
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

32

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Framework for Generalization and Improvement of Relational Data
Warehouses

Goran Velinov† , Danilo Gligoroski†† and Margita Kon Popovska†,

†Institute of Informatics, Faculty of Sciences and Mathematics
St. Cyril and Methodius University, Skopje, Macedonia

††Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology, Trondheim, Norway

Summary
In this paper we present the system of relational data warehouse
optimization. The system is based on generalized definition of
solution space which includes lot of factors relevant for
performance of the relational data warehouses. Novelties are
hybrid Greedy - Genetic algorithms applied to generalized
solution space and specific techniques for improvement of the
efficiency of optimization process. Experimental results shows
that our algorithms outperforms traditional Genetic algorithms in
the speed of finding optimal (or near optimal) solutions.
Key words:
Relational Data Warehouses; Greedy; Genetic Algorithm.

1. Introduction

This paper represents a collection and extension of three
papers that we have recently published [13], [14], [15].
The performance of the system of relational data
warehouses depends of several factors and the problem of
its optimization is very complex. The main elements of a
system for data warehouse optimization are: definition of
solution space, objective function and choice of
optimization method. The solution space includes factors
relevant for data warehouse performance as view and
index selection and view fragmentation i.e. partitioning. In
some existing approaches the solution space for problem
of optimization of data warehouses is simplified to great
extent, and the selection of views or indexes is studied
without considering other factors, see [1], [2], [6], [11] and
[16]. These approaches are important for theoretical
research, but are not applicable in practice.

In some papers [9], [13] view selection problem is
generalized by including proper set of indexes for each
view and selection of views and indexes is done together.
If the selection of views and indexes is performed
separately and the set of indexes is added to the optimal
set of views, then the common set might not have optimal
performances. In [3] the problem of optimization of
horizontal scheme partitioning was defined. Optimization
problem of data warehouses as combination of
materialized views, indexes and horizontal data

partitioning was introduced in [4] and the approach of
vertical fragmentation was introduced in [9]. In [14] a
model which includes selections of views and indexes and
complete vertical fragmentation was introduced.

The optimization is usually considered with certain
constraints which divide all solutions (whole solution
space) to two groups of solutions: feasible and infeasible.
There are two types of constraints: real system and logical
constraints. System constraints are well studied in existing
research prototypes [1], [2], [8], [9], [13] and [16]. They
can be disk space or maintenance cost constraint. In [1],
[2] and [9] the linear cost model was used under disk
space constraint and formally system constraints were
embedded in the penalty function. In [8], [13] and [16] the
objective function involved query processing cost under
views maintenance (refreshment) cost constraint. In [16]
the constraints were incorporated into the algorithm
through a stochastic ranking procedure. In [14] logical
constraints ware considered and effects of solutions which
violated logical constraints to the optimization process
were analyzed.

Some types of evolutionary (genetic) algorithms as
optimization method were used in [3], [11], [13] and
greedy algorithm with its variants and some heuristic
searching techniques were used in [5], [8]. In [13] greedy
and genetic algorithms were compared for optimization
problems in data warehousing. It was shown
experimentally that for large solution space greedy
algorithms have poor performances compared to genetic
algorithms.

We present two novel hybrid algorithms named
GGLA (Greedy-Genetic Linear Algorithm) and GGBA
(Greedy-Genetic Binary Algorithm). Both of them are
combination of Greedy and Genetic algorithm. The genetic
part of the algorithms is based on SRGA (Stochastic
Ranking Genetic (evolutionary) Algorithm) introduced in
[16]. The algorithms are applied to generalized
optimization problem of data warehouse performance,
based on our multi-dimensional model that includes
complete vertical fragmentation. The model provides
definition of all possible aggregate views and their data
dependencies. Further, the solution space of the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

33

optimization problem includes bitmapped indexes. For
comparison, in [16] the SRGA algorithm is successfully
applied to solution space that consists of 16 to 256 views,
while in our work the algorithms are successfully applied
to the solution space (views, fragmented views and
indexes) up to 1110 objects.

Furthermore, the system is tested for complex
workload i.e. queries with projection, selection, join and
grouping operations and with complex selection predicates.
Our optimization model is named - SFI since it includes
selection of views (S), their vertical fragmentation (F) and
their indexing (I). In [14] we have shown benefits of using
SFI compared to approaches without fragmentation (SI),
without indexes (SF) and without fragmentation and
indexes (S). In [15] SRGA is adopted and applied to SFI
model. To show the efficiency of our novel algorithms we
have compared them with SRGA. We have made many
experiments which verified dramatic improvements (up to
280%) of the optimization process. The conclusion is that
our optimization algorithms are much more effective and
powerful then that developed in [16].

