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Summary 
Test case generation for a network protocol by extended finite 

state machine (EFSM) based modeling is a well-known 
technique in formal methods in conformance testing. An input 
output based EFSM (IOEFSM) is a popular model for a protocol 
specified in the specification and description language (SDL) 
because an SDL process diagram is based on an input-driven 
EFSM. However, as an SDL specification may have a very 
complicated part such as complex nested loops, IOEFSM 
modeling may not be appropriate to represent such a complex 
SDL specification. This paper proposes a test generation method 
for a protocol specified in SDL using an event-based EFSM 
(EEFSM) for more exact modeling. It also shows the relations 
between an IOEFSM and an EEFSM, and their inter-conversion 
methods. Empirical results with a real network protocol, the 
service specific connection oriented protocol (SSCOP) showed 
the efficacy of the proposed method. 
Key words: 
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1. Introduction 

Lately as the user requirements for telecommunication 
services have been getting diverse and composite, 
communication protocols are getting more various and 
complex. Thus how to develop a reliable protocol is a 
major issue in the protocol engineering and conformance 
testing methodology and framework was standardized to 
verify whether a protocol implementation conforms to the 
standard and the specification of that protocol [1]. The 
development of formal description techniques for clear and 
precise specification of communication protocols has 
enabled formal methods in protocol design, verification, 
and testing. The specification and description language 
(SDL) is the most popular formal description technique 
which is widely used in design of various distributed 
systems owing to its graphical notations [2]. Formal 
methods in conformance testing with SDL have been 
interested in automatic test generation of a protocol 
specification for a long time. Model based test generation 
is a general method that makes a model for a protocol and 
analyzes that model to derive test cases. A finite states 

machine (FSM), an extended finite state machine (EFSM), 
and a labeled transition system (LTS) are well-known 
models. Since a process diagram in SDL for behavioral 
description is based on an EFSM model, an EFSM has 
been mainly used for modeling and test case generation of 
a communication protocol specified in SDL [3-6].  
    Interestingly, most of the existing EFSM-based test 
generation methods use input/output-based EFSM 
(IOEFSM)’s where the label of a transition has an I/O pair. 
An input to a protocol and its response, (an) output(s), of 
that protocol normally represent a unit behavior of a 
protocol in an IOEFSM. Since a transition in an SDL 
process diagram surely starts with an input and may have 
(an) output(s), it seems natural to model an SDL process 
specification into an IOEFSM. However, an SDL process 
diagram has high flexibility to specify protocol behaviors, 
e.g., nested loops inside a transition, algorithmic notations 
in a task, save symbols, and etc. If you want to model such 
a complicated specification into an IOEFSM model, you 
may have to transform that specification to a simple 
equivalent one [7], or remove the complicated parts by 
assuming some simplicity rules on SDL specifications [3]. 
    Actually, an event-based EFSM (EEFSM) may be a 
more appropriate model for an SDL specification because 
a transition of an EEFSM, whose label has one event, e.g., 
an input or an output, is able to model an SDL transition 
behavior more exactly than an IOEFSM’s transition. An 
EEFSM is, however, somewhat troublesome to handle due 
to its flexibility in the definition of events. There has been 
little work of modeling and test generation with EEFSM’s. 
This paper proposes a model-based test generation method 
for an SDL specification especially with complex loops 
using an EEFSM model. It also examines the properties of 
an EEFSM as a protocol model and the relation between 
an EEFSM and an IOEFSM. 
    This paper is organized as follows. Section 2 defines 
an EEFSM and its properties. The relations between an 
IOEFSM and an EEFSM with their inter-conversions are 
also described in that section. Then, the proposed test 
generation method with EEFSM modeling of an SDL 
specification is explained in section 3. Section 4 shows 
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empirical results by applying the proposed method to a 
real network protocol. Finally, conclusions are drawn in 
section 5. 
 
2. Event-Based EFSM and its Properties 
 
This section describes the basic definitions and properties 
of an EEFSM, and its relation to an IOEFSM. 
 
2.1 Basic definitions and properties 
 
As the specification model of a protocol, an input-output 
based EFSM (IOEFSM) and an event-based EFSM 
(EEFSM) are defined respectively as follows. 
 
