
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

112

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Design and Implementation of a Dynamic Metadata Editor

 Nor Adnan Yahaya1 , Rosiza Buang2 and Noor Hafizah Hassan1

Malaysia University of Science and Technology
Petaling Jaya, Selangor, MALAYSIA

Petronas Berhad

Kuala Lumpur, MALAYSIA

Summary
This paper discusses the development of a web-based editor to
support the authoring and management of Dublin Core (DC)
metadata for web sources, using the Resource Description
Framework (RDF) as the main representation scheme. The
metadata editor is dynamic in the sense that it has the capability
to automatically extract relevant content of DC metadata
elements from the Dublin Core Metadata Initiative (DCMI)
website as well as other relevant DC compliant metadata from
the web source in question. While the first capability makes the
editor responsive to any new relevant updates to the DC
metadata scheme, the second one helps in reducing the manual
input of actual metadata during the authoring and management
process. The editor was implemented mainly in C#.Net language
through the use of Microsoft Visual 2003. It uses SQL Server 7
for database management.

Keywords:
Metadata authoring, Dublin Core, Resource Description
Framework, Semantic Web.

1. Introduction

Today thousands or even millions of web pages are being
made available daily as the Internet becomes a favorite
platform choice for transferring and sharing information
among people globally. These voluminous pages of
information are composed of text, static image, audio,
movie and animation which are often being represented in
different types of format. This, coupled with the lack of
uniformity and standardized approach to web
development, have made web processing becoming more
complex. Existing index-based search engines are no
longer capable of meeting the increasing demand for more
accurate and meaningful search for information over the
increasing volumes of web pages.

The Web was initially built for human interaction rather
than to support machine to machine interaction [1]. The
lack of processable knowledge associated with the Web
generally has inhibited intelligent access and choice to

accurate information by machines or any software. To
overcome this, the use of metadata has become
fundamental. In describing web sources, metadata,
which is simply “data about data” [1] can include the
authors of the web source in question, its date of
creation or updating, the organization of the website
sitemap, as well as key words representing the subject
matter that can help to improvise searching.

The Semantic Web Initiative has developed RDF/XML
language [1][2], which is expected to be the standard
framework for representing metadata for Internet
resources. In a parallel development, the Dublin Core
Metadata Initiative (DCMI) [3] has taken the lead in
developing metadata standard known as Dublin Core
(DC) for describing cross-domain information resources.
These two inter-related developments on RDF and DC
respectively have motivated us to research on metadata
development environment that takes advantage of the
potentials offered by these two. Our initial effort
resulted in the development of a dynamic metadata
editor called D-DC/RDF-Editor, which is the main
subject of this paper.

The paper is organized as follows. In the next section
we present our observations on existing DC metadata
editors by highlighting the main similarities and
differences among representatives of them. Section 3
presents the salient features of D-DC/RDF-Editor by
combining the strengths of these existing editors.
Section 4 and Section 5 discusses the design and some
implementation aspects of the editor, respectively.
Section 6 provides an illustration of the usage of the
editor and finally, Section 7 presents our conclusions.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

113

2. Observations on Some Existing DC
Metadata Editors

Dublin Core (DC) Metadata Schema was designed to
serve 2 levels of complexity, namely the Simple DC and
Qualified DC. Simple DC comprises of 15 elements
which can describe the basic metadata of any Internet
resource. Qualified DC allows authors to refine some of
these basic DC elements to make their meaning more
specific as well as to provide additional information that
can aid in the interpretation of the values of some these
elements. Further description on these two levels of
metadata schema can be found in [3].

Table 1 below provides a summary of comparison among
three [4] [5] [6] of the existing DC metadata editors, in
terms of the main features offered.

Table 1: Features comparison among DC metadata editors
Features DC-Dot Reggie DCMT

Auto
Extraction
of
Metadata

Yes No No

Simple DC
Elements Yes Yes Yes

Qualified
DC
Elements

No Yes Yes

Presentatio
n of DC
Elements

Static Dynamic Dynamic

Metadata
Format

HTML
XHTML

RDF/XML
XML

IEEE LOM
IMS

USMARC
Abbr RDF

etc

HTML
RDF/XML
Abbr RDF

HTML
XHTML

Default
Template No No No

Multiple
Metadata
Schemas

No Yes No

Suggests
Additional
Metadata

No No No

There are two interesting observations that can be
highlighted from the above comparison :

• the editors that support both simple and qualified
DC elements do not provide any feature that
does automatic extraction of metadata from the
available sources.

