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Summary 
In this paper we present the system of relational data warehouse 
optimization. The system is based on generalized definition of 
solution space which includes lot of factors relevant for 
performance of the relational data warehouses. Novelties are 
hybrid Greedy - Genetic algorithms applied to generalized 
solution space and specific techniques for improvement of the 
efficiency of optimization process. Experimental results shows 
that our algorithms outperforms traditional Genetic algorithms in 
the speed of finding optimal (or near optimal) solutions. 
Key words: 
Relational Data Warehouses; Greedy; Genetic Algorithm. 

1. Introduction 

This paper represents a collection and extension of three 
papers that we have recently published [13], [14], [15]. 
The performance of the system of relational data 
warehouses depends of several factors and the problem of 
its optimization is very complex. The main elements of a 
system for data warehouse optimization are: definition of 
solution space, objective function and choice of 
optimization method. The solution space includes factors 
relevant for data warehouse performance as view and 
index selection and view fragmentation i.e. partitioning. In 
some existing approaches the solution space for problem 
of optimization of data warehouses is simplified to great 
extent, and the selection of views or indexes is studied 
without considering other factors, see [1], [2], [6], [11] and 
[16]. These approaches are important for theoretical 
research, but are not applicable in practice.  

In some papers [9], [13] view selection problem is 
generalized by including proper set of indexes for each 
view and selection of views and indexes is done together. 
If the selection of views and indexes is performed 
separately and the set of indexes is added to the optimal 
set of views, then the common set might not have optimal 
performances. In [3] the problem of optimization of 
horizontal scheme partitioning was defined. Optimization 
problem of data warehouses as combination of 
materialized views, indexes and horizontal data 

partitioning was introduced in [4] and the approach of 
vertical fragmentation was introduced in [9]. In [14] a 
model which includes selections of views and indexes and 
complete vertical fragmentation was introduced. 

The optimization is usually considered with certain 
constraints which divide all solutions (whole solution 
space) to two groups of solutions: feasible and infeasible. 
There are two types of constraints: real system and logical 
constraints. System constraints are well studied in existing 
research prototypes [1], [2], [8], [9], [13] and [16]. They 
can be disk space or maintenance cost constraint. In [1], 
[2] and [9] the linear cost model was used under disk 
space constraint and formally system constraints were 
embedded in the penalty function. In [8], [13] and [16] the 
objective function involved query processing cost under 
views maintenance (refreshment) cost constraint. In [16] 
the constraints were incorporated into the algorithm 
through a stochastic ranking procedure. In [14] logical 
constraints ware considered and effects of solutions which 
violated logical constraints to the optimization process 
were analyzed. 

Some types of evolutionary (genetic) algorithms as 
optimization method were used in [3], [11], [13] and 
greedy algorithm with its variants and some heuristic 
searching techniques were used in [5], [8]. In [13] greedy 
and genetic algorithms were compared for optimization 
problems in data warehousing. It was shown 
experimentally that for large solution space greedy 
algorithms have poor performances compared to genetic 
algorithms. 

We present two novel hybrid algorithms named 
GGLA (Greedy-Genetic Linear Algorithm) and GGBA 
(Greedy-Genetic Binary Algorithm). Both of them are 
combination of Greedy and Genetic algorithm. The genetic 
part of the algorithms is based on SRGA (Stochastic 
Ranking Genetic (evolutionary) Algorithm) introduced in 
[16]. The algorithms are applied to generalized 
optimization problem of data warehouse performance, 
based on our multi-dimensional model that includes 
complete vertical fragmentation. The model provides 
definition of all possible aggregate views and their data 
dependencies. Further, the solution space of the 
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optimization problem includes bitmapped indexes. For 
comparison, in [16] the SRGA algorithm is successfully 
applied to solution space that consists of 16 to 256 views, 
while in our work the algorithms are successfully applied 
to the solution space (views, fragmented views and 
indexes) up to 1110 objects.  

