
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

122

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Test Generation for a Protocol Specified in SDL with Complex Loops

by Event-based EFSM Modeling

Tae-Hyong Kim†

Kumoh National Institute of Technology, Gumi, Korea

Summary
Test case generation for a network protocol by extended finite

state machine (EFSM) based modeling is a well-known
technique in formal methods in conformance testing. An input
output based EFSM (IOEFSM) is a popular model for a protocol
specified in the specification and description language (SDL)
because an SDL process diagram is based on an input-driven
EFSM. However, as an SDL specification may have a very
complicated part such as complex nested loops, IOEFSM
modeling may not be appropriate to represent such a complex
SDL specification. This paper proposes a test generation method
for a protocol specified in SDL using an event-based EFSM
(EEFSM) for more exact modeling. It also shows the relations
between an IOEFSM and an EEFSM, and their inter-conversion
methods. Empirical results with a real network protocol, the
service specific connection oriented protocol (SSCOP) showed
the efficacy of the proposed method.
Key words:
Test generation, SDL, EFSM Modeling, Loop testing

1. Introduction

Lately as the user requirements for telecommunication
services have been getting diverse and composite,
communication protocols are getting more various and
complex. Thus how to develop a reliable protocol is a
major issue in the protocol engineering and conformance
testing methodology and framework was standardized to
verify whether a protocol implementation conforms to the
standard and the specification of that protocol [1]. The
development of formal description techniques for clear and
precise specification of communication protocols has
enabled formal methods in protocol design, verification,
and testing. The specification and description language
(SDL) is the most popular formal description technique
which is widely used in design of various distributed
systems owing to its graphical notations [2]. Formal
methods in conformance testing with SDL have been
interested in automatic test generation of a protocol
specification for a long time. Model based test generation
is a general method that makes a model for a protocol and
analyzes that model to derive test cases. A finite states

machine (FSM), an extended finite state machine (EFSM),
and a labeled transition system (LTS) are well-known
models. Since a process diagram in SDL for behavioral
description is based on an EFSM model, an EFSM has
been mainly used for modeling and test case generation of
a communication protocol specified in SDL [3-6].
 Interestingly, most of the existing EFSM-based test
generation methods use input/output-based EFSM
(IOEFSM)’s where the label of a transition has an I/O pair.
An input to a protocol and its response, (an) output(s), of
that protocol normally represent a unit behavior of a
protocol in an IOEFSM. Since a transition in an SDL
process diagram surely starts with an input and may have
(an) output(s), it seems natural to model an SDL process
specification into an IOEFSM. However, an SDL process
diagram has high flexibility to specify protocol behaviors,
e.g., nested loops inside a transition, algorithmic notations
in a task, save symbols, and etc. If you want to model such
a complicated specification into an IOEFSM model, you
may have to transform that specification to a simple
equivalent one [7], or remove the complicated parts by
assuming some simplicity rules on SDL specifications [3].
 Actually, an event-based EFSM (EEFSM) may be a
more appropriate model for an SDL specification because
a transition of an EEFSM, whose label has one event, e.g.,
an input or an output, is able to model an SDL transition
behavior more exactly than an IOEFSM’s transition. An
EEFSM is, however, somewhat troublesome to handle due
to its flexibility in the definition of events. There has been
little work of modeling and test generation with EEFSM’s.
This paper proposes a model-based test generation method
for an SDL specification especially with complex loops
using an EEFSM model. It also examines the properties of
an EEFSM as a protocol model and the relation between
an EEFSM and an IOEFSM.
 This paper is organized as follows. Section 2 defines
an EEFSM and its properties. The relations between an
IOEFSM and an EEFSM with their inter-conversions are
also described in that section. Then, the proposed test
generation method with EEFSM modeling of an SDL
specification is explained in section 3. Section 4 shows

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

123

empirical results by applying the proposed method to a
real network protocol. Finally, conclusions are drawn in
section 5.

2. Event-Based EFSM and its Properties

This section describes the basic definitions and properties
of an EEFSM, and its relation to an IOEFSM.

2.1 Basic definitions and properties

As the specification model of a protocol, an input-output
based EFSM (IOEFSM) and an event-based EFSM
(EEFSM) are defined respectively as follows.

Definition 1. An IOEFSM M is the 6-tuple (S, s0, I, O, v,
T) where S is the finite set of logical states, s0(∈S) is the
initial state, I and O are the finite sets of input and output
declarations respectively such that i(p)∈I and o(v,p)∈O,
where p is the finite set of input parameters, v is the finite
set of variables, T is the finite set of transitions, where the
label of a transition t(∈T) is denoted by the 5-tuple (ss, sf,
i(p), P(v,p), A(v,p,O)) in which ss and sf are the start and
the final state of t respectively, and P(v,p) and A(v,p,O))
are the predicate and the action of t respectively.