• On the other hand, the editors that support
automatic extraction of metadata supports only
simple DC elements.

Hence, if these two powerful features were integrated
into one metadata editor, then the resultant would be a
powerful and effective tool. D-DC/RDF-Editor was
intended to be one such a tool.

3. Salient Features of D-DC/RDF -Editor

In a nutshell, D-DC/RDF-Editor basically provides a
single platform for a user to automatically generate
metadata that conform to the enriched features of simple
and qualified DC metadata standard and that are also
representable in RDF language. Its main aim is also to
ensure a consistent creation of metadata through
maximizing the strengths offered by the DC and RDF
standards. In general, it has the capability of capturing
as many relevant metadata particularly for the DC
subject element (or well known as keywords) where
users are allowed to pick and choose the suggested
keywords, plus the option to add more relevant
keywords to their metadata as desired. This editor also
has an added advantage in supporting future new
elements that are related to Simple DC, Qualified DC,
Encoding Schemes or Term Vocabularies without
having to modify the programming code. This is
achieved through automatic detecting of any new or
obsolete DC elements based on the up-to-date
definitions and schemas that are publicly available in
Dublin Core Metadata Initiative(DCMI) website
(http://dublincore.org).

Table 2 provides a summary of features of D-DC/RDF-
Editor that combine the strengths of the existing editors
as depicted in the previous section.

Table 2: Features of the D-DC/RDF-Editor
Features D-DC/RDF-Editor

Auto Extraction of
Metadata Yes

Simple DC Elements Yes

Qualified DC Elements Yes

Presentation of DC
Elements Dynamic

Metadata Format

RDF/XML
XHTML

XML
Abbreviated RDF

Default Template Yes
Multiple Metadata
Schemas Yes

Suggests Additional
Metadata Yes

Representing metadata in the form that conforms to
RDF schema ensures their consistency. This is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

114

particularly important in creating more complex and
dynamic metadata which can be achieved through
applying Qualified DC elements and the suggested
Encoding Scheme. Furthermore, this can be carried out
with minimal efforts and errors, via the application of
default templates in order to avoid repetitive typing of the
same data and rapid deployment of metadata. Last but not
least, the editor also enables the system administrator to
detect and update new updates of Dublin Core Metadata
(DCM) only through the touch of a few buttons.

Dynamism and flexibility are the two main design goals
of D-DC/RDF-Editor. The flexible design of the editor’ s
database has allowed for seamlessly transition from
Simple to Qualified DC and vice versa without having
losing its metadata information or duplicating the data
entry. Overall the database subsystem is dynamic in the
sense that changes in master reference data are done
automatically through data wrapping of the schemas and
related namespace maintained by DCMI, in order to
ensure that they are up-to-date. Accuracy of metadata is
also maintained through extraction of related metadata
values from the web source itself as well as the use of
default template for a standard set of metadata when
extracting from multiple sources. Finally, the metadata
that has been created can be generated into RDF/XML
format files which can be made accessible by search
engines.

With the auto extraction of metadata as the key feature,
the functionality of D-DC/RDF-Editor can be organized
into the following three main functions:

a) Import Metadata Elements: The main purpose
is to populate the fields of the master reference
tables with DC element names and other relevant
names or information that can be extracted from
the schemas that are available in DCMI website.
There are five (5) major classes of names that
need to be imported/extracted for the
construction of these master reference tables.
They are those pertaining to Simple DC,
Qualified DC, Encoding Scheme Class,
Encoding Scheme and DCMI Type Vocabulary.
Due to dynamic and progressive development of
DC standard, a mechanism was put in place to
automatically detect any new, changes, or
obsolete DC elements. Furthermore, Manual
addition of DC elements is not allowed in order
to maintain the conformance to the DC standard
being used.

b) Maintain Metadata Elements: Once the master

reference tables are fully populated with
metadata-relevant names, it can then be edited

and saved, and deleted to suit a user’s
requirement. The editor also enables the user to
sort the appearance of these metadata elements
by having the most used elements appear first
and then followed by the least used ones. Once
the order is confirmed and saved, it will be
automatically reflected in further usage.

c) Create Dublin Core Metadata: This provides

the support for the creation of the actual
metadata itself which allows for two levels of
sophistications, i.e the Simple and Qualified
DC. The system is designed to offer flexibility
to a user where he/she could toggle between
these two without affecting the consistency and
integrity of the metadata. For simplified
metadata, Simple DC is a choice while full-
blown Qualified DC would be favored by those
who wish to create more complex metadata.