The paper is organized as follows: in Section 2 we
describe definition of the solution space, , in Section 3 we
give practical example and in Section 4 we define
objective function of the optimization system. In Section 5
we present our novel algorithms (GGLA, GGBA) that
successfully solve the aforementioned optimization
problem, in Section 6 experimental evidence of the
efficiency of the algorithms is shown, applied to
generalized solution space and finally, in Section 7 we
give conclusions and discuss our future work.

2. Definition of Solution Space

In this section we will define generalized solution space of
the optimization process. The solution space is based on
relational data warehouse scheme which includes
definition of dimension relations, all possible aggregate
views, their different states of normalization, named
variants of views and relational dimensions as well as all
possible indexes.

Let us define dimension D as set of
relations },...,{ 1 kD RRR = , where each dimension relation

iR is characterized by basic set of attributes

iiii FADAPABA ∪∪= , where φ≠iPA is the set of
primary key attributes (identifying attributes), φ≠iDA is
the set of descriptive attributes and iFA is the set of
foreign key attributes. iAA is the set of additional
attributes of relation iR , defined as union of basic sets of
its dependent relations. },...,{ 1 mRDRDHD = is the set of
dependencies between dimension relations of dimension
D , named dimension hierarchy. Each iRD is

characterized by two dimension relations jR , pR , and it is

presented by pji RRRD →: i.e.),(pji RRRD , and also

pj FAPA ⊆ .
A data cube),(MDCDC D= is pair of dimension

set },...,{ 1 nD DDDC = and measure attributes set M . An
implementation scheme SC of data cube DC is defined
as pair),(AVDCSC = , where },...,{ 1 pVVAV = is set of
aggregate views. Each lV is characterized by set of
measure attributes MM l ⊆ and by basic set of group by
attributes lBGA . Aggregate views can contain different
subsets of the set of measure attributes, which provides
vertical fragmentation of measure attributes. Between the
appropriate dimension relations and the aggregate views
there exist 1:M relationships i.e. primary key attributes of
the dimension relation at the same time are foreign key
attributes of the aggregate views. Group by attributes of
any aggregate view consists of primary key attributes of at
most one relation of each dimension. An extended set of
group by attributes lEGA of aggregate view lV is defined
as union of basic sets attributes of its dimension relations
and additional set of group by attributes lAGA is defined
as lll BGAEGAAGA \= . The set RSC is set of all
dimension relations of implementation scheme SC .

The aggregate view iV derived from aggregate view
V by adding (possible empty) subset of union of basic
sets attributes of its dimension relations is variant of
original view V . Intuitively, the view variants are created
by denormalization of original scheme. Our idea is to
consider all possible states of normalization of data cube
scheme, from fully normalized state in 3rd NF, trough the
process of denormalization, to fully denormalized state
(whole scheme in one view). The variant 0V of view V ,
which is characterized by basic set of group by attributes

φ∪= BGABGA0 is named zero variant of view V .
The important issue is how to select a variant of each

dimensional relation, a set of views for materialization
(each view presented with its proper variant) and a set of
their appropriate indexes in order to minimize the total
query processing time of the queries with a certain
constraint.

The next step in definition of solution space is
determining the indexing strategy. According to the theory
of indexing, novel bitmapped indexes are very suitable for
processing of data cube based queries. Thus, in this work
for aggregate views, one-attribute bitmap indexes are
considered. For each attribute of the extended set of group
by attributes, one index can be created. Note that the
number of elements of the EGA and sequence of all
indexes are disposed in advance. The set of all possible

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

34

indexes in implementation scheme SC is SI . The view
length

lVL of aggregate view lV is defined as

nmkL
lV +++= 1 , where k is the number of elements of

additional set of group by attributes of the view lAGA , m
is the number of elements of set of measure attributes and
n is the number of indexes of the view i.e. number of
elements of extended set of group by attributes lEGA . The
parameters VL are necessary to calculate number of bits
(genes) for presentation of the solutions in our algorithms.

A data warehouse responses to large number of
aggregate, data cube based ad hock queries (workload) i.e.
to dynamic and in principle unpredictable queries.
However, lot of them can be determined a priori and can
be formalized. To evaluate the real performances of the
system we define the workload i.e. the set of predefined
generalized project-select-join queries based on
aggregation views of the data cube scheme. The query
definition is extended by using all possible subsets of
grouping and selection attributes and by using complex
selection expressions. Data operators i.e. predicates in
selection expressions are also important for query
processing time i.e. different data operators returns
different numbers of tuples. Therefore, in this paper, in our
query definition a set of different data operators is
included.