Furthermore, the system is tested for complex 
workload i.e. queries with projection, selection, join and 
grouping operations and with complex selection predicates. 
Our optimization model is named - SFI since it includes 
selection of views (S), their vertical fragmentation (F) and 
their indexing (I). In [14] we have shown benefits of using 
SFI compared to approaches without fragmentation (SI), 
without indexes (SF) and without fragmentation and 
indexes (S). In [15] SRGA is adopted and applied to SFI 
model. To show the efficiency of our novel algorithms we 
have compared them with SRGA. We have made many 
experiments which verified dramatic improvements (up to 
280%) of the optimization process. The conclusion is that 
our optimization algorithms are much more effective and 
powerful then that developed in [16]. 

The paper is organized as follows: in Section 2 we 
describe definition of the solution space, , in Section 3 we 
give practical example and in Section 4 we define 
objective function of the optimization system. In Section 5 
we present our novel algorithms (GGLA, GGBA) that 
successfully solve the aforementioned optimization 
problem, in Section 6 experimental evidence of the 
efficiency of the algorithms is shown, applied to 
generalized solution space and finally, in Section 7 we 
give conclusions and discuss our future work. 

2. Definition of Solution Space 

In this section we will define generalized solution space of 
the optimization process. The solution space is based on 
relational data warehouse scheme which includes 
definition of dimension relations, all possible aggregate 
views, their different states of normalization, named 
variants of views and relational dimensions as well as all 
possible indexes. 

Let us define dimension D  as set of 
relations },...,{ 1 kD RRR = , where each dimension relation 

iR  is characterized by basic set of attributes 

iiii FADAPABA ∪∪= , where φ≠iPA  is the set of 
primary key attributes (identifying attributes), φ≠iDA  is 
the set of descriptive attributes and iFA  is the set of 
foreign key attributes. iAA  is the set of additional 
attributes of relation iR , defined as union of basic sets of 
its dependent relations. },...,{ 1 mRDRDHD =  is the set of 
dependencies between dimension relations of dimension 
D , named dimension hierarchy. Each iRD  is 

characterized by two dimension relations jR , pR , and it is 

presented by pji RRRD →:  i.e. ),( pji RRRD , and also 

pj FAPA ⊆ . 
A data cube ),( MDCDC D=  is pair of dimension 

set },...,{ 1 nD DDDC =  and measure attributes set M . An 
implementation scheme SC  of data cube DC  is defined 
as pair ),( AVDCSC = , where },...,{ 1 pVVAV =  is set of 
aggregate views. Each lV  is characterized by set of 
measure attributes MM l ⊆  and by basic set of group by 
attributes lBGA . Aggregate views can contain different 
subsets of the set of measure attributes, which provides 
vertical fragmentation of measure attributes. Between the 
appropriate dimension relations and the aggregate views 
there exist 1:M relationships i.e. primary key attributes of 
the dimension relation at the same time are foreign key 
attributes of the aggregate views. Group by attributes of 
any aggregate view consists of primary key attributes of at 
most one relation of each dimension. An extended set of 
group by attributes lEGA  of aggregate view lV  is defined 
as union of basic sets attributes of its dimension relations 
and additional set of group by attributes lAGA  is defined 
as lll BGAEGAAGA \= . The set RSC  is set of all 
dimension relations of implementation scheme SC . 

The aggregate view iV  derived from aggregate view 
V  by adding (possible empty) subset of union of basic 
sets attributes of its dimension relations is variant of 
original view V . Intuitively, the view variants are created 
by denormalization of original scheme. Our idea is to 
consider all possible states of normalization of data cube 
scheme, from fully normalized state in 3rd NF, trough the 
process of denormalization, to fully denormalized state 
(whole scheme in one view). The variant 0V of view V , 
which is characterized by basic set of group by attributes 

φ∪= BGABGA0  is named zero variant of view V .  
The important issue is how to select a variant of each 

dimensional relation, a set of views for materialization 
(each view presented with its proper variant) and a set of 
their appropriate indexes in order to minimize the total 
query processing time of the queries with a certain 
constraint. 