As will be described later, in the D-DC/RDF-Editor, the
Import Metadata Elements function is fully automated.
The other two functions require total and partial manual
intervention respectively.

In creating metadata, a user is required to specify the
URL address of the web source in question. When
metadata are being constructed for the first time, the
data value for certain DC metadata elements such as the
identifier, date, type would be automatically extracted
from the title element, class element, meta element of
the corresponding HTML web page and its associated
HTTP header. The resulting extracted data would then
be displayed to the user for editing. Should the user
select to use the default template, default values are also
inserted in separate records. The sequence of the
metadata elements would be according the sorting order
that has been been set through the Maintain Metadata
Elements functional module. Once the relevant
metadata records are created, they are then stored in a
database for future retrieval.

D-DC/RDF-Editor also extracts additional DC
compliant metadata from other elements of HTML page
such as href, abbr, acronym, cite, and class for further
selection. Once the metadata of interest have been
reviewed and edited, the user could generate them in
RDF / XML compliant format that can also be displayed
for final review. The resulting RDF/XML file could
then be validated using a third party RDF Validation
Services provided by W3C. Once validated, the user
will be given the options to e-mail, or to copy and paste
the metadata into an XML document.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

115

4. Architectural Design

D-DC/RDF-Editor is basically based on the following
simple architecture (Fig. 1).

Fig. 1 Architecture of D-DC/RDF-Editor

The core component of the editor is the Metadata
Extraction System. Generally, it has to carry out the
following tasks :

• Import the relevant DC schema information that
describe metadata elements found in DCMI
website.

• Extract DC compliant metadata for the given
web source from any of its associated RDF
(*.rdf) file.

• Extract DC compliant metadata from relevant
sections of the given web source.

Fig. 2 shows the design of Metadata Extraction System.

Fig. 2 Design of Metadata Extraction System

Another important component of the metadata editing
system is The Database Management System. This can
be any typical relational DBMS that can allow the
constructed metadata be stored and managed as
relational database records. In addtion, the same
subsystem is also used to store and manage the master
reference entities that represent the DC schemas.

Finally, the GUI system serves as an interface to the
user in order to perform the various functions of the
system and provide the windows for displaying the
system’s outputs in attractive manner.

5. Construction Model and Code Structures

Current prototype of D-DC/RDF-Editor implements the
above architecture as a web-based system. The
implementation structure is depicted in in Fig. 3.

Fig. 3 Implementation structure of D-DC/RDF -Editor

5.1 Main Components

The main task of each component is described as
follows :

a) The RDF-WA implements the GUI module of
the system’s architecture. It is implemented as
an ASP.NET (using C#) web application and
being the only component that has direct
interface with the user. Its major function is to

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

116

effect the extraction, creation and generation of
metadata corresponding to a given URL address.
The user is given the option to create a simple or
complex (qualified) metadata. As mentioned
earlier, one key advantage that D-DC/RDF-
Editor has over other editors is its capability in
extracting basic metadata or extras from a web
source. User could enhance the metadata by
manually inputting their metadata or deleting
irrelevant metadata. To facilitate speedy but
accurate data entry, this editor offers a default
template facility for repetitive data entry. It also
enables a user to update latest DC elements by
wrapping latest elements from DCMI schemas.

b) The RDF-WS is an ASP.NET web service

consisting of web methods (implemented in
C#.NET) that support request for information or
actions to be performed on them from the RDF-
WA component. These methods could be
dealing with either the SQL Server database or
the web sources. For the latter case, the required
data need to be extracted from the web source in
question. This is done through the use of
Cameleon Web Wrapper technology [7]. In
general, RDF-WS is delegated to extract and
store master reference data from DCMI schemas
and namespaces, as well as metadata of a web
source. It is also delegated to manage the these
persistent data in the SQL Server database. In the
current implementation, RDF-WS and RDF-WA
reside within a same server.

c) The Microsoft SQL Server is used to manage

and maintain master reference data extracted
from DCMI schemas and namespaces, as well as
the metadata that has been confirmed by the user
through RDF-WA. The database for D-
DC/RDF-Editor is centered on one entity,
Metadata which is supported by another entity
called Default Template. Both entities have an
associated detail record and are dependent on DC
Schemas and other references. Five master
reference entities are identified to represent DC
Schemas : Simple DC, Qualified DC, Encoding
Scheme, Classes of Encoding Schemes, and
Vocabulary Term. These entities are connected
by one central table containing all its details.