Query Q in implementation scheme),(AVDCSC =
is tuple),,,(QQQQ FPGAMQ = , with MM Q ⊆ as set of
measure attributes, pQ EGAGA ⊆ as set of group by
attributes, QP as selection expression and QF as expected
frequency of the query. QP as selection expression of
query Q is in form: nANDpANDANDpp ...21 , where

iii ValueAp θ: , iA is selection attribute, },,,,{ ≥≤><=∈θ
is data operator,){ ii ADomValue ∈ . The set QSA defined
as },...,{ 1 nQ AASA = is set of selection attributes (where
clause attributes) and pQ EGASA ⊆ (pEGA is extended
set of attributes of the primary view). Data operators are
divided in two groups: equality and inequality data
operators. Thus, inequality operators usually return more
then one tuple and after the selection by a certain set of
attributes it is reasonable to group the data by the same set
of attributes. Consequently, the two sets obtained by
grouping and selection attributes are not disjoint. Set of all
possible queries in implementation scheme SC is SQ .

Ratio of equality operator ER in selection expression
of query Q is defined as nk / , where 0>n is number of
data operators i.e. number of elements of the set of
selection attributes QSA and k is number of equality
operators. The parameter ER is necessary to estimate
number of tuples returned in each step of query execution

i.e. to calculate query execution cost. This is important to
develop realistic query evaluator. Query Q is computable
from (can be answered by) aggregate view V in
implementation scheme),(AVDCSC = if: 1. VQ MM ⊆
and 2. VQQ EGASAGA ⊆∪ , where VM , VEGA is set of
measures and extended set of group by attributes of V ,
respectively. The previous definition is necessary to
determinate the set of views from which each query Q

can be answered. Thus, we define ratio of usability UR of
aggregate view V as nk / , where 0>n is number of
queries i.e. number of elements of the set SQ and k is
number of queries which can be answered by V . The UR
parameter is necessary to estimate the frequency of
usability i.e. "importance" of each view. It will be used in
procedure of greedy selection of the views.

3. Practical Example

For better presentation of our formal model a practical
example of sale database system is considered. Three
dimensional data cube SALE with },,{ DSISALED = and
M={S_quantity, S_amount, S_price} is considered.
Dimension relations organized in dimension hierarchies
are shown in Figure 1.

Simplified scheme of the data cube, with all
dimension relations and only with two views (the primary
view and one supporting view of the scheme) formally is
described by:

Item (I_id, It_id, I_name);
Item_type(It_id, It_name)
Supplier (S_id, C_id, S_name);
City (C_id, Co_id, C_name);
Country (Co_id, Co_name);
Date (D_id, W_id, M_id, D_date);
Week (W_id, D_week);
Month (M_id, Y_id, D_month);
Year (Y_id, D_year);
Sale_ISD (I_id, S_id, D_id, S_quantity, S_amount,

 S_price);
Sale_ItS (It_id, S_id, S_quantity, S_price);

and graphically is shown in Figure 2.

Set of relations of dimension I is
RI={Item,Item_type}. Relation Item is characterized by
PA={I_id}, DA={I_name}, FA={It_id}, BA={I_id,
I_name, It_id}, EA={I_id, I_name, It_id, It_name} and
AA={It_name}. Number of variants of Item relations is
21=2. Dimension hierarchy of dimension I is defined as
HI={It-I}, where It-I: Item_type→ Item i.e. It-I(Item_type,
Item). According to the dimension hierarchies, the number
of aggregate views of scheme of the data cube SALE is 60.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

35

Primary aggregate view is Sale_ISD and is characterized
by set of measure attributes MSale_ISD={S_quantity,
S_amount, S_price} and by BGASale_ISD={I_id, S_id, D_id}
as basic set of group by attributes. Extended set of group
by attributes is EGASale_ISD={I_id, I_name, It_id, It_name,
S_id, S_name, C_id, C_name, Co_id, Co_name, D_id,
D_date, W_id, D_week, M_id, D_month, Y_id, D_year} i.e.
all attributes. Number of variants of aggregate view
Sale_ISD is 215=32768. Supporting aggregate view
Sale_ItS is characterized by set of measure attributes
MSale_ItS={S_quantity, S_price} and by BGASale_ItS={It_id,
S_id} as basic set of group by attributes. Extended set of
group by attributes is EGASale_ItS={It_id, It_name, S_id,
S_name, C_id, C_name, Co_id, Co_name}. Number of
variants of Sale_ItS is 26=64.