The next step in definition of solution space is 
determining the indexing strategy. According to the theory 
of indexing, novel bitmapped indexes are very suitable for 
processing of data cube based queries. Thus, in this work 
for aggregate views, one-attribute bitmap indexes are 
considered. For each attribute of the extended set of group 
by attributes, one index can be created. Note that the 
number of elements of the EGA and sequence of all 
indexes are disposed in advance. The set of all possible 
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indexes in implementation scheme SC  is SI . The view 
length 

lVL of aggregate view lV  is defined as 

nmkL
lV +++= 1 , where k  is the number of elements of 

additional set of group by attributes of the view lAGA , m  
is the number of elements of set of measure attributes and 
n  is the number of indexes of the view i.e. number of 
elements of extended set of group by attributes lEGA . The 
parameters VL  are necessary to calculate number of bits 
(genes) for presentation of the solutions in our algorithms. 

A data warehouse responses to large number of 
aggregate, data cube based ad hock queries (workload) i.e. 
to dynamic and in principle unpredictable queries. 
However, lot of them can be determined a priori and can 
be formalized. To evaluate the real performances of the 
system we define the workload i.e. the set of predefined 
generalized project-select-join queries based on 
aggregation views of the data cube scheme. The query 
definition is extended by using all possible subsets of 
grouping and selection attributes and by using complex 
selection expressions. Data operators i.e. predicates in 
selection expressions are also important for query 
processing time i.e. different data operators returns 
different numbers of tuples. Therefore, in this paper, in our 
query definition a set of different data operators is 
included.  

Query Q  in implementation scheme ),( AVDCSC =  
is tuple ),,,( QQQQ FPGAMQ = , with MM Q ⊆  as set of 
measure attributes, pQ EGAGA ⊆  as set of group by 
attributes, QP  as selection expression and QF  as expected 
frequency of the query. QP  as selection expression of 
query Q is in form: nANDpANDANDpp ...21 , where 

iii ValueAp θ: , iA  is selection attribute, },,,,{ ≥≤><=∈θ  
is data operator, ){ ii ADomValue ∈ . The set QSA  defined 
as },...,{ 1 nQ AASA =  is set of selection attributes (where 
clause attributes) and pQ EGASA ⊆  ( pEGA  is extended 
set of attributes of the primary view). Data operators are 
divided in two groups: equality and inequality data 
operators. Thus, inequality operators usually return more 
then one tuple and after the selection by a certain set of 
attributes it is reasonable to group the data by the same set 
of attributes. Consequently, the two sets obtained by 
grouping and selection attributes are not disjoint. Set of all 
possible queries in implementation scheme SC  is SQ . 

Ratio of equality operator ER  in selection expression 
of query Q  is defined as nk / , where 0>n  is number of 
data operators i.e. number of elements of the set of 
selection attributes QSA  and k  is number of equality 
operators. The parameter ER  is necessary to estimate 
number of tuples returned in each step of query execution 

i.e. to calculate query execution cost. This is important to 
develop realistic query evaluator. Query Q  is computable 
from (can be answered by) aggregate view V  in 
implementation scheme ),( AVDCSC =  if: 1. VQ MM ⊆  
and 2. VQQ EGASAGA ⊆∪ , where VM , VEGA  is set of 
measures and extended set of group by attributes of V , 
respectively. The previous definition is necessary to 
determinate the set of views from which each query Q  

can be answered. Thus, we define ratio of usability UR  of 
aggregate view V  as nk / , where 0>n  is number of 
queries i.e. number of elements of the set SQ  and k  is 
number of queries which can be answered by V . The UR  
parameter is necessary to estimate the frequency of 
usability i.e. "importance" of each view. It will be used in 
procedure of greedy selection of the views.  

3. Practical Example 

For better presentation of our formal model a practical 
example of sale database system is considered. Three 
dimensional data cube SALE with },,{ DSISALED =  and 
M={S_quantity, S_amount, S_price} is considered. 
Dimension relations organized in dimension hierarchies 
are shown in Figure 1. 