d) The Cameleon Web Wrapper Engine is used to

extract data from the given web source based on
the extraction patterns given in the associated
specification file(s). In this case, we use
Cameleon# [8] (in .dll format) which is has been
developed as Web Wrapper engine within the

MIT’s Context Interchange System (COIN) [9].
The Specification File (abbreviated as Spec
file) is an XML file (therefore with xml
extension) that contains a series of regular
expressions that specify the extraction pattern
of what to be extracted from a web source. In
this context, the spec file corresponds to the
file containing extraction rules as specified in
the design for Metadata Extraction System (Fig.
2). In the current implementation, 18 Spec files
are developed and used. The Spec files are
categorized into two: Extraction of reference
data and metadata. As mentioned earlier,
reference data provides information on DC
schemas that are found in DCMI website and
therefore commonly performed by the System
Administrator. Metadata extraction techniques
being used are discussed in the next section.

There are four main types of data that are being defined
under this implementation :

a) The target web pages are fed into the system
for automatic extraction of its metadata. The
extraction is limited to pages with HTML
representation only.

b) The Dublin Core Schemas provide

descriptions of DC elements. This comprise of
element names and other information that
make up the master reference tables. All these
are represented in XML and extracted using
the Cameleon engine.

c) The RDF/XML Metadata File contains

metadata for the web source in question. This
is expressed in RDF/XML to by the RDF-WA
component. The metadata will either be e-
mailed to a user or available for cut/copy and
paste into an application.

d) The Metadata Tables contain the metadata for

the various web sources that have undergone
the metadata authoring process. These tables
are managed by the SQL Server.

5.2 Metadata Extraction

Automated metadata extraction from web sources relies
mainly on the use of the Cameleon# Web Wrapper [8]
which is essentially a web data extraction tool. This
tool allows selected web contents to be extracted
through the creation of relational abstractions of the
corresponding web sources. This act, in essence, wraps

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

117

the web source in question by associating it with a Spec
file(s) that contain virtual schema declarations together
with rules for extracting virtual attribute values as well as
some other related rules.

Analysis of HTML pages and DC Schemas has
contributed to the development of generic Spec files to
support automatic metadata extraction. Analysis of
HTML pages reveals that HTTP Header and several
HTML elements carry metadata or potential information
as metadata. Analysis of DC Schemas allows for
extraction of metadata element descriptions from DC
schemas to build the DC master reference tables.

Every Spec file usually contains at least three elements:
RELATION, SOURCE, ATTRIBUTE. The RELATION
element specifies the name given to the relational
abstraction of the resource pointed to by the URI given in
the SOURCE element. Each ATTRIBUTE element
corresponds to an attribute identified with the relational
abstraction in question. The ATTRIBUTE element
contains three sub-elements BEGIN, END, and
PATTERN. The BEGIN and END elements each contains
a regular expression (regex) describing the string that
respectively denotes the beginning and the end of the
block inside the target web source that contains the value
for the attribute in question. The PATTERN element is
actually the one that contains the regex describing the
pattern for extracting the string that corresponds to the
attribute value that needs to be extracted. In above
example, the string to be extracted is described by the
regex inside the round parenthesis pair, which is supposed
to be the title of the web source in question. Multiple
SOURCE elements could exist in a spec file to enable
data extraction from several web sources. The URI
address could either be hard-coded or be treated as a
parameter (variable) where its value could be passed from
a system application. A variable is an identifier enclosed
within a pair of #.

Metadata extraction is done automatically for a new URL
page and upon request subsequently. This extraction is
performed both on the HTML page and associated
RDF/XML page if available. The extracted values from
basic elements such as title, meta, and class are inserted as
default metadata for the web source in question. Values
that are extracted from acronym, cite, abbr, and href
elements are to be treated as extra metadata and generated
only upon request. At this stage, even though elements
such as link and img may contain potential metadata, they
are not to be extracted.

In the following subsections, we provide code snippets
from [10] for extracting data from RDF page, HTTP
Header, and some of HTML elements.