Fig. 1 Dimension hierarchies for I, S and D dimension

Fig. 2 Simplified scheme of data cube SALE

Note that Sale_ItS is computable from Sale_ISD. Actually,
if Sale_ISD is given by its zero variant Sale_ISD0, this
means that the view Sale_ItS can be created by the
following SQL statement:

CREATE MATERIALIZED VIEW Sale_ItS AS
SELECT I.It_id, F.S_id,
 SUM(F.S_quantity) S_quantity,
 AVG(F.S_price) S_price
FROM Sales_ISD F, Item I
WHERE I.I_id=F.I_id
GROUP BY I.It_id, F.S_id;

To create (compute) Sale_ItS it is necessary to join
aggregate view Sale_ISD and dimension relation Item. But
if Sale_ISD is given by its variant Sale_ISD1 characterized

by =1
_ ISDSaleBGA {I_id, It_id, It_name, S_id, S_name,

D_id} then the view Sale_ItS can be created by the
following SQL statement:

CREATE MATERIALIZED VIEW Sale_ItS AS
SELECT F.It_id, F.S_id,
 SUM(F.S_quantity) S_quantity,
 AVG(F.S_price) S_price
FROM Sales_ISD F
GROUP BY F.It_id, F.S_id;

Note that maintenance cost of Sale_ISD is increased
by adding the new attributes, but at the same time
maintenance cost of Sale_ItS is decreased. Also note that
view Sale_ItS is presented by its zero variant i.e.

== 0
__ ItSSaleItSSale BGABGA {It_id, S_id}.

If we assume that the view Sales_ItS is presented by
its zero variant i.e.materialized by above SQL statement,
then to process the following query, named QSale (sales of
type items "Milk Products" by supplier names), it is
necessary to join proper dimension relations to the
materialized view:

SELECT F.It_id, F.S_id, S.S_name,
 SUM(F.S_quantity) S_quantity
FROM Sales_ItS F, Item_type It,
 Supplier S
WHERE It.It_name="Milk Products"
 AND F.It_id=It.It_id
 AND F.S_id=S.S_id
GROUP BY F.It_id, F.S_id, S.S_name;

Formally, the query QSale can be described by
following sets: MQSale={S_quantity} as set of measure
attributes, GAQSale={It_id, S_id, S_name} as set of
grouping attributes, PQSale:It_name="Milk Products"$ as
selection expression and set of selection attributes
SAQSale={It_name}. Expected query frequency is FQSale=1.

To reduce the processing time required for joining
views and dimension relations, frequently accessed
attributes can be stored into materialized views. Thus,
another possible way to create view Sales_ItS, from
variant of Sales_ISD with =2

_ ISDSaleBGA {I_id, It_id,
It_name, S_id, S_name, D_id} i.e. another variant of
Sales_ItS is:

CREATE MATERIALIZED VIEW Sale_ItS AS
SELECT F.It_id, F.It_name
 F.S_id, F.S_name,
 SUM(F.S_quantity) S_quantity,
 AVG(F.S_price) S_price
FROM Sales_ISD F
GROUP BY I.It_id, It.It_name,
 F.S_id, S.S_name;

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

36

The second variant Sales_ItS1 of the view Sales_ItS is

characterized by the set =1
_ ItSSaleBGA {It_id, It_name S_id,

S_name} of grouping attributes. It is easy to note that the
number of tuples is the same as the first variant of the view.
To process previous query now it is not necessary to join
dimension relations to fact relation and the SQL statement
for the query is:

SELECT F.It_id, F.It_name,
 F.S_id, F.S_name, F.S_quantity
FROM Sales_ItS F
WHERE F.I_tname="Milk Products";

The advantage of using the second variant is
decreasing the processing time of the queries, but the
disadvantage is increasing the storage space i.e.
maintenance cost. In [5] some frequently accessed
dimension keys and attributes are stored in various
materialized views. However, a serious problem is to
consider set of all possible variants of the data cube views
and to find the optimal one with largest benefit of query
processing and minimal maintenance cost.