Simplified scheme of the data cube, with all 
dimension relations and only with two views (the primary 
view and one supporting view of the scheme) formally is 
described by: 

 
Item (I_id, It_id, I_name); 
Item_type(It_id, It_name) 
Supplier (S_id, C_id, S_name); 
City (C_id, Co_id, C_name); 
Country (Co_id, Co_name); 
Date (D_id, W_id, M_id, D_date); 
Week (W_id,  D_week); 
Month (M_id, Y_id, D_month); 
Year (Y_id, D_year); 
Sale_ISD (I_id, S_id, D_id, S_quantity, S_amount, 

   S_price); 
Sale_ItS (It_id, S_id, S_quantity,  S_price); 

 
and graphically is shown in Figure 2. 

Set of relations of dimension I is 
RI={Item,Item_type}. Relation Item is characterized by 
PA={I_id}, DA={I_name}, FA={It_id}, BA={I_id, 
I_name, It_id}, EA={I_id, I_name, It_id, It_name} and 
AA={It_name}. Number of variants of Item relations is 
21=2. Dimension hierarchy of dimension I is defined as 
HI={It-I}, where It-I: Item_type→ Item i.e. It-I(Item_type, 
Item). According to the dimension hierarchies, the number 
of aggregate views of scheme of the data cube SALE is 60. 
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Primary aggregate view is Sale_ISD and is characterized 
by set of measure attributes MSale_ISD={S_quantity, 
S_amount, S_price} and by BGASale_ISD={I_id, S_id, D_id} 
as basic set of group by attributes. Extended set of group 
by attributes is EGASale_ISD={I_id, I_name, It_id, It_name, 
S_id, S_name, C_id, C_name, Co_id, Co_name, D_id, 
D_date, W_id, D_week, M_id, D_month, Y_id, D_year} i.e. 
all attributes. Number of variants of aggregate view 
Sale_ISD is 215=32768. Supporting aggregate view 
Sale_ItS is characterized by set of measure attributes 
MSale_ItS={S_quantity, S_price}  and by BGASale_ItS={It_id, 
S_id} as basic set of group by attributes. Extended set of 
group by attributes is EGASale_ItS={It_id, It_name, S_id, 
S_name, C_id, C_name, Co_id, Co_name}. Number of 
variants of Sale_ItS is 26=64. 
 

 

Fig. 1 Dimension hierarchies for I, S and D dimension 

 

Fig. 2 Simplified scheme of data cube SALE 

Note that Sale_ItS is computable from Sale_ISD. Actually, 
if Sale_ISD is given by its zero variant Sale_ISD0, this 
means that the view Sale_ItS can be created by the 
following SQL statement: 
 
CREATE MATERIALIZED VIEW Sale_ItS AS 
SELECT I.It_id, F.S_id,  
       SUM(F.S_quantity) S_quantity, 
       AVG(F.S_price) S_price 
FROM Sales_ISD F, Item I 
WHERE I.I_id=F.I_id 
GROUP BY I.It_id, F.S_id; 
 

To create (compute) Sale_ItS it is necessary to join 
aggregate view Sale_ISD and dimension relation Item. But 
if Sale_ISD is given by its variant Sale_ISD1 characterized 

by =1
_ ISDSaleBGA {I_id, It_id, It_name, S_id, S_name, 

D_id} then the view Sale_ItS can be created by the 
following SQL statement: 
 
CREATE MATERIALIZED VIEW Sale_ItS AS 
SELECT F.It_id, F.S_id,  
       SUM(F.S_quantity) S_quantity, 
       AVG(F.S_price) S_price 
FROM Sales_ISD F 
GROUP BY F.It_id, F.S_id; 
 

Note that maintenance cost of Sale_ISD is increased 
by adding the new attributes, but at the same time 
maintenance cost of Sale_ItS is decreased. Also note that 
view Sale_ItS is presented by its zero variant i.e. 

== 0
__ ItSSaleItSSale BGABGA {It_id, S_id}. 

