
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

291

An Approach to ensure Security through Bit-level
Encryption with Possible Lossless Compression

Pranam Paul

Dr. B. C. Roy Engineering College
Durgapur - 713206

West Bengal, INDIA

Saurabh Dutta
Dr. B. C. Roy

Engineering College
Durgapur - 713206

West Bengal, INDIA
ㅍ

A K Bhattacharjee
 National Institute of Technology

Durgapur - 713209
West Bengal, INDIA

Abstract
 This paper presents a block cipher based on
private key to be implemented in bit-level. The
scheme used in the proposed cipher is substitution-
based. Encryption through this proposed cipher also
results in possible lossless compression. Efficiencies
of the proposed cipher are observed and compared
with the existing cipher IDEA on execution time,
rate of compression achieved and chi-square value.
Graphically frequency-distribution of characters in
source and corresponding encrypted file are
observed for a sample file. On the basis of all
observations made, proposed cipher is found to be
efficient. Requirements of key space of least 166-bit
makes it invulnerable to attacks. It is highly
compatible with existing cipher like IDEA.

Key Words: cryptography, encryption, decryption,

cipher, private key, symmetric key,
plain text, cryptographic modeling.

1. Introduction

A ciphering protocol not vulnerable to
cryptanalytic attacks is considered to be a strong tool
in ensuring security. If a lossless compression is
achieved while encrypting using such a protocol, an
extra flavor of effectiveness is added to it. The paper
presents a block-cipher, BSDMB, “Block
Substitution Differentiation for Minimum-valued
Block”. The BSDMS protocol can encrypt file of
any size and any type, and operates in bit-level. Its
performances have been observed and compared
with-known IDEA, International Data Encryption
Algorithm to achieve a potentially satisfactory level
of efficiency.

Section 2 presents the scheme followed in
the encryption technique. Section 3 describes an

implementation of the technique. Section 4
presents results of executing the technique on some
real files. Section 5 is an analytical discussion on
the technique with a conclusion.

2. The Scheme

This section presents a description of the
actual scheme, used during implementing BSDMB
technique. To encrypt a source-bit-stream, we
decomposed it into some blocks of equal length.
Then each block is replaced with some other
binary blocks. Section 2.1 describes the scheme
used in ciphering technique, while Section 2.2,
formation of key is discussed and in section 2.3,
describes the scheme used in deciphering
technique [1] [2] [3] [4] [9].

2.1 Stepwise Presentation of Ciphering

Model
At first, source file is converted into binary

form i.e. source bit-stream which is decomposed
into blocks of equal length; say L bits where L is
an integer and L ≥ 2. It may be happened that after
decomposition of total source-bit-stream into some
L-bit blocks, a blocks, less than L bits is left at last,
say UB (means length of UB < L) which is kept
unchanged during encryption.

Let an intermediate cipher bits stream, E
be null at initial stage.

Step 1: We find out minimum and maximum

valued block among all blocks of L bits
length in source bit-stream, say “min” and
“max” respectively. We keep min into Key.

Step 2: Let D = max – min. We find out the
number of bits in D, say t, after which first
1 is appeared in D from left most bit. Let

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

292

EL be maximum required bit to represent
encrypted blocks. So EL = L – t. This EL is
also kept into Key.

Step 3: We calculate number of bits in D from (t +
1)th bit, until first appearance of 0, say CB.
So CB numbers of bit in D from (t+1)th are
all 1. This CB is also kept in Key.

Step 4: We again calculate the numbers of bits in D,
say t1, after which first 1 is appeared in D
from (t+CB)th bit. Let us calculate C_B = L
– (t + CB + t1) and t1 is also kept in key.

Step 5: We take first L-bit from source bit-stream
and assigned it into B.

Step 6: First t bits are left from B at beginning
(means from MSB bit) and next CB bits
from B are assigned into TB.

 If all bits in TB are 1,
Next t1 bits from B are not considered.
After that, next C_B bits from B are
appended with TB at end.

 Else (at least one 0 is in TB)
Next (EL – CB) bits are appended with
TB at end.

End if
Step 7: Now TB is concatenated with E at last and

recently generated E is used as intermediate
ciphered bit-stream for next round.

Step 8: We take next L-bit from source bit-stream in
B and go to Step 6. This process will
continue till the end of the ciphered bit-
stream and finally, we get intermediate
cipher bit-stream, E.