Definition 1. An IOEFSM M is the 6-tuple (S, s0, I, O, v, 
T) where S is the finite set of logical states, s0(∈S) is the 
initial state, I and O are the finite sets of input and output 
declarations respectively such that i(p)∈I and o(v,p)∈O, 
where p is the finite set of input parameters, v is the finite 
set of variables, T is the finite set of transitions, where the 
label of a transition t(∈T) is denoted by the 5-tuple (ss, sf, 
i(p), P(v,p), A(v,p,O)) in which ss and sf are the start and 
the final state of t respectively, and P(v,p) and A(v,p,O)) 
are the predicate and the action of t respectively. 
 
Definition 2. An EEFSM N is the 5-tuple (S, s0, v, Σ, T) 
where S is the finite set of logical states, s0(∈S) is the 
initial state, v is the finite set of variables, Σ is the finite set 
of events the element of which ε(∈Σ) is denoted by σe(p) 
or C(v,p), where σ∈{?,!}, e is a message name, p is the 
finite set of event parameters, and C is a logical equation 
constructed with v and p, and T is the finite set of 
transitions, where the label of a transition t(∈T) is denoted 
by the 4-tuple (ss, sf, ε, A(v,p)) in which ss and sf are the 
start and the final state of t respectively, and A(v,p)) is the 
action of t. 
 

Note that an event in an EEFSM can be a logical 
equation as well as an input or output triggering as 
different in the definitions of others [8]. Since SDL, our 
target specification language, allows nested loops in a 
transition, we included conditions for behavioral choice in 
event set to model and handle such a transition more 
exactly. A transition t=(ss, sf, ε, A(v,p)) is called a condition 
transition, an input transition, or an output transition when 
ε is C(v,p), ?e(p), or !e(p), respectively. 

A major difference between an IOEFSM and an 
EEFSM is about state transitions. While state transitions of 
an IOEFSM depend on the global state and triggered 
inputs, those of an EEFSM are up to events instead of 
inputs. This difference varies the properties, modeling and 
test generation of an EEFSM against those of an IOEFSM. 
In general, if an IOEFSM model is used, test generation 

takes the following assumptions on that model for 
simplicity: an IOEFSM is minimized, deterministic, 
strongly connected, and completely specified [9]. Those 
assumptions, however, should be redefined in an EEFSM 
due to their differences. For example, the complete 
specification assumption on an IOEFSM is that for each 
possible global state and for each (parametered) input, 
there is a firable transition. In an EEFSM, however, there 
may be some events that cannot happen at a certain logical 
state. We define those assumptions for an EEFSM model 
generated from an SDL specification as follows. 
 
Definition 3. An EEFSM N is minimized if for every pair 
of its logical states (si, sj), there no event sequence x (∈ε*) 
that can happen at both si and sj. 
 
Definition 4. An EEFSM N is deterministic if for each 
logical state s(∈S) and for each possible event ε(∈Σ) at s, 
there is at most one transition defined in N. 
 
Definition 5. An EEFSM N is strongly connected if for 
every pair of its logical states (si, sj), there is a transition 
path going from si to sj. 
 
   As for the completeness of an EEFSM, it is important 
what kinds of events are allowed to be fetched at a logical 
state, which is closely related to the operation of an 
EEFSM. Fig.1 shows two different approaches to EFSM 
modeling. Intrinsic view modeling is a general one where 
inputs or events are fetched by the machine when needed 
by means of local channel. SDL process modeling is a 
typical intrinsic view modeling. In an SDL system, each 
process has a FIFO queue for buffering input signals. The 
foremost buffered signal is consumed by a process in 
general when that process finishes its action and stops 
logically at the next state. An SDL transition means a unit 
behavior initiated by only an input and no inputs are 
allowed to be consumed during executing a transition. 
 

 
Fig. 1 The concept of EFSM modeling 

     
By the way, environmental view modeling is usually 

used for description of the whole system as seen by an 
external tester. This modeling depends on local channel 
design and channel access mechanism of the system. 
Triggering of every input sequence by the environment can 
be represented without being interrupted by other types of 
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events. Reachability trees are often constructed with this 
approach. If we apply the concept of IOEFSM’s 
completeness to an EEFSM, a completely specified 
EEFSM may be unbounded. Therefore, we focus an 
EEFSM which was constructed only by intrinsic view 
modeling approach in this paper. 
    When we construct an EEFSM model from an SDL 
specification, only a part of logical states of that EEFSM 
can be mapped to their corresponding SDL states. Each of 
the other logical states just indicates a certain middle 
points on a transition of that SDL specification. From this 
consideration we can classify logical states of an EEFSM 
constructed from an SDL specification as follows. 
According to that classification, the completeness of such 
an EEFSM is defined. 
 