If we assume that the view Sales_ItS is presented by 
its zero variant i.e.materialized by above SQL statement, 
then to process the following query, named QSale (sales of 
type items "Milk Products" by supplier names), it is 
necessary to join proper dimension relations to the 
materialized view: 
 
SELECT F.It_id, F.S_id, S.S_name, 
       SUM(F.S_quantity) S_quantity 
FROM Sales_ItS F, Item_type It,  
       Supplier S 
WHERE It.It_name="Milk Products"  
       AND F.It_id=It.It_id  
       AND F.S_id=S.S_id 
GROUP BY F.It_id, F.S_id, S.S_name; 
 

Formally, the query QSale can be described by 
following sets: MQSale={S_quantity} as set of measure 
attributes, GAQSale={It_id, S_id, S_name} as set of 
grouping attributes, PQSale:It_name="Milk Products"$ as 
selection expression and set of selection attributes 
SAQSale={It_name}. Expected query frequency is FQSale=1. 

To reduce the processing time required for joining 
views and dimension relations, frequently accessed 
attributes can be stored into materialized views. Thus, 
another possible way to create view Sales_ItS, from 
variant of Sales_ISD with =2

_ ISDSaleBGA {I_id, It_id, 
It_name, S_id, S_name, D_id} i.e. another variant of 
Sales_ItS is: 
 
CREATE MATERIALIZED VIEW Sale_ItS AS 
SELECT F.It_id, F.It_name  
       F.S_id, F.S_name,  
       SUM(F.S_quantity) S_quantity,  
       AVG(F.S_price) S_price 
FROM Sales_ISD F 
GROUP BY I.It_id, It.It_name,  
       F.S_id, S.S_name; 
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The second variant Sales_ItS1 of the view Sales_ItS is 

characterized by the set =1
_ ItSSaleBGA {It_id, It_name S_id, 

S_name} of grouping attributes. It is easy to note that the 
number of tuples is the same as the first variant of the view. 
To process previous query now it is not necessary to join 
dimension relations to fact relation and the SQL statement 
for the query is: 
 
SELECT F.It_id, F.It_name,  
       F.S_id, F.S_name, F.S_quantity 
FROM Sales_ItS F 
WHERE F.I_tname="Milk Products"; 
 

The advantage of using the second variant is 
decreasing the processing time of the queries, but the 
disadvantage is increasing the storage space i.e. 
maintenance cost. In [5] some frequently accessed 
dimension keys and attributes are stored in various 
materialized views. However, a serious problem is to 
consider set of all possible variants of the data cube views 
and to find the optimal one with largest benefit of query 
processing and minimal maintenance cost. 

4. Definition of Objective Function 

In this section we will propose a suitable evaluation 
function of the optimization process. Let MSC  is the state 
of the data cube scheme SC  with the set AVAVM ⊆  of 
candidate views for materialization where each of them is 
presented by its variant and the set SISI M ⊆  of candidate 
indexes. Let also all dimensional relations are presented by 
their appropriate variants. Then maintenance-cost 
constrained optimization problem is the following one: 
select a state MSC  of data cube scheme SC  that 
minimizes 

∑
∈

=
SQQ

MQM SCQPFSQSCSC ),(*),,(τ  , 

under the constraint SSCSCU M ≤),( , where SQ  is the set 
of predefined queries, QF  is query frequency and 

),( MSCQP  denotes the minimum processing cost of the 
query Q  in the MSC  state of SC . 

Let ),( MSCSCU  is total maintenance cost defined 
as:

++= ∑∑
∈∈ MSC AVV

MV
RR

MRM SCVmGSCRmGSCSCU ),(*),(*),(

∑
∈

+
MII

MI SCImG ),(* , where RG , VG  and IG  is update 

frequency of relations, views and indexes, respectively. 
Let ),( MSCRm , ),( MSCVm  and ),( MSCIm  is the 

minimum cost of maintaining a relations, views and 
indexes, respectively in presence of state MSC . 