Definition 2. An EEFSM N is the 5-tuple (S, s0, v, Σ, T)
where S is the finite set of logical states, s0(∈S) is the
initial state, v is the finite set of variables, Σ is the finite set
of events the element of which ε(∈Σ) is denoted by σe(p)
or C(v,p), where σ∈{?,!}, e is a message name, p is the
finite set of event parameters, and C is a logical equation
constructed with v and p, and T is the finite set of
transitions, where the label of a transition t(∈T) is denoted
by the 4-tuple (ss, sf, ε, A(v,p)) in which ss and sf are the
start and the final state of t respectively, and A(v,p)) is the
action of t.

Note that an event in an EEFSM can be a logical
equation as well as an input or output triggering as
different in the definitions of others [8]. Since SDL, our
target specification language, allows nested loops in a
transition, we included conditions for behavioral choice in
event set to model and handle such a transition more
exactly. A transition t=(ss, sf, ε, A(v,p)) is called a condition
transition, an input transition, or an output transition when
ε is C(v,p), ?e(p), or !e(p), respectively.

A major difference between an IOEFSM and an
EEFSM is about state transitions. While state transitions of
an IOEFSM depend on the global state and triggered
inputs, those of an EEFSM are up to events instead of
inputs. This difference varies the properties, modeling and
test generation of an EEFSM against those of an IOEFSM.
In general, if an IOEFSM model is used, test generation

takes the following assumptions on that model for
simplicity: an IOEFSM is minimized, deterministic,
strongly connected, and completely specified [9]. Those
assumptions, however, should be redefined in an EEFSM
due to their differences. For example, the complete
specification assumption on an IOEFSM is that for each
possible global state and for each (parametered) input,
there is a firable transition. In an EEFSM, however, there
may be some events that cannot happen at a certain logical
state. We define those assumptions for an EEFSM model
generated from an SDL specification as follows.

Definition 3. An EEFSM N is minimized if for every pair
of its logical states (si, sj), there no event sequence x (∈ε*)
that can happen at both si and sj.

Definition 4. An EEFSM N is deterministic if for each
logical state s(∈S) and for each possible event ε(∈Σ) at s,
there is at most one transition defined in N.

Definition 5. An EEFSM N is strongly connected if for
every pair of its logical states (si, sj), there is a transition
path going from si to sj.

 As for the completeness of an EEFSM, it is important
what kinds of events are allowed to be fetched at a logical
state, which is closely related to the operation of an
EEFSM. Fig.1 shows two different approaches to EFSM
modeling. Intrinsic view modeling is a general one where
inputs or events are fetched by the machine when needed
by means of local channel. SDL process modeling is a
typical intrinsic view modeling. In an SDL system, each
process has a FIFO queue for buffering input signals. The
foremost buffered signal is consumed by a process in
general when that process finishes its action and stops
logically at the next state. An SDL transition means a unit
behavior initiated by only an input and no inputs are
allowed to be consumed during executing a transition.

Fig. 1 The concept of EFSM modeling

By the way, environmental view modeling is usually

used for description of the whole system as seen by an
external tester. This modeling depends on local channel
design and channel access mechanism of the system.
Triggering of every input sequence by the environment can
be represented without being interrupted by other types of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

124

events. Reachability trees are often constructed with this
approach. If we apply the concept of IOEFSM’s
completeness to an EEFSM, a completely specified
EEFSM may be unbounded. Therefore, we focus an
EEFSM which was constructed only by intrinsic view
modeling approach in this paper.
 When we construct an EEFSM model from an SDL
specification, only a part of logical states of that EEFSM
can be mapped to their corresponding SDL states. Each of
the other logical states just indicates a certain middle
points on a transition of that SDL specification. From this
consideration we can classify logical states of an EEFSM
constructed from an SDL specification as follows.
According to that classification, the completeness of such
an EEFSM is defined.

Definition 6. A logical state s of an EEFSM NSDL=(S, s0, v,
Σ, T) constructed from an SDL specification is an input
state if there exist outgoing input transitions from s;
otherwise, s is a transient state.

Definition 7. An EEFSM NSDL constructed from an SDL
specification is completely specified if for each input state
sI∈S and for each input event εI∈Σ, there is a transition
defined in NSDL.