Definition 6. A logical state s of an EEFSM NSDL=(S, s0, v, 
Σ, T) constructed from an SDL specification is an input 
state if there exist outgoing input transitions from s; 
otherwise, s is a transient state. 
 
Definition 7. An EEFSM NSDL constructed from an SDL 
specification is completely specified if for each input state 
sI∈S and for each input event εI∈Σ, there is a transition 
defined in NSDL. 
 
2.2 Relations between an IOEFSM and an EEFSM 
 
Now we show how to transform an IOEFSM to its 
equivalent EEFSM and vice versa from the examination of 
the relations between an IOEFSM and an EEFSM. 
Actually many communication protocols have been 
modeled into IOEFSM’s and a lot of test generation 
methods use an IOEFSM as an analysis model. As we seen 
the definitions and discussions of those machines in 
subsection 2.1, the relations between logical states of two 
machines is a key to that machine transformation problem. 
A logical state of an IOEFSM can correspond to a series of 
logical states of an EEFSM which is composed of one or 
more logical states where foremost logical state is an input 
state.  
    First, the conversion from an IOEFSM to an 
equivalent EEFSM requires splitting of logical states of an 
IOEFSM. A logical state of an IOEFSM with an outgoing 
transition whose label has an output or a valid predicate 
should be split according to possible events of an EEFSM. 
We can obtain an initial form of EEFSM by this splitting 
states and reconstructing transitions. The final EEFSM is 
obtained by the minimization of that machine. In the 
minimization of an EFSM, variable domain at a state must 
be considered to check if two logical states are identical.  

Some notation and functions are introduced to explain 
two machine transformation algorithms. Let Δ and Λ 
denote the domains constructed from all control variables 
in v and all parameters in p of the input events, 

respectively. The functions RΔ(⋅): P(v,p)→℘(Δ) and RΛ(⋅): 
P(v,p)→℘(Λ) transform a predicate to the subdomains of 
Δ and Λ that satisfy that predicate respectively, where ℘(⋅) 
is the powerset operator. Their inverse functions 
RΔ

-1(⋅):℘(Δ)→P(v,p) and RΛ
-1(⋅):℘(Λ)→P(v,p) generate 

the predicates that determine the input subdomains of Δ 
and Λ, respectively. The subset of Δ allowed at a state s is 
called the domain of the state s and denoted by d(s). 
ss(⋅):T→S and sf(⋅):T→S are the starting state and final 
state functions of a transition respectively. Algorithm 1 
shows in detail how to transform an IOEFSM to an 
EEFSM that is equivalent to that IOEFSM. Functions out 
and act of an action extract the first output and the part of 
action before that output from that action respectively, and 
rem of a pair of an action and an output extracts the 
following part of that action after that output. 
 
Algorithm 1. Conversion of an IOEFSM to an EEFSM 
• Inputs: IOEFSM M = (SM, s0, I, O, v, TM) 
• Output: EEFSM N = (SN, s0, v, Σ, TN) 
Step.1: Initialize variables as follows: 
      SN ← SM, Σ ← ∅, TN ← ∅, d(SN) ← Δ; 
Step.2: i←0; /* initial splitting */ 
 for each transition tM(∈TM)=(ss, sf, i(p), P(v,p), A(v,p,O)) 
   en ← ?i(p), Σ ← Σ∪{en}; /* en: the next event */ 

dn ← Δ; /* en: domain of the next state */ 
   if P(v,p)≠∅ then SN ← SN ∪{si}, tN ← (ss, si, en, ∅); 
     TN ← TN ∪{ tN }, i←i +1, en←P(v,p); 

Σ ← Σ∪{en}, dn ← RΔ(P(v,p)); 
   endif 

if A(v,p,∅) then  
tN ← (ss, sf, en, A(v,p)), TN ← TN ∪{ tN }, d(ss)←dn; 

else j←0, Ai(v,p,O) ← A(v,p,O); 
     while not Ai(v,p,∅)  
        Ai,j(v,p)←act(Ai(v,p,O)), oj(p)← out(Ai(v,p,O)); 
       SN←SN∪{si}, tN←(si-1, si, en, Ai,j(v,p));  