We note that ),( MSCQP  is objective function of the 
problem. To calculate values of the functions ),( MSCQP , 

),( MSCRm , ),( MSCVm  and ),( MSCIm  we developed 
algorithms based on common query execution (processing) 
theory, presented in [7] and also on some ideas from [1], 
[10], [11], as well as [12]. 

5. Novel Greedy - Genetic Algorithms 

In this section we will present two novel hybrid 
algorithms for optimization of relational data warehouses. 

First, we will define presentation of the object 
(dimensional relations, aggregate views and indexes) by an 
array of bits i.e. by parts which will be concatenated in a 
chromosome. Dimensional relations are presented (as 
special type of views for materialization) with their 
different variants. Number of bits needed to present each 
dimensional relation with all its variants is 1+k , where k  
is number of elements of additional set of attributes. Thus, 
the first bit is used to present a dimensional relation and 
other n  bits to present additional attributes. As we said, all 
dimensional relations must be materialized, thus each of 
them is presented by 1. An attribute of the additional set, if 
it is added to its dimensional relation is presented by 1 and 
if it is not added it is presented by 0. Aggregate views are 
presented in similar way i.e. for each view, one bit is used 
for its presentation (by 1 if it is selected or by 0 if it is not 
selected for materialization) and k bits are used to present 
its additional attributes i.e. their variants. The attributes of 
the additional set of aggregate views are presented in the 
same way as attributes of additional sets of dimensional 
relations. Finally, for each aggregate view the measure 
attributes are presented by n  bits. A measure attribute, if it 
is added to the appropriate view, is presented by 1 and if it 
is not added, then it is presented by 0. Note that for each 
view at least one measure attribute must be added. The 
presentation of each view is followed by presentation of its 
possible indexes. Each index is presented exactly by one 
bit i.e. by 1 if it is selected or by 0 if it is not selected. The 
number and sequence of all indexes are disposed in 
advance. 

If a view is not materialized all its variant, measure 
and index bits are irrelevant for evaluation of solution and 
we named those bits recessive bits. Note that the number 
of recessive bits is very large in regard of other bits. They 
are irrelevant for evaluation of solution, but they can be 
important for optimization process in the next generations. 

Our algorithms are hybrid because they are 
combination of greedy and genetic algorithms. The 
Algorithm 1 is named GGLA - Greedy-Genetic Linear 
Algorithm. 
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Input parameters of the algorithms are: NC  - 
Number of Chromosomes (population size), NG  - 
Number of Generations, LC  - Length of Chromosome 
(number of bits needed to present whole solution space), 
NF  - Number of Fragments of the solution space, which 
is equal to number of steps of greedy procedure, SQ  - Set 
of Queries, AV  - set of Aggregate Views. By POP(i) is 
presented ith generation of the population. 
 
Algorithm 1: GGLA(NC, NG, LC, NF, AV, SQ) 
Begin 

AVB:=Ø; 
Choose_views(Round(LC/NF), CL, AVB,AVC, AV); 
Extend_chromosome(POP(1), AVC, NC); 
Evaluate_population(POP(1), SQ); 
Evaluate_population_materialization(POP(1)); 
j:=2; 
For i=2  to NG  Do 

If Mod(i,Round(NG/NF))=1 Then 
Choose_views(Round(LC*j/NF),CL,AVB, 
AVC,AV); 
Extend_chromosome(POP(i), AVB, NC); 
j:=j+1; 

 End If; 
 Perform_crossover(POP(i-1), NC); 
 Perform_mutation(POP(i), NC); 
 Evaluate_population(POP(i), SQ); 
 Evaluate_population_materialization(POP(i)); 
 Perform_selection(POP(i), NC); 

End For; 
End GGLA; 
 
Parameters of the Subalgorithm 1 are: NL  - New  Length 
of chromosome (input), CL  - Current Length of the 
chromosome (input/output), BAV  - set of chosen views 
(input/output), CAV  - set of chosen views in current step 
(output), AV  - set of Aggregate Views (input). 
 