4. Definition of Objective Function

In this section we will propose a suitable evaluation
function of the optimization process. Let MSC is the state
of the data cube scheme SC with the set AVAVM ⊆ of
candidate views for materialization where each of them is
presented by its variant and the set SISI M ⊆ of candidate
indexes. Let also all dimensional relations are presented by
their appropriate variants. Then maintenance-cost
constrained optimization problem is the following one:
select a state MSC of data cube scheme SC that
minimizes

∑
∈

=
SQQ

MQM SCQPFSQSCSC),(*),,(τ ,

under the constraint SSCSCU M ≤),(, where SQ is the set
of predefined queries, QF is query frequency and

),(MSCQP denotes the minimum processing cost of the
query Q in the MSC state of SC .

Let),(MSCSCU is total maintenance cost defined
as:

++= ∑∑
∈∈ MSC AVV

MV
RR

MRM SCVmGSCRmGSCSCU),(*),(*),(

∑
∈

+
MII

MI SCImG),(* , where RG , VG and IG is update

frequency of relations, views and indexes, respectively.
Let),(MSCRm ,),(MSCVm and),(MSCIm is the

minimum cost of maintaining a relations, views and
indexes, respectively in presence of state MSC .

We note that),(MSCQP is objective function of the
problem. To calculate values of the functions),(MSCQP ,

),(MSCRm ,),(MSCVm and),(MSCIm we developed
algorithms based on common query execution (processing)
theory, presented in [7] and also on some ideas from [1],
[10], [11], as well as [12].

5. Novel Greedy - Genetic Algorithms

In this section we will present two novel hybrid
algorithms for optimization of relational data warehouses.

First, we will define presentation of the object
(dimensional relations, aggregate views and indexes) by an
array of bits i.e. by parts which will be concatenated in a
chromosome. Dimensional relations are presented (as
special type of views for materialization) with their
different variants. Number of bits needed to present each
dimensional relation with all its variants is 1+k , where k
is number of elements of additional set of attributes. Thus,
the first bit is used to present a dimensional relation and
other n bits to present additional attributes. As we said, all
dimensional relations must be materialized, thus each of
them is presented by 1. An attribute of the additional set, if
it is added to its dimensional relation is presented by 1 and
if it is not added it is presented by 0. Aggregate views are
presented in similar way i.e. for each view, one bit is used
for its presentation (by 1 if it is selected or by 0 if it is not
selected for materialization) and k bits are used to present
its additional attributes i.e. their variants. The attributes of
the additional set of aggregate views are presented in the
same way as attributes of additional sets of dimensional
relations. Finally, for each aggregate view the measure
attributes are presented by n bits. A measure attribute, if it
is added to the appropriate view, is presented by 1 and if it
is not added, then it is presented by 0. Note that for each
view at least one measure attribute must be added. The
presentation of each view is followed by presentation of its
possible indexes. Each index is presented exactly by one
bit i.e. by 1 if it is selected or by 0 if it is not selected. The
number and sequence of all indexes are disposed in
advance.

If a view is not materialized all its variant, measure
and index bits are irrelevant for evaluation of solution and
we named those bits recessive bits. Note that the number
of recessive bits is very large in regard of other bits. They
are irrelevant for evaluation of solution, but they can be
important for optimization process in the next generations.

Our algorithms are hybrid because they are
combination of greedy and genetic algorithms. The
Algorithm 1 is named GGLA - Greedy-Genetic Linear
Algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

37

Input parameters of the algorithms are: NC -
Number of Chromosomes (population size), NG -
Number of Generations, LC - Length of Chromosome
(number of bits needed to present whole solution space),
NF - Number of Fragments of the solution space, which
is equal to number of steps of greedy procedure, SQ - Set
of Queries, AV - set of Aggregate Views. By POP(i) is
presented ith generation of the population.

Algorithm 1: GGLA(NC, NG, LC, NF, AV, SQ)
Begin

AVB:=Ø;
Choose_views(Round(LC/NF), CL, AVB,AVC, AV);
Extend_chromosome(POP(1), AVC, NC);
Evaluate_population(POP(1), SQ);
Evaluate_population_materialization(POP(1));
j:=2;
For i=2 to NG Do

If Mod(i,Round(NG/NF))=1 Then
Choose_views(Round(LC*j/NF),CL,AVB,
AVC,AV);
Extend_chromosome(POP(i), AVB, NC);
j:=j+1;

 End If;
 Perform_crossover(POP(i-1), NC);
 Perform_mutation(POP(i), NC);
 Evaluate_population(POP(i), SQ);
 Evaluate_population_materialization(POP(i));
 Perform_selection(POP(i), NC);

End For;
End GGLA;

Parameters of the Subalgorithm 1 are: NL - New Length
of chromosome (input), CL - Current Length of the
chromosome (input/output), BAV - set of chosen views
(input/output), CAV - set of chosen views in current step
(output), AV - set of Aggregate Views (input).