2.2 Relations between an IOEFSM and an EEFSM

Now we show how to transform an IOEFSM to its
equivalent EEFSM and vice versa from the examination of
the relations between an IOEFSM and an EEFSM.
Actually many communication protocols have been
modeled into IOEFSM’s and a lot of test generation
methods use an IOEFSM as an analysis model. As we seen
the definitions and discussions of those machines in
subsection 2.1, the relations between logical states of two
machines is a key to that machine transformation problem.
A logical state of an IOEFSM can correspond to a series of
logical states of an EEFSM which is composed of one or
more logical states where foremost logical state is an input
state.
 First, the conversion from an IOEFSM to an
equivalent EEFSM requires splitting of logical states of an
IOEFSM. A logical state of an IOEFSM with an outgoing
transition whose label has an output or a valid predicate
should be split according to possible events of an EEFSM.
We can obtain an initial form of EEFSM by this splitting
states and reconstructing transitions. The final EEFSM is
obtained by the minimization of that machine. In the
minimization of an EFSM, variable domain at a state must
be considered to check if two logical states are identical.

Some notation and functions are introduced to explain
two machine transformation algorithms. Let Δ and Λ
denote the domains constructed from all control variables
in v and all parameters in p of the input events,

respectively. The functions RΔ(⋅): P(v,p)→℘(Δ) and RΛ(⋅):
P(v,p)→℘(Λ) transform a predicate to the subdomains of
Δ and Λ that satisfy that predicate respectively, where ℘(⋅)
is the powerset operator. Their inverse functions
RΔ

-1(⋅):℘(Δ)→P(v,p) and RΛ
-1(⋅):℘(Λ)→P(v,p) generate

the predicates that determine the input subdomains of Δ
and Λ, respectively. The subset of Δ allowed at a state s is
called the domain of the state s and denoted by d(s).
ss(⋅):T→S and sf(⋅):T→S are the starting state and final
state functions of a transition respectively. Algorithm 1
shows in detail how to transform an IOEFSM to an
EEFSM that is equivalent to that IOEFSM. Functions out
and act of an action extract the first output and the part of
action before that output from that action respectively, and
rem of a pair of an action and an output extracts the
following part of that action after that output.

Algorithm 1. Conversion of an IOEFSM to an EEFSM
• Inputs: IOEFSM M = (SM, s0, I, O, v, TM)
• Output: EEFSM N = (SN, s0, v, Σ, TN)
Step.1: Initialize variables as follows:
 SN ← SM, Σ ← ∅, TN ← ∅, d(SN) ← Δ;
Step.2: i←0; /* initial splitting */
 for each transition tM(∈TM)=(ss, sf, i(p), P(v,p), A(v,p,O))
 en ← ?i(p), Σ ← Σ∪{en}; /* en: the next event */

dn ← Δ; /* en: domain of the next state */
 if P(v,p)≠∅ then SN ← SN ∪{si}, tN ← (ss, si, en, ∅);
 TN ← TN ∪{ tN }, i←i +1, en←P(v,p);

Σ ← Σ∪{en}, dn ← RΔ(P(v,p));
 endif

if A(v,p,∅) then
tN ← (ss, sf, en, A(v,p)), TN ← TN ∪{ tN }, d(ss)←dn;

else j←0, Ai(v,p,O) ← A(v,p,O);
 while not Ai(v,p,∅)
 Ai,j(v,p)←act(Ai(v,p,O)), oj(p)← out(Ai(v,p,O));
 SN←SN∪{si}, tN←(si-1, si, en, Ai,j(v,p));

TN ← TN ∪{ tN }, d(si-1)←dn, i←i +1;
en ← !oj(p), Σ ← Σ ∪ {en};
Ai(v,p,O) ← rem(Ai(v,p,O), oj(p)), j←j +1;

 endwhile
tN ← (si, sf, en, act(Ai(v,p,O));
TN ← TN ∪{ tN }, d(si)←dn;

 endif
 endfor
Step.3: /* minimization */
 for each state si∈SN
 for each transition pair tj, tk ∈TN such that

tj=(sa, si, εa, Aa(v,p)) and tk=(sb, si, εb, Ab(v,p))
if εa = εb and Aa(v,p) = Ab(v,p) then
if d(sa) = d(sb) then

TN ← TN – {tk}, SN ← SN – {sb};
endif

endif

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

125

endfor
endfor

Step.4: return N=(SN, s0, v, Σ, TN);

 By the way, for the conversion of an EEFSM to an
equivalent IOEFSM, we must put some restrictions on the
target EEFSM because a general EEFSM has high
flexibility in modeling. First, the target EEFSM must be an
intrinsic view model. Some environmental view model
EEFSM’s do not have their equivalent IOEFSM’s because
their various channel management systems cannot be
considered in IOEFSM’s. Second, a condition transition
must follow an input or other condition transition with null
action only in the target EEFSM. Otherwise, constructing
an equivalent IOEFSM requires complex semantic
analysis of that EEFSM including domain-based state
partition, and some IOEFSM should have spontaneous
transitions with no inputs. Algorithm 2 shows the
conversion of an EEFSM to an IOEFSM which is
equivalent to that EEFSM. There is no minimization step
in algorithm 2. If an EEFSM is minimized, the converted
IOEFSM is also minimized with the above restrictions on
an EEFSM.