TN ← TN ∪{ tN }, d(si-1)←dn, i←i +1;  
en ← !oj(p), Σ ← Σ ∪ {en}; 
Ai(v,p,O) ← rem(Ai(v,p,O), oj(p)), j←j +1; 

     endwhile 
tN ← (si, sf, en, act(Ai(v,p,O));  
TN ← TN ∪{ tN }, d(si)←dn; 

   endif 
 endfor 
Step.3: /* minimization */ 
 for each state si∈SN 
   for each transition pair tj, tk ∈TN such that  

tj=(sa, si, εa, Aa(v,p)) and tk=(sb, si, εb, Ab(v,p)) 
if εa = εb and Aa(v,p) = Ab(v,p) then 
if d(sa) = d(sb) then 

TN ← TN – {tk}, SN ← SN – {sb}; 
endif 

endif 
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endfor 
endfor 

Step.4: return N=(SN, s0, v, Σ, TN); 
 
    By the way, for the conversion of an EEFSM to an 
equivalent IOEFSM, we must put some restrictions on the 
target EEFSM because a general EEFSM has high 
flexibility in modeling. First, the target EEFSM must be an 
intrinsic view model. Some environmental view model 
EEFSM’s do not have their equivalent IOEFSM’s because 
their various channel management systems cannot be 
considered in IOEFSM’s. Second, a condition transition 
must follow an input or other condition transition with null 
action only in the target EEFSM. Otherwise, constructing 
an equivalent IOEFSM requires complex semantic 
analysis of that EEFSM including domain-based state 
partition, and some IOEFSM should have spontaneous 
transitions with no inputs. Algorithm 2 shows the 
conversion of an EEFSM to an IOEFSM which is 
equivalent to that EEFSM. There is no minimization step 
in algorithm 2. If an EEFSM is minimized, the converted 
IOEFSM is also minimized with the above restrictions on 
an EEFSM. 
 
Algorithm 2. Conversion of an EEFSM to an IOEFSM 
• Inputs: EEFSM N = (SN, s0, v, Σ, TN) 
• Output: IOEFSM M = (SM, s0, I, O, v, TM) 
Step.1: Initialize variables as follows: 

SM ← ∅, I ← ∅, O ← ∅, TM ← ∅; 
Step.2: /* transition construction */ 
 for each input transition tN,i(∈TN)=(ss,i, sf,i, ?ii(p), Ai(v,p)) 
   SM ← SM ∪{ ss,i }, I ← I ∪{ ii(p) }; 
   ss,M←ss,i, sf,M←sf,i, iM←ii(p), PM←null, AM←Ai(v, p); 
   ep ← input; /* ep : previous event, input/output/cond */ 
   SearchTr(N, sf,M);  
 endfor 
Step.3: return M=(SM, s0, I, O, v, TM); 
 
function SearchTr(EEFSM N, state s) 
   for each transition tN,j(∈TN)=(ss,j, sf,j, εj, Aj(v,p)) 
       such that ss,j = s 

if εj = ?ij(p) then 
  if ss,j ∈ SM then 
    return; 
  else 

         TM ← TM ∪{ (ss,M, sf,M, iM, PM, AM) }; 
SM ← SM ∪{ ss,j }, I ← I ∪{ ij(p) }; 
ss,M ← ss,j, sf,M ← sf,j, iM ← ij(p); 
PM←∅, AM←Aj(v,p), ep ← input; 
SearchTr(N, sf,M); 

      endif 
else if εj = !oj(p) then 

      AM ← AM @ !oj(p) @ Aj(v,p), ep ← output; 
/* @: action concatenation operator */ 

else if εj = Cj(v,p) then 
      if not((ep=input or cond) and AM=null)) 

return EFSM_Err; /* EEFSM restriction error */ 
PM← PM and Cj(v,p), AM ← AM @ Aj(v,p); 
ep ← cond; 

endif 
endfor 

endfunction 
 
    We show a simple machine conversion example with 
Responder module of Inres protocol which is widely used 
as a test protocol in protocol engineering [10]. Fig. 2 
shows the target IOEFSM model of Responder which has 
3 states and 8 transitions except transitions for making 
complete specification. The transformed EEFSM is shown 
in Fig.3 which has 12 states and 17 transitions. 
 

sa
DISCONNECTED

sb
WAIT

sc
CONNECTED

(sa,  sa, IDISreq, ∅, !DR)

(sa,  sb, CR, ∅, 
!ICONind)

(sb,  sa, IDISreq, ∅, !DR)