Step 9: To generate cipher bit-stream concatenate
maintaining following sequence: UB, D0
numbers of 0 (ZERO) as dummy bits and
intermediate cipher bits stream, E.
Accordingly from cipher bit-stream, cipher
text will be generated.

2.2 Proposed Structure of 166-bit Key

For this algorithm key consists of 7
segments.

If L-bit block is taken for the encryption of
source bit-stream, let us find out an integer; say d for
which 2d – 1 < L-1 ≤ 2d – 1. Key structure is shown in
figure 2.2.1.

We implement the protocol with

decomposition of plane text into some blocks
having each 128-bit length. So L = 128 and 27 – 1 <
128 – 1 ≤ 27 – 1, so d = 7. For the cause, 5 × 7 +
128 + 3 = 166- bit key is generated. On the
discussion in section 5, less than 166-bit key in
length may be generated, but the small key is very
easy to break. So, we considers only 166-bit or
greater than 166-bit key for this protocol.

2.3 Stepwise Presentation of

Deciphering Model
After receiving the target block and key,

receiver comes to know information for each block,
which was sent. After receiving the required
information, the decryption authority performs the
task of decryption.

From key with the reference of figure 2.2.1,
receiver comes to know source block length, say L,
length of unchanged block, say NUB, number of
dummy 0s, say D0, minimum valued block with L
bits, say “min”, number of compared bits i.e. CB

Description Size

d

Segment

1st Binary form of L with d
bits representation.

2nd d bits binary form of number
of unprocessed bits

3rd 3 bits binary form of number
of dummy 0 (ZERO) to be
added for making total
encrypted string length as
multiple of 8.

5th Minimum required bit to
represent (maximum valued
block – min)

d

3

d

Total Size of Key: 5d + L + 3

Figure 2.2.1
Key Structure

4th L-bit minimum valued blocks,
that is min

L

6th Numbers of compared bits, in
which all are 1 for compressed
blocks, otherwise there is at
least one 0.

d

7th Numbers of compressed bits in
each compressed of block.

d

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

293

and number of compressed bits, say t1 and RB that is
minimum required bits to represent deference
between maximum valued block and “min” during
encryption.

Let an incomplete deciphered bit- stream,
IDB be null initially.
Step 1: We convert binary form of cipher text and

get target bit-stream. Then we take NUB bits
from beginning of encrypted bits stream, say
UB and leave next D0 bits.

Step 2: Next CB bits stream from target bit-stream
are taken.

Step 3: If there is at least one 0 (ZERO) in those CB
bits stream, we take next (RB – CB) bits
and append at last of those CB bits
steam, it is treated as T, a temporary bit-
stream.

Else (means all CB bits are 1 or CB = 0)
 We take next C_B = {RB – (CB + t1)}

bits.
Now we concatenate with the sequence
CB bits, t1 numbers of 0s and recently
taken C_B bits. It is treated as T, a
temporary bit-stream.

End if
Step 4: We append (L – RB) numbers of 0s at left

position with T, say TB.
Step 5: Let A = min + TB. Now A is concatenated

with IDB at right most end and recently
generated IDB is used as incomplete
deciphered bit-stream for next round.

Step 6: Go to Step 2. This process will continue till
the end of the target bit-stream.

Step 7: Finally, we concatenate UB with incomplete
deciphered bit-stream, IDB at the end and
generate complete deciphering bits stream as
well as also generate deciphering text.

3. An Implementation

We consider a small plaintext P as
“encrypt”. The stream of bits, S, representing P is as
follows:
011001010110111001100011011100100111100101
11000001110100
 Now S is decomposed into some blocks with
16 bits length, so refer to section 2.1, L = 16. These
are 0110010101101110, 0110001101110010,
0111100101110000 and 01110100 that last block is
remained unchanged, say UB. In section 3.1,
encryption is been discussed while section 3.2 is

used to discuss about key formation and at last,
how correct decryption is been done, discussed in
section 3.3.
3.1 Encryption

We find out minimum and maximum
valued blocks from set of decomposed block, say
“min” and “max” respectively.

min = 0110001101110010
max = 0111100101110000

D = max – min = 0001010111111110
EB = Required Minimum bit to represent D = 13

CB = Number of Compared Bits = 1
t1 = Number of Compressed Bits = 1
Process of encryption for each block

except unchanged block, UB is shown in table 3.1.1
Table 3.1.1

Difference of Each Block

Source

Bit
Block.