Algorithm 2. Conversion of an EEFSM to an IOEFSM
• Inputs: EEFSM N = (SN, s0, v, Σ, TN)
• Output: IOEFSM M = (SM, s0, I, O, v, TM)
Step.1: Initialize variables as follows:

SM ← ∅, I ← ∅, O ← ∅, TM ← ∅;
Step.2: /* transition construction */
 for each input transition tN,i(∈TN)=(ss,i, sf,i, ?ii(p), Ai(v,p))
 SM ← SM ∪{ ss,i }, I ← I ∪{ ii(p) };
 ss,M←ss,i, sf,M←sf,i, iM←ii(p), PM←null, AM←Ai(v, p);
 ep ← input; /* ep : previous event, input/output/cond */
 SearchTr(N, sf,M);
 endfor
Step.3: return M=(SM, s0, I, O, v, TM);

function SearchTr(EEFSM N, state s)
 for each transition tN,j(∈TN)=(ss,j, sf,j, εj, Aj(v,p))
 such that ss,j = s

if εj = ?ij(p) then
 if ss,j ∈ SM then
 return;
 else

 TM ← TM ∪{ (ss,M, sf,M, iM, PM, AM) };
SM ← SM ∪{ ss,j }, I ← I ∪{ ij(p) };
ss,M ← ss,j, sf,M ← sf,j, iM ← ij(p);
PM←∅, AM←Aj(v,p), ep ← input;
SearchTr(N, sf,M);

 endif
else if εj = !oj(p) then

 AM ← AM @ !oj(p) @ Aj(v,p), ep ← output;
/* @: action concatenation operator */

else if εj = Cj(v,p) then
 if not((ep=input or cond) and AM=null))

return EFSM_Err; /* EEFSM restriction error */
PM← PM and Cj(v,p), AM ← AM @ Aj(v,p);
ep ← cond;

endif
endfor

endfunction

 We show a simple machine conversion example with
Responder module of Inres protocol which is widely used
as a test protocol in protocol engineering [10]. Fig. 2
shows the target IOEFSM model of Responder which has
3 states and 8 transitions except transitions for making
complete specification. The transformed EEFSM is shown
in Fig.3 which has 12 states and 17 transitions.

sa
DISCONNECTED

sb
WAIT

sc
CONNECTED

(sa, sa, IDISreq, ∅, !DR)

(sa, sb, CR, ∅,
!ICONind)

(sb, sa, IDISreq, ∅, !DR)

(sb, sa, IDISreq, ∅, !DR)

(sb, sc, ICONresp, ∅, number:=0; !CC)

(sc, sb, CR, ∅, !ICONind)

(sc, sc, DT(Num, ISDU),
Num = number, !AK(Num))

(sc, sc, DT(Num, ISDU), Num = succ(number),
!IDATind(ISDU); !AK(Num); number:= succ(number))

Fig. 2 An IOEFSM model of Inres Responder protocol

sa

(sa, sa,1, ?IDISreq, ∅)

(sa, sa,2, ?CR, ∅)

(sb,1, sc, !CC, ∅)

(sc,1, sb,
!ICONind, ∅)

(sc,4, sc,!AK(Num),
number:= succ(number))

sb

sc

sa,1

(sa,1, sa, !DR, ∅)

sa,2

(sa,2, sb, !ICONind, ∅)

(sb, sa,1, ?IDISreq, ∅)

sc,2 sc,3

sc,4

sc,5sc,6

sc,1

sb,1

(sb, sa,1,
?IDISreq, ∅)

(sc, sc,1,
?CR, ∅)

(sb, sb,1,
?ICONresp, number:=0)

(sc, sc,2, ?DT(Num, ISDU), ∅)

(sc,2, sc,3, Num =
succ(number),∅)

(sc,3, sc,4, !IDATind(ISDU), ∅)

(sc, sc,5, ?DT(Num,
ISDU), ∅)

(sc,5, sc,6, Num =
number, ∅)

(sc,6, sc,
!AK(Num), ∅)

Fig. 3 The transformed EEFSM of Inres Responder protocol

3. Test Generation with an EEFSM Modeling

3.1 An EEFSM modeling of SDL specifications

SDL has a variety of syntax to describe complicated
behaviors of a network protocol in a simple and clear

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

126

manner. Although SDL is a formal description language, it
has some syntax to describe nondeterministic or random
behavior such as spontaneous transitions with ‘NONE’
input or ‘ANY’ condition. Therefore, such complicated or
troublesome syntax is not supported fully by SDL tools.