(sb,  sa, IDISreq, ∅, !DR)

(sb,  sc, ICONresp, ∅, number:=0; !CC)

(sc,  sb, CR, ∅, !ICONind)

(sc,  sc, DT(Num, ISDU), 
Num = number, !AK(Num))

(sc,  sc, DT(Num, ISDU), Num = succ(number), 
!IDATind(ISDU); !AK(Num); number:= succ(number))  

Fig. 2 An IOEFSM model of Inres Responder protocol 
 

sa

(sa,  sa,1, ?IDISreq, ∅)

(sa,  sa,2, ?CR, ∅)

(sb,1,  sc, !CC, ∅)

(sc,1,  sb, 
!ICONind, ∅)

(sc,4,  sc,!AK(Num), 
number:= succ(number))

sb

sc

sa,1

(sa,1,  sa, !DR, ∅)

sa,2

(sa,2,  sb, !ICONind, ∅)

(sb,  sa,1, ?IDISreq, ∅)

sc,2 sc,3

sc,4

sc,5sc,6

sc,1

sb,1

(sb,  sa,1, 
?IDISreq, ∅)

(sc,  sc,1, 
?CR, ∅)

(sb,  sb,1, 
?ICONresp, number:=0)

(sc,  sc,2, ?DT(Num, ISDU), ∅)

(sc,2,  sc,3, Num = 
succ(number),∅)

(sc,3,  sc,4, !IDATind(ISDU), ∅)

(sc,  sc,5, ?DT(Num, 
ISDU), ∅)

(sc,5,  sc,6, Num = 
number, ∅)

(sc,6,  sc,
!AK(Num), ∅)

 
Fig. 3 The transformed EEFSM of Inres Responder protocol 

 
3. Test Generation with an EEFSM Modeling 
 
3.1 An EEFSM modeling of SDL specifications 
 
SDL has a variety of syntax to describe complicated 
behaviors of a network protocol in a simple and clear 
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manner. Although SDL is a formal description language, it 
has some syntax to describe nondeterministic or random 
behavior such as spontaneous transitions with ‘NONE’ 
input or ‘ANY’ condition. Therefore, such complicated or 
troublesome syntax is not supported fully by SDL tools.  

In this paper, we also put some restrictions on an SDL 
specification of a protocol. First, we do not allow 
nondeterminism in an SDL model. This restriction is 
reasonable for normal network protocols. Second, we 
avoid so-called shorthand syntax including saves or 
enabling conditions which can be rewritten with simple 
and basic syntax [11]. An SDL specification having some 
parts designed with such shorthand syntax is rewritten for 
easier test case generation. An SDL process diagram is 
assumed to be composed of the following basic symbols 
after rewriting: states, inputs, conditions, tasks, and 
outputs. Lastly, we assume that an SDL specification is 
well-designed: free of deadlocks, livelocks, and infinite 
loops with unbounded global control state space [7].  

Even if such a simple process diagram, its EFSM 
modeling for test generation may be straightforward due to 
complex control flows with loops. Fig. 4 shows a part of a 
simple SDL process diagram whose control flows have 
some loops. As the exact control flows including the 
traversing number of loops depend on the global state, in 
other words, the previous path from the initial state, it may 
be very difficult to simply model that part as a normal 
IOEFSM. This paper uses an EEFSM as a target model for 
test generation to cope with that problem. The EEFSM 
modeling rules for an SDL process diagram are as follows. 

 
s1 a

i<3 i:=i*2 i>0

s2

x y

i:=i+5

s3

i:=i+2

i<-2 y

TRUE
FALSE

TRUE
FALSE

i:=i+1

TRUE
FALSE

 
Fig. 4 A part of SDL design with complex loops 

 
− Each state symbol is changed by a logical state. 
− A logical state is inserted just before each condition 
and output symbol. 
− A control flow branch created by a (series of) 
condition symbol(s) and the following (series of) task 
symbol(s) is converted to a condition transition. 
− An input/output condition symbol and the following 
(series of) task symbol(s) is converted to an 
input/output transition. 

