 to a unique
inverse in a one to one onto manner.

The function f is a one to one onto function defined as
follows: for any element p in Z16 there exists an element C
in Z16 such that f(p) is equal to C where f(p) is given by:

f(p) = 3* p MOD 16 – 2 *(p MOD 2)
 p < 16 (1)

To prove that C is the inverse of p, and vice versa, we

need to show that:
 f(C) = f{ f(p)} = p (2)

To show that p = f{ f(p)} =f(C), the proof will be broken
into two cases: the first is when p is equal to e where e is
an even integer. The second is when p is equal to an odd
integer o. However, before we proceed with the proof we
need to remind the reader that in modulo arithmetic and
for any mathematical operation # and integers a, b and
Z, the following is valid:

(a # b) MOD Z ={ a MOD Z# b MOD Z}MOD Z

Case 1: p = e

Given e an even integer, equation 1 can be reduced to the
following:
 f(e) = 3 * e MOD 16 (3)
 Thus, we need to show that: f(C) = e given f(e) = C
Since in general f(C) = f{f(p)}, and p = e, it follows that:
 f(C) = f{f(e)}
 = 3*{f(e)} MOD 16
 = 3{3* e MOD 16} MOD 16
 = 9* e MOD 16
 = 8* e MOD 16 + e MOD 16
 = e

Case 2: m = o

Given o an odd integer, equation 1 can be rewritten as
follows:

f(o) = 3* o MOD 16 – 2 (o MOD 2)
Thus, we need to show that: f(C) = o given f(o) = C
Since in general f(C) = f{f(p)}, and p = o, it follows that:
f(C) = f{f(o)}
 = 3[3* o MOD 16 – 2*(o MOD 2)]MOD 16
 – 2*[3 o MOD 16–2(o MOD 2)]MOD 2
 = 9*o MOD 16 – 6 (o MOD 2) –
 2[3 o MOD 2]
 = 9* o MOD 16 – 6 – 2
 = o MOD 16 + 8 o MOD 16 – 8
 = o + 8 MOD 16 – 8
 = o

To guarantee that inverses are unique one needs to show
that f(w) is equal to f(y) if, and only if, w is equal to y.
This condition is trivial in modulo arithmetic since both w
and y belong to the field Z16.

The hexadecimal digits would then be permuted by the
function f as shown on table 7 below. The proposed
solution will harden all but pins that are formed from the
digits 0, 1, 8, and 9. Since there are 4! or 24 different
permutations of four digits, it follows that the hardening

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

287

would cover more than 99% of the pin numbers. This
solution can easily be realized via software. In the next
section, a possible scenario for hardware implementation
is presented.

4. Implementation of the permutation
function

Logically, the next step is to suggest a hardware
implementation for the function. However, at this point,
only the Boolean equations that can be used to derive C
from p or vice versa are discussed. In a follow up paper,
the complete details will be provided.

To demonstrate the results and without loss of generality,
the number 13 (D16) is our p. From equation 1 we have:
 C = f(p)
 = f(13)
 = 3 * 13 MOD 16 – 2(13 MOD 2)
 = 39 MOD 16 – 2
 = 5.
Conversely: from equation 2 we can show that
 p = f(c)
 = 3 *5 MOD 16 – 2(5 MOD 2)
 = 15 MOD 16 – 2
 = 13.

Let us assume that C and p are expressed in binary as
C1C2C3C4 and p1p2p3p4 respectively. Furthermore, let us
assume that for any digit d, d’ represent the complement
of d then:
C1 = p'1p2p'3 + p1p'2 + p2p3 (4)
C2 = p2 @ p3 (5)
Ck = pk for k = 3,4 (6)

Where the @ character is used to represent the
exclusive-or operator.

Now from the implementation equations 4, 5, and 6 we
can find the value of C when p = 1310 = 11012 as follows:

 C1 = p'1*p2*p'3 + p1*p'2 + p2*p3 = 0 + 0 + 0
 = 0
 C2 = p2 @p3 = 1 @ 0 = 1
 C3 = 0
 C4 = 1

We can also go back to find P from C = 01012 as follows:

P1 = C'1*C2*C'3 + C1*C'2 + C2*C3
 = 1 + 0 + 0
 = 1
P2 = C2 @ C3
 = 1 @ 0
 = 1

P3 = 0
P4 = 1

This shows that P = 11012

5. Detection of insider’s attempts

The function f was used to compute entries of the third
row from the firs and the results are shown on table 8.. An
insider would be familiar with the first two rows of the
table. However, he/she would not see rows three and four.
The hardened decimalization would use the first, third and
fourth rows of the table. Further information about the
implementation and improvement of the process to harden
against all possible combinations will be given in a future
paper.