In this paper, we also put some restrictions on an SDL
specification of a protocol. First, we do not allow
nondeterminism in an SDL model. This restriction is
reasonable for normal network protocols. Second, we
avoid so-called shorthand syntax including saves or
enabling conditions which can be rewritten with simple
and basic syntax [11]. An SDL specification having some
parts designed with such shorthand syntax is rewritten for
easier test case generation. An SDL process diagram is
assumed to be composed of the following basic symbols
after rewriting: states, inputs, conditions, tasks, and
outputs. Lastly, we assume that an SDL specification is
well-designed: free of deadlocks, livelocks, and infinite
loops with unbounded global control state space [7].

Even if such a simple process diagram, its EFSM
modeling for test generation may be straightforward due to
complex control flows with loops. Fig. 4 shows a part of a
simple SDL process diagram whose control flows have
some loops. As the exact control flows including the
traversing number of loops depend on the global state, in
other words, the previous path from the initial state, it may
be very difficult to simply model that part as a normal
IOEFSM. This paper uses an EEFSM as a target model for
test generation to cope with that problem. The EEFSM
modeling rules for an SDL process diagram are as follows.

s1 a

i<3 i:=i*2 i>0

s2

x y

i:=i+5

s3

i:=i+2

i<-2 y

TRUE
FALSE

TRUE
FALSE

i:=i+1

TRUE
FALSE

Fig. 4 A part of SDL design with complex loops

− Each state symbol is changed by a logical state.
− A logical state is inserted just before each condition
and output symbol.
− A control flow branch created by a (series of)
condition symbol(s) and the following (series of) task
symbol(s) is converted to a condition transition.
− An input/output condition symbol and the following
(series of) task symbol(s) is converted to an
input/output transition.

 Fig. 5 shows the EEFSM converted from the SDL
process diagram in Fig.4. That EEFSM model shows the
control flows of the original SDL diagram identically,
which indicates that an EEFSM is appropriate for
modeling an SDL specification. Any complex control
flows of an SDL specification with the above restrictions
can be represented by an EEFSM model.

s1

s1,1

(s1, s1,1,
?a, i:=i+1)

s1,2

s2

(s1,1, s1,2,
i<3,)

(s1,2, s2,
!x,)

s1,3
(s1,1, s1,3,

i 3, i:=i*2)

s1,4

s3

(s1,3, s1,4,
i>0,)

(s1,4, s3,
!y,)

s1,5
(s1,3, s1,5, i

i:=i+2)

s1,6
(s1,5, s1,6, !y)

(s1,6, s1,3,
i<-2,)

(s1,6, s1,1,
i -2, i:=i+6)

Fig. 5 The EEFSM converted from an SDL design in Fig.4

3.2 Test generation from an EEFSM model

Test case generation of an (E)FSM model for conformance
testing has been studied in many literatures [3-6]. They
tried to derive optimized test cases with high fault
coverage and low cost, and a lot of test generation methods
were developed [12]. Those test generation methods are
mostly based on an IO(E)FSM model for easily checking
the current logical state of the target system under test with
outputs. Actually test generation for an E(E)FSM model
will not be fundamentally different from that for an
IO(E)FSM. But the existing methods may have to be
adjusted according to the properties of an E(E)FSM.
 A most serious issue of test generation for an EFSM
with data flows is to generate executable test cases. To
make a test case executable in an EFSM is to decide a
suitable preamble path and values of input parameters for
that test cases. Semantic or domain analysis is usually used
for that purpose. However, some methods may not be
appropriate to an EEFSM model. For example, the
expansion of an EEFSM based domain partitioning of each
state [3] is not a suitable method because it requires all
transitions of an EFSM to be able to have predicates. In
this paper, we use a modified backward tracking with
symbolic evaluation and linear programming to find an
executable path under the assumption that all conditions
and actions can be represented as (in)equalities and
assignments with linear equations respectively. Details of
that method will be shown in the proposed test generation
algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