 

    Fig. 5 shows the EEFSM converted from the SDL 
process diagram in Fig.4. That EEFSM model shows the 
control flows of the original SDL diagram identically, 
which indicates that an EEFSM is appropriate for 
modeling an SDL specification. Any complex control 
flows of an SDL specification with the above restrictions 
can be represented by an EEFSM model. 
 

s1

s1,1

(s1, s1,1, 
?a, i:=i+1)

s1,2

s2

(s1,1, s1,2, 
i<3, )

(s1,2, s2, 
!x, )

s1,3
(s1,1, s1,3, 

i 3, i:=i*2)

s1,4

s3

(s1,3, s1,4, 
i>0, )

(s1,4, s3, 
!y, )

s1,5
(s1,3, s1,5, i

i:=i+2)

s1,6
(s1,5, s1,6, !y )

(s1,6, s1,3, 
i<-2, )

(s1,6, s1,1, 
i -2, i:=i+6)

 
Fig. 5 The EEFSM converted from an SDL design in Fig.4 

 
3.2 Test generation from an EEFSM model 
 
Test case generation of an (E)FSM model for conformance 
testing has been studied in many literatures [3-6]. They 
tried to derive optimized test cases with high fault 
coverage and low cost, and a lot of test generation methods 
were developed [12]. Those test generation methods are 
mostly based on an IO(E)FSM model for easily checking 
the current logical state of the target system under test with 
outputs. Actually test generation for an E(E)FSM model 
will not be fundamentally different from that for an 
IO(E)FSM. But the existing methods may have to be 
adjusted according to the properties of an E(E)FSM. 
    A most serious issue of test generation for an EFSM 
with data flows is to generate executable test cases. To 
make a test case executable in an EFSM is to decide a 
suitable preamble path and values of input parameters for 
that test cases. Semantic or domain analysis is usually used 
for that purpose. However, some methods may not be 
appropriate to an EEFSM model. For example, the 
expansion of an EEFSM based domain partitioning of each 
state [3] is not a suitable method because it requires all 
transitions of an EFSM to be able to have predicates. In 
this paper, we use a modified backward tracking with 
symbolic evaluation and linear programming to find an 
executable path under the assumption that all conditions 
and actions can be represented as (in)equalities and 
assignments with linear equations respectively. Details of 
that method will be shown in the proposed test generation 
algorithm. 
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    Conformance testing of an (E)FSM M with n states, a 
machine identification experiment, requires to generate a 
checking sequence of M that distinguishes M from all 
other machines with n sates [9]. Checking experiment can 
be accomplished by distinguishing, characterizing, or 
indentifying sequences. In this paper, we try to use unique 
input output (UIO) sequences in order to decrease the 
length of test sequences [9]. As for the test coverage, both 
state identification and transition identification must be 
considered in test generation for the full fault coverage of 
control flows [12]. Those checking experiment and 
state/transition identification are based on inputs and 
outputs of an IO(E)FSM. A transition of an EEFSM, 
however, does not have either an input or an output, or 
even anything. Therefore, state and transition 
identification with UIO sequences are modified for an 
EEFSM in this paper as follows. 
    First, UIO sequences for checking experiment are 
generated not for all logical states but only input states in 
an EEFSM. UIO sequences composed of unconditional 
transitions only are preferred to be used in state and 
transition identifications due to their better applicability. A 
condition transition with a condition event C(v,p) is called 
a conditional transition if is v not null and p is null; 
otherwise an unconditional transition. Second, test cases 
for state identification are generated only for all input 
states in an EEFSM. Third, test cases for transition 
identification are generated only for transitions terminating 
at input states in an EEFSM. For the other transitions, test 
cases only for transition tour coverage are coverage in our 
method. For higher fault coverage, data flow test cases 
satisfying condition coverage or all-uses criterion may be 
added [13]. Our test generation method is shown in 
algorithm 3. We assume that there is a reliable reset input 
ri in a protocol system. 
 
Algorithm 3. Test generation for an EEFSM 
• Inputs: EEFSM N = (S, s0, v, Σ, T) 
• Output: the set of test cases TSN 
Step.1: (symbolic evaluation of variables) Starting from 

each input state, for every possible control flows to next 
input state, action and condition parts are rewritten as 
follows. If (1) a variable v1 is defined in a transition t1: v1 
← f1(v,p), (2) v1 is used to define other variable v2, v2 ← 
f2(v,p), or is used in a condition event C2(v,p), in a 
following transition t2, and (3) there is no other 
definition of v1 and v2 on any transition path from t1 to t2, 
then the definition of v2 and the condition of C2(v,p) in t2 
are rewritten as v2 ← f2 f1(v,p) and C2(f1(v,p),p), 
respectively. 