Let’s
consider

this
column

as A

Difference

of block
from D
(A – D)

Let’s
consider

this
column as

B

Leave
(L – EB)
i.e. 3 bits
from left
most end

of B

Let’s
consider

this
column

as T

If first CB
i.e. 1 bits
all are 1,

leave next
t1 i.e. 1 bit
and take

next
{EB –

(CB+t1)}
i.e. 11 bits,
else take

next (EB –
CB) i.e. 12

bits

Bits in
target
block

01100101
01101110

00000001
11111100

0000111
111100

000011111
1100

13

01100011
01110010

00000000
00000000

0000000
000000

000000000
0000

13

01111001
01110000

00010101
11111110

1010111
111110

110111111
110

12

So the intermediate target bit-stream is
00001111111000000000000000110111111110,
say E, length of which is (13+13+12) = 34 bits.
Length of UB is 8 bits so the total length of
together E and UB is 46 bits. That means 2 dummy
bits i.e. 0 are required to make length of 46-bit-
stream, multiple of 8. So concatenating with the
sequence UB, 2 dummy 0 s and E, target bit-stream
is
01110100000000111111100000000000000011011
1111110. The generated equivalent plain text is
“t♥°♪■”.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

294

3.2 Key Generation

For this particular example, source bit-
stream is decomposed into some blocks, having
equal length 16 bits. Refer to section 2.2, L = 16 and
4 i.e. d bits are required to represent binary form of
(16-1) = 15. Key generation has been shown table
3.2.1.

Table 3.2.1
Replacing Code for distinct blocks

Segment
(in MSB-to-

LSB
direction)

Description of
the segment

Number of
required

bits

Significant
Bits

1 Length of the
blocks

4 1111

2 Number of bits in
unchanged block

4 1000

3 Number of
dummy bits

3 010

4 Minimum valued
block

16 01100011
01110010

5 Required
minimum bits to
represent (Max –

Min) valued
block

4 1100

6 Number of
compared bits

4 0001

7 Number of
compressed bits

4 0001

So for this particular example, 5×4+16+3 =
39 bits private key will be
111110000100110001101110010110000010001.

3.3 Decryption

After receiving encrypted text, “t♥°♪■” and
key following will be performed to get back original
text.
Step 1: From 1st, 2nd, 3rd, 4th, 5th, 6th and 7th segments

of key, block length (say L), number
unchanged bits (say NUB) and number of
added dummy bits (say D0), minimum
valued blocks (say “min”), required
minimum bits to represent difference each
block from “min” (say RB), number of
compared bits (say CB) and number of
compressed bits (say t1) are come to know.

Here L = 16, NUB = 0, D0 = 3, RB = 11,
CB = 1, t1 = 1 and min =
0110001101110010.

Step 2: Keep NUB bits from beginning of target
blocks into UB which is unchanged blocks
and leave next D0 bits from target bits
stream.

 Here UB = 01110100
Then total decryption process for the target

blocks,
00001111111000000000000000110111111110 is
shown in table 3.3.1.

Table 3.3.1
Decryption Process

R
O
U
N
D

Take
next
CB

(=1)
bits

Let’s

consider
this

column
as A

If first CB
bits all are 1,
concatenate

t1 i.e. 1
number of 0

and take
next

{EB –
(CB+t1)} i.e.
11 bits with
A, else take
next (EB –
CB) i.e. 12
bits with A

Let’s

consider this
column as B

Add B
with
min,

means
B + min

Let’s

consider
this

column
as C

After
Concaten-
ating with
all rows of
column C,
Interme-

diate
Decrypted
bit-stream

is
generated

1 0 00001111
11100

01100101
01101110

01111001
01110000
01100011
01110010
01100101
01101110

2 0 00000000
00000

01100011
01110010

3 1 10101111
11110

01111001
01110000

From table 3.3.1, being concatenated with
the sequence received intermediate decrypted bits
stream,
01000101011011100110001101110010011110010
111000001110100 and unchanged block, UB =
01110100, decrypted bit-stream,
01000101011011100110001101110010011110010
11100000111010001110100 is generated; text
format of which is “encrypt” which is same as
plane text.

4. Results
 Here we have compared BSDMB with
International Data Encryption Algorithm (IDEA)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

295

to establish a comparative analytical report that is
helpful to understand strength and weakness of
BSDMB. A brief idea on IDEA is discussed in
section on 4.1 whereas section 4.2 describes
comparative reports with IDEA on the basic of
different parameters.