127

 Conformance testing of an (E)FSM M with n states, a
machine identification experiment, requires to generate a
checking sequence of M that distinguishes M from all
other machines with n sates [9]. Checking experiment can
be accomplished by distinguishing, characterizing, or
indentifying sequences. In this paper, we try to use unique
input output (UIO) sequences in order to decrease the
length of test sequences [9]. As for the test coverage, both
state identification and transition identification must be
considered in test generation for the full fault coverage of
control flows [12]. Those checking experiment and
state/transition identification are based on inputs and
outputs of an IO(E)FSM. A transition of an EEFSM,
however, does not have either an input or an output, or
even anything. Therefore, state and transition
identification with UIO sequences are modified for an
EEFSM in this paper as follows.
 First, UIO sequences for checking experiment are
generated not for all logical states but only input states in
an EEFSM. UIO sequences composed of unconditional
transitions only are preferred to be used in state and
transition identifications due to their better applicability. A
condition transition with a condition event C(v,p) is called
a conditional transition if is v not null and p is null;
otherwise an unconditional transition. Second, test cases
for state identification are generated only for all input
states in an EEFSM. Third, test cases for transition
identification are generated only for transitions terminating
at input states in an EEFSM. For the other transitions, test
cases only for transition tour coverage are coverage in our
method. For higher fault coverage, data flow test cases
satisfying condition coverage or all-uses criterion may be
added [13]. Our test generation method is shown in
algorithm 3. We assume that there is a reliable reset input
ri in a protocol system.

Algorithm 3. Test generation for an EEFSM
• Inputs: EEFSM N = (S, s0, v, Σ, T)
• Output: the set of test cases TSN
Step.1: (symbolic evaluation of variables) Starting from

each input state, for every possible control flows to next
input state, action and condition parts are rewritten as
follows. If (1) a variable v1 is defined in a transition t1: v1
← f1(v,p), (2) v1 is used to define other variable v2, v2 ←
f2(v,p), or is used in a condition event C2(v,p), in a
following transition t2, and (3) there is no other
definition of v1 and v2 on any transition path from t1 to t2,
then the definition of v2 and the condition of C2(v,p) in t2
are rewritten as v2 ← f2 f1(v,p) and C2(f1(v,p),p),
respectively.

Step.2: (preambles generation) For each input state si∈S,
decide an executable transition path starting from the
initial state s0 and terminating at si, which is called a
preamble to si (denoted by pr(si)). When deciding pr(si),
an unconditional preamble is preferred which is

composed of unconditional transitions only. If there is no
unconditional preamble, a set of several conditional
preambles is generated, which is denoted by Pr(si) =
{ prj(si)| prj(si) is a possible conditional preamble to si}.

Step.3: (UIO sequences generation) For each input state
si∈S, decide a minimal-length UIO sequence of si,
denoted by uio(si). When deciding uio(si), an
unconditional UIO sequence is preferred which is
constructed from unconditional transitions only. If there
is no unconditional UIO sequence, a set of several
conditional UIO sequence is generated, which is denoted
by Uio(si) = { uioj(si)| uioj(si) is a possible conditional
UIO sequence of si}.

Step.4: (test generation for state identification) For each
input state si∈S, i=1,…,m, construct a test case for state
identification as follows: tcsi ← ri @ pr(1)(s1) @ uio(1)(s1)
… ri @ pr(m)(sm) @ uio(m)(sm), where @ is the string
concatenation operator and pr(j)(sj) and uio(j)(sj), j=1,…,m,
are an unconditional or conditional but executable
preamble to sj and UIO sequence of sj in tcsi. If there
exist parameters at some input events in tcsi, decide the
values of those parameters by linear programming. Then,
perform TSN ← { tcsi | i=1,…,m }.

Step.5: (transition construction for transition identification)
For each input state pair (si, sj), let Ti,j ⊂ T denote the set
of all transitions constructing every path starting from si
and terminating at sj without visiting any input state. For
each input state pair (si, sj), construct a set of transition
sequences denoted by ℑi,j as follows. (1) At state sj,
select all transitions t1,…,tn which terminate at sj,
perform τi,j ← {t1,…,tn}, and Ti,j ← Ti,j − {t1,…,tn}. (2)
Select a transition sequence tsk whose starting state is sk.
Find all transitions tk, k=1,…,m, terminating at sk such
that d(sk)∩d(ss(tsk))≠∅, and replace tsk by tk @ tsk, k = 1,
…, m in τi,j, and perform Ti,j ← Ti,j − {t1,…,tk}. If there is
no such transitions, perform τi,j ← τi,j − {tsk}. If for a
transition tk, ss(tk) is an input state, perform ℑi,j ← ℑi,j ∪
{ tk @ tsk } and τi,j ← τi,j − { tk @ tsk }. (3) Iterate the
subprocess (2) until Ti,j ≠ ∅.