Step.2: (preambles generation) For each input state si∈S, 
decide an executable transition path starting from the 
initial state s0 and terminating at si, which is called a 
preamble to si (denoted by pr(si)). When deciding pr(si), 
an unconditional preamble is preferred which is 

composed of unconditional transitions only. If there is no 
unconditional preamble, a set of several conditional 
preambles is generated, which is denoted by Pr(si) = 
{ prj(si)| prj(si) is a possible conditional preamble to si}. 

Step.3: (UIO sequences generation) For each input state 
si∈S, decide a minimal-length UIO sequence of si, 
denoted by uio(si). When deciding uio(si), an 
unconditional UIO sequence is preferred which is 
constructed from unconditional transitions only. If there 
is no unconditional UIO sequence, a set of several 
conditional UIO sequence is generated, which is denoted 
by Uio(si) = { uioj(si)| uioj(si) is a possible conditional 
UIO sequence of si}. 

Step.4: (test generation for state identification) For each 
input state si∈S, i=1,…,m, construct a test case for state 
identification as follows: tcsi ← ri @ pr(1)(s1) @ uio(1)(s1) 
… ri @ pr(m)(sm) @ uio(m)(sm), where @ is the string 
concatenation operator and pr(j)(sj) and uio(j)(sj), j=1,…,m, 
are an unconditional or conditional but executable 
preamble to sj and UIO sequence of sj in tcsi. If there 
exist parameters at some input events in tcsi, decide the 
values of those parameters by linear programming. Then, 
perform TSN ← { tcsi | i=1,…,m }. 

Step.5: (transition construction for transition identification) 
For each input state pair (si, sj), let Ti,j ⊂ T denote the set 
of all transitions constructing every path starting from si 
and terminating at sj without visiting any input state. For 
each input state pair (si, sj), construct a set of transition 
sequences denoted by ℑi,j as follows. (1) At state sj, 
select all transitions t1,…,tn which terminate at sj, 
perform τi,j ← {t1,…,tn}, and Ti,j ← Ti,j − {t1,…,tn}. (2) 
Select a transition sequence tsk whose starting state is sk. 
Find all transitions tk, k=1,…,m, terminating at sk such 
that d(sk)∩d(ss(tsk))≠∅, and replace tsk by tk @ tsk, k = 1, 
…, m in τi,j, and perform Ti,j ← Ti,j − {t1,…,tk}. If there is 
no such transitions, perform τi,j ← τi,j − {tsk}. If for a 
transition tk, ss(tk) is an input state, perform ℑi,j ← ℑi,j ∪ 
{ tk @ tsk } and τi,j ← τi,j − { tk @ tsk }. (3) Iterate the 
subprocess (2) until Ti,j ≠ ∅. 

Step.6: (test generation for transition identification) For 
every input state pair (si, sj), and for each transition 
sequence tsk ∈ ℑi,j, construct a test case for transition 
identification as follows: tcti,j,k ← ri @ pr(i,k)(si) @ tsk @ 
uio(j)(sj), where pr(i,k)(sj) and uio(j)(sj) are an executable 
unconditional or conditional preamble to si and UIO 
sequence of sj in tcti,j,k. If there exist parameters at some 
input events in tcti,j,k, decide the values of those 
parameters by linear programming. Then, perform TSN 
← TSN ∪ { tcti,j,k | for every possible i, j, and k}. 

 
4. Empirical Results 
 
In order to show the efficacy of the proposed test 
generation method, we applied it to the SSCOP (Service 
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Specific Connection Oriented Protocol) used in the 
B-ISDN AAL(ATM Adaptation Layer). This protocol has 
been often used for test generation because its SDL 
specification is shown in ITU-T Recommendation Q.2110 
[14]. That SDL specification of the SSCOP is very 
complicated. The SSCOP process diagram is composed of 
43 pages and has 10 states, 149 transitions, and 98 
subtransitions constructing branches or loops. Fig.6 shows 
a complicated part of the SSCOP process diagram which 
has several complex loops. Test generation for such a part 
seems to be not easy with IOEFSM modeling. We modeled 
the SSCOP process diagram into an EEFSM. Fig.7 shows 
the EEFSM model of the part of the SSCOP in Fig.6, 
where only an event is shown as the label of a transition 
for simplicity. 
 