4.1 International Data Encryption

Algorithm (IDEA)
International Data Encryption Algorithm is a

128-bit private key cipher, which is implemented in
bit level with equally decomposed 64 bit blocks of
plain text depending on modular arithmetic. There
are regenerated 16-bit 52 sub keys from 128 bits key
based on rotational replacement and some particular
rules, say k1, k2, k3 … k52. A 64-bit block of plain
text is decomposed into 4 16-bit sub blocks; say P1,
P2, P3 and P4. In IDEA, there are 8 rounds which
have being followed same procedure. Each round
takes output of previous blocks and 6 sub keys,
according to the number of round, except 1st round,
takes 4 sub blocks. Entire process of encryption
through IDEA is shown in figure 4.1.1. After
completing the total process we get a 64-bit block
which is an encrypted block of that 64 bit block of
plain text. Same things will be done on each and
every generated blocks of plain text and finally we
get encrypted text which is same in size of the plain
text [7] [8].

4.2 Comparative Report
Both the proposed BSDMB protocol (with

128-bit block size in this paper) and exiting IDEA
have been implemented on a number of data files

………

 .

k50

k1
 .

+

 .
+

P1 P2

k2

k3
 .+

P3 P4

k6

+ +

 .k5 +

+

+
+ +

Round 1

Round 2
k7
k8
k11

k9

k10
k12

k4

k49
 .

+

k51 +
 .

Round 8 k43

k44

k45

k46

k47

k48

k52

E1 E2 E3 E4

64-bit blocks from Plain Text

64-bit block of Encrypted Text
+ Exclusive OR (XOR) operation

 Multiplicative Modulo
 i.e. a b = (a × b) Mod (216+1) .

 Additive Modulo
 i.e. a b = (a + b) Mod 216

+
+

Figure 4.1.1
Process of Encryption through IDEA

………

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

296

varying types of content and sizes of a wide range,
shown in table 4.2.1.

Table 4.2.1
Set of Files with Size

Sl. No. Source File Name Original File Size
1 a.txt 14337
2 b.txt 73710
3 c.txt 131776
4 Des_56.cpp 14983
5 M.txt 48430
6 Calc.exe 114688
7 hh.exe 10752
8 Win.com 18432
9 Ansi.sys 9029
10 Watch.sys 14592
11 Blue.bmp 1272
12 ZAPO.BMP 9522

Accordingly the observations on the

following points have been made:

1. Percentage of Compression achieved : To
check storage efficiency after a been encrypted

Table 4.2.2 shows the compression between
proposed technique BSDMB and IDEA on the basis
of rate of compression in size. No compression in
encrypted file size is accorded during encryption for
IDEA. Due to the dependency on context of source
file, compression is achieved for some source files
and some encrypted files are remained same in size
during the implementation of BSDMB. Serial
numbers for table 4.2.1 and table 4.2.2 are same for
corresponding files.

Table 4.2.2
Relationship between Source File Size and

Encrypted File Size

Sl.
No.

For BSDMB For IDEA
Encrypted
File Size

Rate of
Compression

Encrypted
File Size

Rate of
Compression

1 14159 1.241% 14337

0.000%

2 72794 1.242% 73710
3 130143 1.239% 131776
4 14866 0.781% 14983
5 47830 0.000% 48430
6 114688 0.000% 114688
7 10752 0.000% 10752

8 18432 0.000% 18432
9 9028 0.011% 9029
10 14592 0.000% 14592
11 1265 0.550% 1272
12 9520 0.021% 9522

2. Encryption and Decryption Time* : To

evaluate computational overhead
In Table 4.2.3, a comparison on basis of

encryption time with their file size between
BSDMB and IDEA has been shown here on the
same set of files, used in Table 4.2.1.

Table 4.2.3
Encryption Time for BSDMB and IDEA

Sl.
No.

File
Size

Encryption time
for BSDMB

Encryption
time for IDEA

1 14337 0.1098901099 2.4725274725
2 73710 0.8241758242 12.6923076923
3 131776 1.3736263736 22.5274725275
4 14983 0.1648351648 2.5824175824
5 48430 0.5494505495 8.3516483516
6 114688 1.2087912088 17.5274725275
7 10752 0.1098901099 1.6483516484
8 18432 0.2197802198 2.8021978022
9 9029 0.1098901099 1.3736263736

10 14592 0.1648351648 2.2527472527
11 1272 0.0549450549 0.2197802198
12 9522 0.1098901099 1.4835164835

A graphical representation for the table
4.2.3 is shown in figure 4.2.1 with continues line
and dotted line for encryption time of BSDMB and
IDEA, respectively. According to the graph, there
is a tendency that encryption time for BSDMB and
IDEA increases with file size. But required time
for the encryption through BSDMB is much
smaller than encryption time for IDEA.