Subalgorithm 1:Choose_views(NL, CL, AVB, AVC, AV)
Begin

AVC:= Ø ;
While NL>CL Do

 iBB VAVAV ∪=: , where Vi has maximal
URi in AV \ AVB;

 iCC VAVAV ∪=: ;
 CL:= CL+LVi;

End While;
End Choose_views;

The GGLA algorithm graphically is shown in Figure 3.
Before the optimization process starts, we order all
aggregate views by their ratio of usability (UR) i.e. their

importance. The general idea is in certain steps (NF) by
greedy procedure to choose the subsets of views with all
their bits (Subalgorithm 1 i.e. procedure Choose_views)
and to add them to already selected ones i.e. to concatenate
their randomly generated bits to the already created
chromosomes (Extend_chromosome procedure). By those
procedures we roughly modulate solution space. After
each step of greedy procedure, we perform fine
optimization by using genetic algorithm (few generations
on current solution space). The procedure
Evaluate_population evaluates the quality of solutions and
the procedure Evaluate_population_materialization
evaluates maintenance solution cost. The procedures
Perform_crossover, Perform_mutation and
Perform_selection perform genetic algorithm operations -
crossover, mutation and selection, respectively.

Fig. 3 GGLA - Greedy-Genetic Linear Algorithm.

The second algorithm is named GGBA - Greedy-Genetic
Binary Algorithm. All input parameters are the same as in
Algorithm 1. The GGBA algorithm graphically is shown in
Figure 4.

Fig. 4 GGBA - Greedy-Genetic Bynary Algorithm.

POP(i,AVk) presents ith generation of the population and
consists of fragment of chromosomes represented by AVk
subset of views. POP2(i) presents ith generation of the
population and consists of whole chromosomes (created
by concatenation of all fragments of POP population),
represented by set of all aggregate views AV. The
population POP2 is necessary to evaluate maintenance
solution cost. The variable NS is number of steps of the
greedy procedure.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

38

Algorithm 2: GGBA(NC, NG, LC, NF, AV, SQ)
Begin

Divide_views(NF, AV);
For k=1 NF Do

Create_population(POP(1, AVk), NC);
Evaluate_population(POP(1, AVk), SQ);
Concat_whole_chr(POP(1, AVk), POP2(1));

End For;
Evaluate_population_materialization(POP2(1));
NS:=log2NF+1;
For i=2 to NG Do

If Mod(i,Round(NG/NS))=1 Then
For k=1 to NF/2 Do

 Concat_chr(POP(i, AVk), AV2*k-1, AV2*k);
End For;
NF:=NF/2;

End If;
For k=1 to NF Do

Perform_crossover(POP(i-1, AVk), NC);
Perform_mutation(POP(i, AVk), NC);
Evaluate_population((POP(i, AVk), SQ);
Concat_whole_chr(POP(i, AVk), POP2(i));

End For;
Evaluate_population_materialization(POP2(i));
For k=1 to NF Do

Perform_selection((POP(i, AV_k), NC);
End For;

End For;
End GGBA;

In procedure Concat_chr we define a new set of
aggregated views kkk AVAVAV *21*2: ∪= − and new
population POP(i,AVk) which consists of chromosome
fragments created by concatenation of chromosome
fragments of POP(i,AV2*k-1) and POP(i,AV2*k) populations.
The chromosome fragments of both populations are
ordered from the best to the worst evaluated and
concatenated fragments at the same position. We named
this concatenation strategy best-to-best. In similar way,
procedure Concat_whole_chr is creates POP2(i) as
concatenation from populations of all subsets of views
POP(i,AVk). Here we also use best-to-best concatenation
strategy. All procedures with the exception of
Evaluate_population_materialization can be parallelized
for different fragments of chromosomes i.e. subsets AVk of
AV, which gives the total improvement of the
performances of the algorithm.

6. Experimental Results

In this section using our experimental system we compare
performances of the three optimization algorithms: SRGA -
Stochastic Ranking Genetic Algorithm, GGLA - Greedy

Genetic Linear Algorithm and GGBA - Greedy Genetic
Binary Algorithm.