 
Fig. 6 A part of SDL diagram of the SSCOP process 

 
    After the modeling of the SSCOP, we generated test 
cases for the SSCOP according to the proposed test 
generation algorithm shown in algorithm 3. First, symbolic 
evaluation of variables was performed to simply actions 
and conditions. For example, the condition event of t7 in 
Fig.7 was able to be rewritten by VR(R)=N(S). As N(S) is 
an input parameter, this condition transition can be an 
unconditional transition owing to this symbolic evaluation. 
 

1

1:?POLL

2

3

3: ( ) ( )

2: ( ) ( )

4

4: ( ) ( )

5

5: ( ) ( )

6

7: ( )
6: ( )

7

8: ( )

8

14: MaxSTAT
13: MaxSTAT

9

1014

10:!STAT

9: ( )

13

15: ( )

16: ( )

12: ( ) B
11: ( ) B

11

17:!STAT

18: ( ) B

19: ( ) B

12

20:!indicat ion

21:!ER

Fig. 7 The simplified EEFSM model of the SDL specification in Fig.6 
 

Then, a preamble to each input state is generated. For 
example, an unconditional preamble for an input state DTR 
in Fig.6, pr(DTR), was generated: pr(DTR) 
= ?BGREJ !* ?END !* ?AA-ESTABLISH.request !BGN ?
BGAK !AA-ESTABLISH.confirm. But some more 
preambles were generated for transition identification. 
Next, an UIO sequence of each input state is derived. 
Among 10 input states, 8 input states have unconditional 
UIO sequences and the remaining input states have only 
conditional ones. The state DTR has an unconditional UIO 
sequence: uio(DTR)=?Timer_POLL !POLL. With those 
UIO sequences, test cases for state and transition 
identification were generated. For transition identification, 
transition sequences were generated between two input 
states. The transition sequences generated for the part of 
Fig.6 are as follows, where transition concatenation 
operator is omitted for simplicity.  

 
ts1=t1t3t20t21,  
ts2=t1t2t4t6t10,  
ts3=t1t2t5t7t9t10, 
ts4=t1t2t4t7t8t11t9t10, 
ts5=t1t2t5t7t8t12t13t16t6t10, 
ts6=t1t2t5t7t8t12t13t15t19t7t8t11t9t10, 
ts7=t1t2t5t7t8t12t13t15t18t16t6t10, 
ts8=t1t2t5(t7t8t12t13t15t19)*t7t8t12t14 t17t16t6t10, 
 
Finally, we generated 10 test cases for state 

identification and 200 test cases for transition 
identification. For example, test cases for transition 
identification for the part in Fig.6 are as follows. 
 
    tctDTR,ORP,1= ri@pr(DTR)@ts1@uio(ORP) 

tctDTR,DTR,1= ri@pr(DTR)@ts2@uio(DTR) 
tctDTR,DTR,2= ri@pr2(DTR)@ts3@uio(DTR) 
tctDTR,DTR,3= ri@pr3(DTR)@ts4@uio(DTR) 
tctDTR,DTR,4= ri@pr4(DTR)@ts5@uio(DTR) 
tctDTR,DTR,5= ri@pr5(DTR)@ts6@uio(DTR) 
tctDTR,DTR,6= ri@pr6(DTR)@ts7@uio(DTR) 
tctDTR,DTR,7= ri@pr7 (DTR)@ts8@uio(DTR) 
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5. Conclusions 
 
The complexity of a real network protocol is a most 
serious obstacle to formal methods in protocol testing. 
Since an SDL specification of a protocol is normally 
designed without consideration of testability, it may often 
have a complicated part such as nested loops. This paper 
proposed a test generation method for a protocol specified 
in SDL with such complicated parts by EEFSM modeling, 
because popular IOEFSM modeling may reduce the 
preciseness of such a complex SDL specification. Actually, 
EEFSM modeling has been often used in passive testing 
where both an input and an output are handled identically 
as a monitored event. However, conditions for transition 
execution has seldom used as an event in usual EEFSM 
modeling. We introduced a condition event to describe 
complex loops more exactly in this paper and showed the 
efficacy of this method with empirical results of a real 
complex network protocol. 
    The following issues are considered as future work of 
this study. First, we plan to develop a test generation 
method with higher fault coverage for transition 
identification with an EEFSM. Systematical preamble 
decision using state domain analysis of an EEFSM is 
another interesting issue to generate test cases for 
transition identification. Finally, test generation for data 
flow test with EEFSM modeling also deserves to be 
studied for complete testing. 
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