5.2.1 RDF page

An RDF page may be associated with a web source as a
result of certain metadata development process.
Normally, the URL for this type of page contains the
domain name of its parent page and with an .rdf
extension. For example, the URL address for the RDF
page for DCMI Website is
http://dublincore.org/index.shtml.rdf. This page contains
DC metadata describing the website
http://dublincore.org. Metadata extraction from RDF
page is performed through the use of two Spec files.
The first Spec file (Fig. 4) is consulted to determine
existence of the RDF page. Once the RDF page is
found to exist, the second spec file (Fig. 5) is consulted
to extract the metadata it contains.

<ATTRIBUTE name="RDFURLAdd" type="String">
 <BEGIN><![CDATA[<body]]></BEGIN>
 <END><![CDATA[</body>]]></END>
 <PATTERN>
 <![CDATA[
 </PATTERN>
</ATTRIBUTE>

Fig. 4 Specification for extracting URL address of
 RDF Page

<SOURCE URI="#RDFURLAdd#">
 <ATTRIBUTE name="DCElement" type="String">
 <BEGIN><![CDATA[<rdf:RDF]]></BEGIN>
 <END><![CDATA[</rdf:RDF>]]></END>
 <PATTERN>
 <![CDATA[<dc:([^>]*)>]]>
 </PATTERN>
 </ATTRIBUTE>

 <ATTRIBUTE name="DCMetadata" type="String">
 <BEGIN><![CDATA[<rdf:RDF]]></BEGIN>
 <END><![CDATA[</rdf:RDF>]]></END>
 <PATTERN>
 <![CDATA[<dc:[^>]*>([^<]*)<]]>
 </PATTERN>
 </ATTRIBUTE>
</SOURCE>

Fig. 5 Specification for extracting metadata from
 RDF Page

5.2.2 HTTP Header

HTTP header contains fixed information which include
date and format elements. As illustrated in Fig. 6, we
use HttpWebRequest class of C# (.Net) to extract these
two elements.

// Initialize variables
HttpWebRequest HttpWReq =
(HttpWebRequest)WebRequest.Create(txtURL.Text);
HttpWebResponse HttpWResp = (HttpWebResponse)HttpWreq.GetResponse();
HttpWReq.KeepAlive = false;

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

118

int i = dgDCMI.Items.Count;
//for every record displayed on datagrid / or for every simple dc elements
for (int j=0; j<i; j++)
{
 //Search for Date element and Extract it from HTTP header
 if(dgDCMI.Items[j].Cells[2].Text.Trim().ToString().ToLower()
 ==“date”)
 {
 dgDCMI.Items[j].Cells[3].Text=
 HttpWresp.LastModified.ToString();
 dgDCMI.Items[j].Cells[4].Text = “Text”;

 }
 //Search for Format element and Extract it from HTTP header
 else if(dgDCMI.Items[j].Cells[2].Text.Trim().ToString().ToLower()
 ==“format”)
 {
 dgDCMI.Items[j].Cells[3].Text=
 HttpWresp.ContentType.ToString();
 dgDCMI.Items[j].Cells[4].Text = “Text”;
 }
}

Fig. 6 Code snippet for extracting from date and format elements

5.2.3 Title Element

The title element under DC Metadata standard refers to
the name given to the web source in question. For HTML
document, this normally appears on the <head> section of
a page. Title extraction also carries dual purposes: (1) to
determine the existence of the web source (2) to get a
value assigned to title element. Fig. 7 below shows a
snippet of the generic spec file required by the Cameleon
wrapper engine for extracting the content of the title
element needed.

<RELATION name="HTMLTitleWrap">
 <SOURCE URI="#HTMLURLAdd#">
 <ATTRIBUTE name="metaTitle" type="String">
 <BEGIN>
 <![CDATA[<[Hh][Ee][Aa][Dd]>]]>
 </BEGIN>
 <END><![CDATA[</[Hh][Ee][Aa][Dd]>]]></END>
 <PATTERN>
 <![CDATA[<[Tt][Ii][Tt][Ll][Ee]>
 ([^<]*)</[Tt][Ii][Tt][Ll][Ee]>]]>
 </PATTERN>
 </ATTRIBUTE>
 </SOURCE>
</RELATION>

Fig. 7 Specification for extracting from Title element

5.2.4 Meta Elements

Similar to RDF page, the meta element specification in
the Header section of an HTML page also contains
metadata for the page itself. Meta element does not
contain a standard meta name but may provide a link to its
schema the link element. To simplify the process, the
extracted meta name is matched with user-defined names
from DDC/RDF-Editor database. If a matched is found, it

is assigned to its respective DC element. To start with,
most common meta names are pre-defined in
DDC/RDF-Editor database and could be continuously
updated of any new repeat meta names. For example,
most common meta name is “keywords”. Thus
“keywords” is then stored in DDC/RDF-Editor database
associated with the DC element, subject.