0

5

10

15

20

25

12
72

95
22

14
33

7

14
98

3

48
43
0

11
46
88

File Size

BS
DM

B
(C

on
tin

uo
us

 L
in

e)

ID
EA

(D
ot

te
d

Li
ne

)

Figure 4.2.1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

297

Relationship between Encryption Time of
BSDMB and IDEA

*The observations were made using personal

computer with specifications of 128 MB SD RAM,
1.5 GHz. processor and with Windows XP as the
platform.

3. Pearsonian Chi-Square Value: To check the
non-homogeneity of the source file and the
corresponding encrypted file and also being
termed as “Goodness-of-fit chi-square test”,
with the formula λ2 = Σ {(fo – fe)2 / fe}, where fe
and fo respectively being frequency of a
character in source file and that of the same in
the corresponding encrypted file

Table 5.1
Chi-Square Value for BSDMB and IDEA

Sl.
No.

Chi-Square Value
for BSDMB

Chi-Square
Value for IDEA

1 2703.404583 11954.841494
2 65300.567094 61455.579243
3 118951.809896 111446.333333
4 35151.146255 33284.270177
5 43693.152096 40947.847106
6 52617929.919497 21150819.758794
7 329746.244148 229908.574337
8 750661.149455 477534.450116
9 924586.280769 14823.865385

10 246543.852664 204617.010065
11 395.302800 1334.211477
12 219756.063093 15698.555711

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1 2 3 4 5 6 7 8 9 10 11
Numbers of Files

C
hi

-S
qu

ar
e

va
lu

e
fo

r B
SD

M
B

(W

hi
te

 B
ar

) a
nd

 ID
EA

 (B
la

ck
 B

ar
)

Figure 4.2.2

Comparison between Chi-Square value BSDMB
(White Bar) and IDEA (Black Bar)

Chi-square value of BSDMB and IDEA
for the set of same files which are used in table
4.2.1 with maintaining the Sl. No. for the
respective files, have been compared in table 4.2.4.
Among them figure 4.2.2 shows comparison of
eleven files, except Calc.exe. As chi-square values
of BSDMB and IDEA for Calc.exe are respectively
52617929.919497, 21150819.758794 which are
very high with respect to other files, so for clear
display of figure 4.2.2 comparisons on calc.exe file
is not in the figure. White bar shows chi-square
value of BSDMB of those eleven files, while black
bar are been used for chi-square value of IDEA.
That indicates chi-square value for the technique is
generally higher than IDEA.

Apart form these there comparative
observations; observation also on the following
was made:
Graphical Test for Frequency Distribution: To

test the degree of security of the proposed
protocol against the cryptanalytic attack,
where the frequency of the all 256 characters
in source file and their corresponding
encrypted file are compared graphically, the
observation being to show whether the exists
any fixed relation ship between of the a
character in both source and encrypted file

To established this relationship between
plain text and cipher text, figure 4.2.3 shows the
distribution of the frequency (along Y axis) of the
set of characters with their ASCII value (along X
axis) of arbitrarily chosen a filer from table 4.2.1,
ansi.sys and its encrypted file. Blue pillar
represents the frequency of characters appeared in
source file or plain text whereas red pillar is
measured the frequency of characters in encrypted
file or cipher text. From the figure 4.2.3 it is
clearly shown that frequency of characters in plain
text and cipher text are well distributed.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

298

5. Analysis and Conclusion
Using this BSDMB private key technique,

we can encrypt any size of file, as well as any kind
of file, as BSDMB protocol is implemented in bit
level. This protocol not only encrypts the source bit-
stream but the protocol is storage efficient also,
which means that encrypted file size is less than or
equal to the source file size, but obviously rate of
compression will depend on context of file. If there
is at least one 0 in the difference between maximum
valued block and minimum valued block in source
file, minimum 1 bit compression should be achieved.
Until minimum 8 bits compression is occurred
during encryption, occurrence of compression in file
size, which is a byte format, is not reflected into byte,
because if any achieved compression is less than 8
bits, dummy bits should be required to make total
length of file, multiple of 8 bits for converting bit
format to byte format.