Subalgorithm 1:Choose_views(NL, CL, AVB, AVC, AV ) 
Begin 

AVC:= Ø ; 
While NL>CL Do 

 iBB VAVAV ∪=: , where Vi has maximal  
URi in AV \ AVB; 

 iCC VAVAV ∪=: ; 
  CL:= CL+LVi; 

End While; 
End Choose_views; 
 
The GGLA algorithm graphically is shown in Figure 3. 
Before the optimization process starts, we order all 
aggregate views by their ratio of usability (UR ) i.e. their 

importance. The general idea is in certain steps ( NF ) by 
greedy procedure to choose the subsets of views with all 
their bits (Subalgorithm 1 i.e. procedure Choose_views) 
and to add them to already selected ones i.e. to concatenate 
their randomly generated bits to the already created 
chromosomes (Extend_chromosome procedure). By those 
procedures we roughly modulate solution space. After 
each step of greedy procedure, we perform fine 
optimization by using genetic algorithm (few generations 
on current solution space). The procedure 
Evaluate_population evaluates the quality of solutions and 
the procedure Evaluate_population_materialization 
evaluates maintenance solution cost. The procedures 
Perform_crossover, Perform_mutation and 
Perform_selection perform genetic algorithm operations - 
crossover, mutation and selection, respectively. 
 

 

Fig. 3  GGLA - Greedy-Genetic Linear Algorithm. 

The second algorithm is named GGBA - Greedy-Genetic 
Binary Algorithm. All input parameters are the same as in 
Algorithm 1. The GGBA algorithm graphically is shown in 
Figure 4.  
 

 

Fig. 4  GGBA - Greedy-Genetic Bynary Algorithm. 

POP(i,AVk) presents ith generation of the population and 
consists of fragment of chromosomes represented by AVk 
subset of views. POP2(i) presents ith generation of the 
population and consists of whole chromosomes (created 
by concatenation of all fragments of POP population), 
represented by set of all aggregate views AV. The 
population POP2 is necessary to evaluate maintenance 
solution cost. The variable NS is number of steps of the 
greedy procedure.  
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Algorithm 2: GGBA(NC, NG, LC, NF, AV, SQ) 
Begin 

Divide_views(NF, AV); 
For k=1 NF Do 

Create_population(POP(1, AVk), NC); 
Evaluate_population(POP(1, AVk), SQ); 
Concat_whole_chr(POP(1, AVk), POP2(1)); 

End For; 
Evaluate_population_materialization(POP2(1)); 
NS:=log2NF+1; 
For i=2 to NG Do 

If Mod(i,Round(NG/NS))=1 Then 
For k=1 to NF/2 Do 

  Concat_chr(POP(i, AVk), AV2*k-1, AV2*k);
End For; 
NF:=NF/2; 

End If; 
For k=1 to NF Do 

Perform_crossover(POP(i-1, AVk), NC); 
Perform_mutation(POP(i, AVk), NC); 
Evaluate_population((POP(i, AVk), SQ); 
Concat_whole_chr(POP(i, AVk), POP2(i)); 

End For; 
Evaluate_population_materialization(POP2(i)); 
For k=1 to NF Do 

Perform_selection((POP(i, AV_k), NC); 
End For; 

End For; 
End GGBA; 
 

In procedure Concat_chr we define a new set of 
aggregated views kkk AVAVAV *21*2: ∪= −  and new 
population POP(i,AVk) which consists of chromosome 
fragments created by concatenation of chromosome 
fragments of POP(i,AV2*k-1) and POP(i,AV2*k) populations. 
The chromosome fragments of both populations are 
ordered from the best to the worst evaluated and 
concatenated fragments at the same position. We named 
this concatenation strategy best-to-best. In similar way, 
procedure Concat_whole_chr is creates POP2(i) as 
concatenation from populations of all subsets of views 
POP(i,AVk). Here we also use best-to-best concatenation 
strategy. All procedures with the exception of 
Evaluate_population_materialization can be parallelized 
for different fragments of chromosomes i.e. subsets AVk of 
AV, which gives the total improvement of the 
performances of the algorithm. 