For the efficiency of genetic algorithm several input
parameters are important. In [13] we have already
described some experiments with wide range of their
values. In this work we fixed the parameters to their
optimal values, obtained in [13]: population size PS=20,
probability of mutation PC=0.5 and PG=0.05. Exactly 192
experiments were performed. For all experiments
termination condition of optimization process was 64
generations. All algorithms were applied to generalized
solution space based of our model which includes view
selection with vertical view fragmentation and selection of
indexes (SFI). For GGLA and GGBA we experimented
with different values of the parameter NF - Number of
Fragments. For GGLA the number of fragments is equal to
the number of steps of the greedy procedure, while for
GGBA number of steps of the greedy procedure is given
by log2NF+1.

The comparison of the optimization process
execution time of all three algorithms, for different
number of fragments NF, is shown in Figure 5. The
optimization process is considered with four different
values of NF parameter, from 4 to 32. Improvements of
GGLA and GGBA over SRGA are evident when we
increase the values of the parameter. The value of the
parameter is limited by the number of generation of the
optimization process (in our case 64). However, usually
the number of generations increases by the increasing of
the complexity of the problem i.e. its solution space size.

Fig. 5 Optimization process time according number of fragments of the
solution space

Next important parameter of optimization process is the
size of the solution space i.e. the length of the
chromosome for the genetic algorithms. A comparison of
different algorithms according to the solution space size is
shown in Figure 6. For better presentation of the
algorithms performances on the same chart, we scaled
values of optimization process execution time. On y-axis
the benefit of optimization process execution time

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

39

relatively to the worst algorithm is shown. Evidently, in all
cases GGBA algorithm has the highest improvement of the
optimization time. Note that improvements of both GGLA
and GGBA algorithms rise by increasing the solution
space size, which is another important feature: the
scalability of our algorithms and their appropriateness for
practical implementation.

Fig. 6 Optimization process time (relatively to the worst) according
solution space size

In proposed algorithms we use a priori knowledge
about usability of aggregate views and implement that
knowledge as a heuristics in the greedy procedure for the
views choice. Using greedy algorithm in the first step
enables the genetic material decrease i.e. to decrease the
number of calculations in the genetic part of the GGLA
algorithm and possibility to parallelize some segments of
genetic part in the GGBA algorithm. Finally, we note that
values of given solutions by using GGLA and GGBA are
in the range of 98%-101% of solutions given by using
SRGA.

6. Conclusions and Future Work

The performance of the system of relational data
warehouses depends of several factors and its optimization
is rather complex problem, thus making a perfect system
still a challengeable endeavor. Therefore, in this paper we
have focused on the generalizations of the problem and
improvement of the efficiency of optimization process..
We fully analyzed the problem by including a lot of
factors relevant for the optimization of the system i.e.
views selection, vertical view fragmentation and index
selection. Then we have designed two novel algorithms
GGLA and GGBA and applied them on the generalized
solution space. We have achieved significant performance
improvements in the optimization process compared to the
stochastic ranking genetic algorithm and we have verified
those improvements by performing large set of
experiments.

In the future we plan to extend our multidimensional
model by including horizontal partitioning, definition of a
clustering strategy and to define an optimization process
by applying the algorithms on the extended solution space.
There is also possibility to parallelize the algorithms on
different levels such as: evaluation of the chromosomes
within populations, parallelization of the populations or
parallel optimization of the different data cubes. In this
work static algorithms were considered. Our plan is to
develop dynamic algorithms for data warehouse design
optimization.

References
[1] K. Aouiche, J. Darmont, O. Boussaid, F. Bentayeb,

Automatic Selection of Bitmap Join Indexes in Data
Warehouses, Proc. 7th International Conference on
Data Warehousing and Knowledge Discovery,
DAWAK’05, Copenhagen, Denmark, pp.64-73,
August 2005.

[2] K. Aouiche, P. Jouve, J. Darmont, Clustering-Based
Materialized View Selection in Data Warehouses,
Proc. 10th East-European Conference on Advances in
Databases and Information Systems, ADBIS'06,
Thessaloniki, Greece, pp.81-95, September 2006.

[3] L. Bellatreche, K. Boukhalfa, An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse, Proc. 7th International Conference on
Data Warehousing and Knowledge Discovery,
DAWAK'05, Copenhagen, Denmark, pp.115-125,
August 2005.

[4] L. Bellatreche, M. Schneider, H. Lorinquer, M.
Mohania, Bringing Together Partitioning,
Materialized Views and Indexes to Optimize
Performance of Relational Data Warehouses, Proc. 6th
International Conference on Data Warehousing and
Knowledge Discovery DAWAK'04, Zaragoza, Spain,
pp.15-25, 2004.