6. Conclusion
This paper proposed a hardening against a systematic
attack that renders Personal Identification Numbers of
ATM customers to interested bank insiders. The attacker
manipulates stored data in a way that enables him/her via
the process of elimination to determine the four digits of a
pin number. The attacker then uses other techniques to
find the correct order of the digits. The proposal suggests
encoding of vulnerable data in a simple but hard to detect
way, thereby complicating the cracking process. The
encoding will provide protection to 99% of the space of
pin numbers.

References
[1]

http://www.uboc.com/about/main/0,,2485_703976951,00.ht
ml

[2] Bogdan Hoanca and Kenrick Mock “Eye Tracking Research
& Application” Proceedings of the 2006 symposium on Eye
tracking research & applications San Diego, California , pp
35 – 35, 2006

[3] Davis, D., Monrose, F. and Reiter, M. “On User Choice in
Graphical Password Schemes.” Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA 2004.

[4] Bogdan Hoanca, Kenrick J. Mock “Screen oriented
technique for reducing the incidence of shoulder surfing”.
Proceedings of the Security and Management, pp 334-340,
Las Vegas 2005:

[5] Jansen, W. “ Authenticating Mobile Device Users through
Image Selection.” The Internet Society: Advances in
Learning, Commerce and Security, v30, p 2004

[6] Abuelyaman E. " Effectiveness of Reverse ATM PIN for
Protection" Unpublished Technical Report, Illinois State
University, 2005

[7]http://sandwalk.blogspot.com/2007/01/reverse-pin-at-atm-su
mmons-police.html#comment-4395864760311174591

[8]http://sandwalk.blogspot.com/2007/03/more-on-reverse-pin-
numbers.html

[9] http://www.snopes.com/business/bank/pinalert.asp

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

288

[10]http://viewsreviews.wordpress.com/2006/11/24/atm-revers
e-pin/

[11] http://www.hoax-slayer.com/reverse-pin-ATM.shtml
[12]

http://en.wikipedia.org/wiki/Personal_identification_numbe
r

[13] Mike Bond and Piotre Zielinski “Decimalization Table
attack for Pin Cracking” A Technical Report, Computer
Laboratory, University of Cambridge UCAM-CL-TR 560

Eltayeb Salih Abuelyaman
received a PhD degree in
Computer Engineering from the
University of Arizona in 1988. He
served as faculty member at
various universities in the US for
18 years before moving to Prince
Sultan University in Saudi Arabia
where he served as a Faculty
Member and Director of the
Information Technology and
Computing Services. Currently, he

serves as the Dean of the College of Computer and Information
Sciences. His current research Interest is in the areas of
Computer Networks and Information Security and Database.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

289

Table 1. Decimalization of Hexadecimal numbers

Table 2. Decimalization table for the number 7.

Table 3. Altered Decimalization Table

Alt-Decim 6 3 8 5 9 1 4 3 2 0 6 8 5 9 4 7
D0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
D1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
D3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
D5 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
D6 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
D8 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
D9 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

Table 4. Digit decimalization table for the numeric digits

Table 5. Test table for D0

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

D7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
Alt-Decim 6 3 8 5 9 1 4 3 2 0 6 8 5 9 4 7

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

Alt-Decim 6 3 8 5 9 1 4 3 2 1 6 8 5 9 4 7

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

290

Table 6 Test table for D3

Table 7. Permutation of the Hexadecimal digits

Table 8. Permuted Decimalization Table

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

Alt-Decim 6 4 8 5 9 1 4 4 2 0 6 8 5 9 4 7

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

Perm-Hex 0 1 6 7 C D 2 3 8 9 E F 4 5 A B

Hex-Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
Typ-Decim 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
Perm-Hex 0 1 6 7 C D 2 3 8 9 E F 4 5 A B
Per-Decim 0 1 6 7 2 3 2 3 8 9 4 5 4 5 0 1