If total range, in which all appeared blocks
belong, is small, rate of compression is high, which
means that rate of compression is inversely
proportional to the span of appeared blocks. That is
not depending on blocks size. For large block size,
decryption complexity is increased. On the basis of
these two logics, for more compression and more
security, large blocks size is recommended. So
accordingly, key size will be 5d + L +3 where L-bit
be the block length, d is the minimum required bit to
present L – 1. Some key size and their corresponding
block size with their encryption time for the

particular file, calc.exe which is arbitrarily chosen
from table 4.2.1 are shown in table 5.1.

Table 2.2.1
Key Size for different blocks

Block
Size
(L)

Minimum
Number bits
to represent
block size (d)

Key size
5d + L + 3

Encryption
Time

16 4 39 1.2637362637
32 5 60 1.2087912088
64 6 97 1.2087912088

128 7 166 1.2087912088
256 8 299 1.2087912088
512 9 560 1.2087912088

1024 10 1077 1.2087912088
Additionally, if we use X-bit key, 2X

number of key may be generated, from which only
one option is used for correct decryption. So,
complexity of key breaking increases according to
increased value of X. Refer to the references’
number 11, a processor, capable of doing 106
encryptions per millisecond, requires 5.9 × 1030
years to break a 168-bit key. Encryption time is not
also increasing with increased key size, shown in
table 5.1. So, 166-bit or more than 166-bit key is
recommended for correct implementation of the
technique.

 For large block size, probability of rate of
compression at the time of encryption is high. For
bigger block size, more compression is achieved
and key breaking is practically impossible. Due to
that large block size is recommended for
increasing complexity and getting more efficient
effect. So this algorithm ensures high security
during minimum overhead through network [2] [3]
[5] [11].

Acknowledgement:

Let us express our heartiest gratitude to
respective authorities of Dr. B. C. Roy Engineering
College, Durgapur, West Bengal, INDIA and
National Institute of Technology (NIT), Durgapur,
West Bengal, INDIA for providing resources used
during the entire development process.

References
[1] J. K. Mandal, S. Dutta, “A 256-bit recursive pair parity

encoder for encryption”, Advances D -2004, Vol. 9 nº1,
Association for the Advancement of Modelling and
Simulation Techniques in Enterprises (AMSE, France),
www. AMSE-Modeling.org, pp. 1-14

Character

Figure 4.2.3
Frequency Distribution of Characters in

“ansi.sys” and Corresponding Encrypted File

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

299

[2] Pranam Paul, Saurabh Dutta, “A Private-Key Storage-
Efficient Ciphering Protocol for Information
Communication Technology”, National Seminar on
Research Issues in Technical Education (RITE), March 08-
09, 2006, National Institute of Technical Teachers’
Training and Research, Kolkata, India

[3] Pranam Paul, Saurabh Dutta, “An Enhancement of
Information Security Using Substitution of Bits Through
Prime Detection in Blocks”, Proceedings of National
Conference on Recent Trends in Information Systems
(ReTIS-06), July 14-15, 2006, Organized by IEEE Gold
Affinity Group, IEEE Calcutta Section, Computer Science
& Engineering Department, CMATER & SRUVM Project-
Jadavpur University and Computer Jagat

[4] Dutta S. and Mandal J. K., “A Space-Efficient Universal
Encoder for Secured Transmission”, International
Conference on Modelling and Simulation (MS’ 2000 –
Egypt, Cairo, April 11-14, 2000

[5] Mandal J. K., Mal S., Dutta S., A 256 Bit Recursive Pair
Parity Encoder for Encryption, accepted for publication in
AMSE Journal, France, 2003

[6] Dutta S., Mal S., “A Multiplexing Triangular Encryption
Technique – A move towards enhancing security in E-
Commerce”, Proceedings of IT Conference (organized by
Computer Association of Nepal), 26 and 27 January, 2002,
BICC, Kathmandu

[7] William Stallings, Cryptography and Network security:
Principles and practice (Second Edition), Pearson
Education Asia, Sixth Indian Reprint 2002.

[8] Atul Kahate (Manager, i-flex solution limited, Pune, India),
Cryptography and Network security, Tata McGraw-Hill
Publishing Company Limited.

[9] Mark Nelson, Jean-Loup Gailly, The Data Compression
Book. BPB Publication

[10] S Mal, J K Mandal and S Dutta, “A Microprocessor Based
Encoder for Secured Transmission”, Conference on
Intelligent Computing on VLSI, Kalyani Govt. Engineering
College, 1-17 Feb, 2001, pp 164-169

[11] Saurabh Dutta, “An Approch Towords Development of
Efficient Encryption Technique”, A thesis submitted to the
university of North Bengal for the Degree of Ph.D., 2004