Step.6: (test generation for transition identification) For
every input state pair (si, sj), and for each transition
sequence tsk ∈ ℑi,j, construct a test case for transition
identification as follows: tcti,j,k ← ri @ pr(i,k)(si) @ tsk @
uio(j)(sj), where pr(i,k)(sj) and uio(j)(sj) are an executable
unconditional or conditional preamble to si and UIO
sequence of sj in tcti,j,k. If there exist parameters at some
input events in tcti,j,k, decide the values of those
parameters by linear programming. Then, perform TSN
← TSN ∪ { tcti,j,k | for every possible i, j, and k}.

4. Empirical Results

In order to show the efficacy of the proposed test
generation method, we applied it to the SSCOP (Service

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

128

Specific Connection Oriented Protocol) used in the
B-ISDN AAL(ATM Adaptation Layer). This protocol has
been often used for test generation because its SDL
specification is shown in ITU-T Recommendation Q.2110
[14]. That SDL specification of the SSCOP is very
complicated. The SSCOP process diagram is composed of
43 pages and has 10 states, 149 transitions, and 98
subtransitions constructing branches or loops. Fig.6 shows
a complicated part of the SSCOP process diagram which
has several complex loops. Test generation for such a part
seems to be not easy with IOEFSM modeling. We modeled
the SSCOP process diagram into an EEFSM. Fig.7 shows
the EEFSM model of the part of the SSCOP in Fig.6,
where only an event is shown as the label of a transition
for simplicity.

Fig. 6 A part of SDL diagram of the SSCOP process

 After the modeling of the SSCOP, we generated test
cases for the SSCOP according to the proposed test
generation algorithm shown in algorithm 3. First, symbolic
evaluation of variables was performed to simply actions
and conditions. For example, the condition event of t7 in
Fig.7 was able to be rewritten by VR(R)=N(S). As N(S) is
an input parameter, this condition transition can be an
unconditional transition owing to this symbolic evaluation.

1

1:?POLL

2

3

3: () ()

2: () ()

4

4: () ()

5

5: () ()

6

7: ()
6: ()

7

8: ()

8

14: MaxSTAT
13: MaxSTAT

9

1014

10:!STAT

9: ()

13

15: ()

16: ()

12: () B
11: () B

11

17:!STAT

18: () B

19: () B

12

20:!indicat ion

21:!ER

Fig. 7 The simplified EEFSM model of the SDL specification in Fig.6

Then, a preamble to each input state is generated. For
example, an unconditional preamble for an input state DTR
in Fig.6, pr(DTR), was generated: pr(DTR)
= ?BGREJ !* ?END !* ?AA-ESTABLISH.request !BGN ?
BGAK !AA-ESTABLISH.confirm. But some more
preambles were generated for transition identification.
Next, an UIO sequence of each input state is derived.
Among 10 input states, 8 input states have unconditional
UIO sequences and the remaining input states have only
conditional ones. The state DTR has an unconditional UIO
sequence: uio(DTR)=?Timer_POLL !POLL. With those
UIO sequences, test cases for state and transition
identification were generated. For transition identification,
transition sequences were generated between two input
states. The transition sequences generated for the part of
Fig.6 are as follows, where transition concatenation
operator is omitted for simplicity.

ts1=t1t3t20t21,
ts2=t1t2t4t6t10,
ts3=t1t2t5t7t9t10,
ts4=t1t2t4t7t8t11t9t10,
ts5=t1t2t5t7t8t12t13t16t6t10,
ts6=t1t2t5t7t8t12t13t15t19t7t8t11t9t10,
ts7=t1t2t5t7t8t12t13t15t18t16t6t10,
ts8=t1t2t5(t7t8t12t13t15t19)*t7t8t12t14 t17t16t6t10,

Finally, we generated 10 test cases for state

identification and 200 test cases for transition
identification. For example, test cases for transition
identification for the part in Fig.6 are as follows.

 tctDTR,ORP,1= ri@pr(DTR)@ts1@uio(ORP)

tctDTR,DTR,1= ri@pr(DTR)@ts2@uio(DTR)
tctDTR,DTR,2= ri@pr2(DTR)@ts3@uio(DTR)
tctDTR,DTR,3= ri@pr3(DTR)@ts4@uio(DTR)
tctDTR,DTR,4= ri@pr4(DTR)@ts5@uio(DTR)
tctDTR,DTR,5= ri@pr5(DTR)@ts6@uio(DTR)
tctDTR,DTR,6= ri@pr6(DTR)@ts7@uio(DTR)
tctDTR,DTR,7= ri@pr7 (DTR)@ts8@uio(DTR)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