Unlike other extractions as described in title element
and RDF page, the extraction of meta element is done
by line where the whole meta element is extracted. The
extraction is further refined at the system application
where its name, value and scheme are segregated and
processed as mentioned earlier. Fig. 8 shows a snippet
of the Spec file for this purpose.

<ATTRIBUTE name="metaLine" type="String">
 <BEGIN><![CDATA[<head]]></BEGIN>
 <END><![CDATA[</head>]]></END>
 <PATTERN>
 <![CDATA[<meta([^>]*)>]]>
 </PATTERN>
 <PATTERN>
 <![CDATA[<link rel="meta" href="([\0-\377]*?)"]]>
 </PATTERN>
</ATTRIBUTE>

Fig. 8 Specification for extracting from Meta element

5.2.5 Class Elements

Class element is potentially related to the DC subject
element. Typically, a class element is associated with
menus or submenus of the web sources and appears
within a Body section. The result of an extraction could
be as few as none or exceeding 30. The DDC/RDF-
Editor picks up to first 30 values and assigns them to a
single subject element. The remaining values are made
available upon request. Fig. 9 shows the code snippet of
the spec file for extraction.

<SOURCE URI="#HTMLURLAdd#">
 <ATTRIBUTE name="metaClass" type="String">
 <BEGIN><![CDATA[<body]]]></BEGIN>
 <END><![CDATA[</body>]]></END>
 <PATTERN>
 <![CDATA[]*>\s* ([\0-\377]*?)\s*</a]]>
 </PATTERN>
 <PATTERN><![CDATA[<td class=[^>]*><a[^>]*>
 \s*([\0-\377]*?)\s*</a]]>
 </PATTERN>
 </ATTRIBUTE>
</SOURCE>

Fig. 9 Specification for extracting Class element

5.2.6 Other Elements

Other elements such as cite, acronym, abbr, and href
are extracted upon request. Although the values of most

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

119

of these elements are normally keywords for the web
source, a user may opt to assign to other DC elements as
an in one record where the extractions are separated with
a user-defined separator, or individually in separate
records. Fig. 10 illustrates the code snippet of the spec
file for extracting of the acronym element.

<ATTRIBUTE name="bodyAcronymFull" type="String">
 <BEGIN>
 <![CDATA[<[Bb][Oo][Dd][Yy]]]>
 </BEGIN>
 <END><![CDATA[</[Bb][Oo][Dd][Yy]>]]></END>
 <PATTERN><![CDATA[<[Aa][Cc][Rr][Oo][Nn][Yy]
 [Mm][^>]*[Tt][Ii][Tt][Ll][Ee]="([^"]*)"[^>]*>]]>
 </PATTERN>
</ATTRIBUTE>

<ATTRIBUTE name="bodyAcronym" type="String">
 <BEGIN>
 <![CDATA[<[Bb][Oo][Dd][Yy]]]>
 </BEGIN>
 <END><![CDATA[</[Bb][Oo][Dd][Yy]>]]></END>
 <PATTERN><![CDATA[<[Aa][Cc][Rr][Oo][Nn]
 [Yy][Mm][^>]*[Tt][Ii][Tt][Ll][Ee]=[^>]*>
 ([^<]*)</[Aa][Cc][Rr][Oo][Nn][Yy][Mm]]]>
 </PATTERN>
 </ATTRIBUTE>

Fig. 10 Code Snippet of Extraction of Acronym Element

6. Illustration

In this section we show portions of screen samples
illustrating a typical scenario in authoring metadata
through D-DC/RDF-Editor.

Fig. 11 shows a portion of the main page of D-DC/RDF-
Editor. The upper part of the main page contains an
announcement regarding any new changes to the elements
in the schemas that has been detected by the system from
the Dublin Core website.

Fig. 11 Main Page of D-DC/RDF-Editor

Fig. 12 shows the screen that is typically used in the first
step of Simple DC metadata creation. The user starts by

typing the URL address of the website that he would
like to create the metadata for.

Fig. 12 Simple DC Metadata Screen

Fig. 13 then shows the display of the extracted metadata
content from the target website.