6. Experimental Results 

In this section using our experimental system we compare 
performances of the three optimization algorithms: SRGA - 
Stochastic Ranking Genetic Algorithm, GGLA - Greedy 

Genetic Linear Algorithm and GGBA - Greedy Genetic 
Binary Algorithm. 

For the efficiency of genetic algorithm several input 
parameters are important. In [13] we have already 
described some experiments with wide range of their 
values. In this work we fixed the parameters to their 
optimal values, obtained in [13]: population size PS=20, 
probability of mutation PC=0.5 and PG=0.05. Exactly 192 
experiments were performed. For all experiments 
termination condition of optimization process was 64 
generations. All algorithms were applied to generalized 
solution space based of our model which includes view 
selection with vertical view fragmentation and selection of 
indexes (SFI). For GGLA and GGBA we experimented 
with different values of the parameter NF - Number of 
Fragments. For GGLA the number of fragments is equal to 
the number of steps of the greedy procedure, while  for 
GGBA number of steps of the greedy procedure is given 
by log2NF+1.  

The comparison of the optimization process 
execution time of all three algorithms, for different 
number of fragments NF, is shown in Figure 5. The 
optimization process is considered with four different 
values of NF parameter, from 4 to 32. Improvements of 
GGLA and GGBA over SRGA are evident when we 
increase the values of the parameter. The value of the 
parameter is limited by the number of generation of the 
optimization process (in our case 64). However, usually 
the number of generations increases by the increasing of 
the complexity of the problem i.e. its solution space size. 
 

 

Fig. 5 Optimization process time according number of fragments of the 
solution space 

Next important parameter of optimization process is the 
size of the solution space i.e. the length of the 
chromosome for the genetic algorithms. A comparison of 
different algorithms according to the solution space size is 
shown in Figure 6. For better presentation of the 
algorithms performances on the same chart, we scaled 
values of optimization process execution time. On y-axis 
the benefit of optimization process execution time 
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relatively to the worst algorithm is shown. Evidently, in all 
cases GGBA algorithm has the highest improvement of the 
optimization time. Note that improvements of both GGLA 
and GGBA algorithms rise by increasing the solution 
space size, which is another important feature: the 
scalability of our algorithms and their appropriateness for 
practical implementation. 
 

  

Fig. 6 Optimization process time (relatively to the worst) according 
solution space size 

In proposed algorithms we use a priori knowledge 
about usability of aggregate views and implement that 
knowledge as a heuristics in the greedy procedure for the 
views choice. Using greedy algorithm in the first step 
enables the genetic material decrease i.e. to decrease the 
number of calculations in the genetic part of the GGLA 
algorithm and possibility to parallelize some segments of 
genetic part in the GGBA algorithm. Finally, we note that 
values of given solutions by using GGLA and GGBA are 
in the range of 98%-101% of solutions given by using 
SRGA. 

6. Conclusions and Future Work 

The performance of the system of relational data 
warehouses depends of several factors and its optimization 
is rather complex problem, thus making a perfect system 
still a challengeable endeavor. Therefore, in this paper we 
have focused on the generalizations of the problem and 
improvement of the efficiency of optimization process.. 
We fully analyzed the problem by including a lot of 
factors relevant for the optimization of the system i.e. 
views selection, vertical view fragmentation and index 
selection. Then we have designed two novel algorithms 
GGLA and GGBA and applied them on the generalized 
solution space. We have achieved significant performance 
improvements in the optimization process compared to the 
stochastic ranking genetic algorithm and we have verified 
those improvements by performing large set of 
experiments. 

In the future we plan to extend our multidimensional 
model by including horizontal partitioning, definition of a 
clustering strategy and to define an optimization process 
by applying the algorithms on the extended solution space. 
There is also possibility to parallelize the algorithms on 
different levels such as: evaluation of the chromosomes 
within populations, parallelization of the populations or 
parallel optimization of the different data cubes. In this 
work static algorithms were considered. Our plan is to 
develop dynamic algorithms for data warehouse design 
optimization. 
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