129

5. Conclusions

The complexity of a real network protocol is a most
serious obstacle to formal methods in protocol testing.
Since an SDL specification of a protocol is normally
designed without consideration of testability, it may often
have a complicated part such as nested loops. This paper
proposed a test generation method for a protocol specified
in SDL with such complicated parts by EEFSM modeling,
because popular IOEFSM modeling may reduce the
preciseness of such a complex SDL specification. Actually,
EEFSM modeling has been often used in passive testing
where both an input and an output are handled identically
as a monitored event. However, conditions for transition
execution has seldom used as an event in usual EEFSM
modeling. We introduced a condition event to describe
complex loops more exactly in this paper and showed the
efficacy of this method with empirical results of a real
complex network protocol.
 The following issues are considered as future work of
this study. First, we plan to develop a test generation
method with higher fault coverage for transition
identification with an EEFSM. Systematical preamble
decision using state domain analysis of an EEFSM is
another interesting issue to generate test cases for
transition identification. Finally, test generation for data
flow test with EEFSM modeling also deserves to be
studied for complete testing.

Acknowledgment

This paper was supported by Research Fund, Kumoh
National Institute of Technology.

References
[1] ISO, "OSI Conformance Testing Methodology and

Framework", IS-9646, 1991
[2] ITU, "Specification and Description Language", ITU-T

Recommendation Z.100, 2000
[3] Hasan Ural, "Formal methods for test sequence generation",

Computer Communications, Vol.15, No.5, 1992, pp. 311-325.
[4] R.Miller, S. Paul, "Generating conformance test sequences

for combined control and data flow of communication
protocols", Protocol Specification, Testing, and
Verification ’92, Chapman & Hall, 1992, pp.1-15.

[5] S.T.Chanson, Z. Zinsong, "A unified approach to protocol
test sequence generation", IEEE INFOCOM ’93, San
Francisco, CA, USA, 1993, pp.106-114.

[6] T.-H. Kim, I.-S. Hwang, M.-S. Jang, J.-Y. Lee, "Test case
generation of a communication protocol by an adaptive state
exploration", Computer Communication, Vol.24, 2001,
pp.1242-1255.

[7] Hierons, R. M., Kim, T.-H., and Ural, H., "On the Testability
of SDL Specifications", Computer Networks, VOl.44, 2004,
pp.681-700.

[8] Tar-Hyong Kim, "A Passive Testing Technique with
Minimized On-line Processing for Fault Management of
Network Protocols", International Journal of Computer
Science and Network Security, Vol.7, No.3, 2007, pp.7-14.

[9] David Lee, Mihalis Yannakakis, "Testing Finite-State
Machines: State Identification and Verification", IEEE Trans.
on Computers, Vol.43, No.3, 1994, pp.306-320.

[10] D. Hogrefe, "OSI formal specification case study: The
INRES protocol and service", TR IAM-91-012, University of
Berne, Institute of Computer Science and Applied
Mathematics, 1991.

[11] G. Luo, A. Das, G. V. Bochmann, "Software Testing Based
on SDL Specifications with Save", IEEE Trans. on Software
Engineering, Vol.20, No.1, 1994, pp.72 – 87.

[12] Ricardo Anido, Ana Cavalli, "Guaranting full fault coverage
for UIO-based testing methods", IWPTS ’95, Evry, France,
1995.

[13] Phyllis G. Frankl, Elaine J. Weyuker, "An Analytical
Comparison of the Fault-Detecting Ability of Data Flow
Testing Techniques", ICSE ’93, Baltimore, Maryland, USA,
1993, pp.415-424.

[14] ITU, B-ISDN ATM Adaptation Layer – Service Specific
Connection Oriented Protocol (SSCOP), ITU-T
Recommendation Q.2110, 1994.

Tae-Hyong Kim received the
B.S. and M.S. degrees, from Yonsei
University in 1992 and 1995,
respectively, and a Ph.D. degree in
electrical and electronic engineering
from the same university in 2001. He
was a postdoctoral fellow at the School
of Information Technology and
Engineering (SITE) at the University of
Ottawa from 2001 to 2002. He is
currently an assistant professor in the

School of Computer and Software Engineering (SCSE) at the
Kumoh National Institute of Technology (KIT) in Korea. His
current research interests include software and protocol
specification, verification and testing techniques, communication
protocols, and next generation mobile networks. He is currently a
member of the SDL Forum Society.