Fig. 13 Metadata extracted from the URL address

After the extracted metadata has been displayed and
edited according to the user’s preferences, the updated
metadata are then generated automatically in RDF/XML
format as shown in Fig. 14.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

120

Fig. 14 Generated metadata in RDF/XML format

The user can then “cut and paste” the newly generated
RDF/XML formatted metadata into another document or
e-mailed to someone as shown in Fig. 15.

Fig. 15 Sample of RDF/XML File sent to an Email

7. Concluding Remarks

The need to have a powerful metadata editor is important
in order to create good metadata for Internet resources
that conforms to the standards supported by W3C as well
as the industry. We have presented the salient features,
design and implementation aspects of a metadata editor
that uses automated metadata extraction from web sources
as the basis. This automated metadata extraction feature
not only alleviates the tedious manual process of creating
metadata for any given web source but also ensures
metadata consistency and integrity. In addition, through
information extraction from metadata schemas, updates
on metadata element names and other relevant
information are also achieved dynamically.

Currently the prototype implementation of the editor
focuses on supporting the authoring of DC metadata
and their generation into RDF/XML format. However,
the design of the editor is flexible enough to
accomodate any future expansion to support other
metadata schemas such as VCard, VCalendar, Content
Standards for Digital Geospatial, and most importantly
any user-defined schema.

Acknowledgments

We acknowledge the assistance given by the Context
Interchange Systems Laboratory (CILS) at MIT Sloan
School of Management in the use of Cameleon# within
the work reported here.

References
[1] O. Lassila, and R.R, Swick, “Resource Description

Framework (RDF) Model and Syntax Specification”, 1999.
Available at : http://www.w3.org/TR/PR-rdf-syntax/

[2] D. Becket (Ed), “RDF/XML Syntax Specification
(Revised)”, 2004. Available at :
http://www.w3.org/TR/rdf-syntax-grammar/

[3] Dublin Core Metadata Initiative Website,
http://dublincore.org.

[4] P. Andy, “Dublin Core Metadata Editor”, 2000. Available
at : http://www.ukoln.ac.uk/metadata/dcdot

[5] DSTC Pty Ltd, “Reggie, The Metadata Editor Website”,
1998. Available at : http://metadata.net/dstc

[6] K. Traugott, B. Mattias, and B. Mårten, “Dublin Core
Metadata Template”, 1998. Available at :
http://www.lub.lu.se/cgi-bin/nmdc.pl

 [7] A. Firat, S.E. Madnick, and M. Siegel, “The Cameleon
Web Wrapper Engine”, Proceedings of the VLDB2000
Workshop on Technologies for E-Services, September
2000.

[8] A. Firat, S. E. Madnick, N.A.Yahaya, W.K. Choo, and S.
Bressan, “Information Aggregation Using Cameleon#
Web Wrapper”, The 6th International Conference on
Electronic Commerce and Web Technologies, EC-Web
2005, Copenhagen, Denmark, 2005.

[9] C. Goh, S. Bressan, S. Madnick, and M. Siegel, “Context
Interchange: New Features and Formalisms for the
Intelligent Integration of Information”, ACM Transactions
on Information Systems, Vol. 17, No. 3, (1999) 270-293.

[10] N.A. Yahaya, and R. Buang, “Automated Metadata
Extraction from Web Sources”, The 3rd International
Workshop on Web-Based Support Systems, (WSS ’06),
Hong Kong, China, 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

121

Nor Adnan Yahaya obtained his PhD in Computer Science
from Northwestern University, USA in 1987. He is an Associate
Professor of IT at the Malaysia University of Science and
Technology (MUST). His current research activities are focused
on the development of tools and innovative applications related
to emerging Web technologies such as web aggregation, web
services, web agents, and the Semantic Web.

Rosiza Buang obtained her Master of Science
(Information Technology) from Malaysia University of Science
and Technology (MUST) in 2006. She is working as Knowledge
Management (KM) Senior Executive at Technology, Capability
& Data Management Department in Petroleum Management
Unit, PETRONAS. Currently, she is involved in many KM
initiatives including preservation of corporate knowledge and
instillation of KM habits and mindset among others.

Noor Hafizah Hassan was a Research Officer at the Malaysia
University of Science and Technology (MUST). She obtained
her Bachelor of Science (Computer Science) from the
University of Malaya, Malaysia in 2006 and currently pursuing
her Master of Software Engineering degree from the same
university.