[5] G.K.Y. Chan, Q. Li, L. Feng, Optimized Design of
Materialized Views in a Real-Life Data Warehousing
Environment, International Journal of Information
Technology, vol. 7, no. 1, pp.30-54, 2001.

[6] R. Chirkova, Y.A. Halevy, D. Suciu, A formal
perspective on the view selection problem, Proc. 27th
International Conference on Very Large Data Bases
VLDB'02, Hong Kong, China, pp.216-237, August
2002.

[7] R. Elmasri, S.B. Navathe, Fundamentals of Database
Systems, Fourth Edition, Addison-Wesley Publishing
Company Inc., 2003.

[8] H. Gupta, S. Mumich, Selection of Views to
Materialize Under a Maintenance Cost Constraint,
Proc. 7th International Conference on Database
Theory, ICDT'99, Jerusalem, Israel, pp.453-470,
January, 1999.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

40

[9] M. Golfarelli, V. Maniezzo, S. Rizzi, Materialization
of fragmented views in multidimensional databases,
Data & Knowledge Engineering, Volume 49, Issue 3,
pp.325-351, June 2004.

[10] M. Golfarelli, S. Rizzi, E. Saltarelli, Index Selection
Techniques In Data Warehouse Systems, Proc.
International Workshop on Design and Management
of Data Warehouses DMDW'02, Toronto, Canada,
pp.33-42, 2002.

[11] J. Kratica, I. Ljubic, D. Tosic, A Genetic Algorithm
for the Index Selection Problem, Proc. Applications of
Evolutionary Computing: EvoWorkshops 2003, Essex,
UK, pp.280-290, April 2003.

[12] A. Tsois, N. Karayannidis, T. Sellis, D. Theodoratos,
Cost-based optimization of aggregation star queries on
hierarchically clustered data warehouses, Proc.
International Workshop on Design and Management
of Data Warehouses DMDW'02, Toronto, Canada,
pp.62-71, 2002.

[13] G. Velinov, M. Kon-Popovska, Solving View and
Index Selection Problem Using Genetic Algorithm,
Proc. Second Balkan Conference in Informatics,
BCI’05, Ohrid, Macedonia, pp.180-192, November
2005.

[14] G. Velinov, M. Kon-Popovska, D. Gligoroski,
Optimization of Relational Data Warehouses, Proc.
4th European Conference on Intelligent Systems and
Technologies, ECIT2006, Iasi, Romania, September
2006.

[15] G. Velinov, D. Gligoroski, M. Kon-Popovska, Hybrid
Greedy and Genetic Algorithms for Optimization of
Relational Data Warehouses, Proc. of the 25th
IASTED International Multi-Conference: Artificial
intelligence and applications, Innsbruck, Austria,
pp.470-475, February 2007.

[16] J.X. Yu, X. Yao, C. Choi, G. Gou, Materialized
Views Selection as Constrained Evolutionary
Optimization, IEEE Transactions on Systems, Man
and Cybernetics, Part C: Applications and Reviews,
Volume 33, No. 4, pp.458-468, November 2003.

Goran Velinov received the B.Sc. and
M.Sc. degrees in Computer Science from
Institute of Informatics, St. Cyril and
Methodius University, Skopje,
Macedonia, where he is currently
pursuing the PhD degree. He is a
research and teaching assistant at the
Institute of Informatics. His recent
research focuses on data warehouse,

on line analytical processing, index and materialized view
selection. He has also interests in optimization problems
and genetic algorithms.

Danilo Gligoroski received the PhD
degree in Computer Science from
Institute of Informatics, Faculty of
Natural Sciences and Mathematics, at
University of Skopje – Macedonia in
1997. His research interests are
Cryptography, Computer Security,
Discrete algorithms, Information
Theory, Coding and Optimization

Algorithms. Currently he is visiting professor at Q2S –
Centre for Quantifiable Quality of Service in
Communication Systems at Norwegian University of
Science and Technology - Trondheim, Norway.

Margita Kon-Popovska received the B.Sc.
in Applied Mathematics, M.Sc. in
Operations Research and the PhD in
Informatics and Management Sciences
from the University of Ljubljana, Slovenia.
She is professor at the Institute of
Informatics at the Ss Cyril and Methodius
University in Skopje, Macedonia. Her
research interests are information
system design and processes, data

base design, heuristics optimisation and gridification. She
is mentor of several PhD students working in these areas.

