
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

196

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

A Polymorphism Implementation of Web Services for Context
Adaptation and Performance

Hoijin Yoon† and Youngcheol Park ††,

Hyupsung University, Korea†
Hankuk University of Foreign Studies††

Summary
Context aware applications in Ubiquitous Computing (UC)
require the dynamic adaptation to the context and the
interoperability across heterogeneous platforms, as a distributed
system. Service-oriented Architecture (SOA) enables the
dynamic adaptation through using loosely-coupled services, and
it also supports the interoperability through using XML
messaging. For the adaptation, the orchestration service of SOA
implements the adaptation steps inside the source code with
some APIs. It also causes more messaging between services, but
the XML messaging is the bottleneck of the performance.
However, UC requires the frequent messaging between various
sites within its boundary according to the frequent changes of the
context. Finally, the context adaptation causes lots of messaging,
and the messaging causes the decrease of the execution
performance. This paper proposes a polymorphism
implementation of SOA services to satisfy both of the context
adaptation and the execution performance. It also measures how
well the polymorphism model satisfies them with an
implementation of J2EE.
Key words:
Web Services, Polymorphism, Service-Oriented Architecture,
Context-Awareness, Ubiquitous Computing.

1. Introduction

Context aware applications in Ubiquitous Computing
(UC) is better to be built under Service-Oriented
Architecture (SOA) from the following three
reasons. First, UC devices want a little size of codes since
the device is getting tiny and the memory space is getting
small [1]. That's why the applications in UC had better be
built as distributed systems, where only the client side is
put on the UC device. SOA fits to the distributed systems
as architecture allowing more flexible connections
between the services. Second. UC applications should be
adapted to the changes of context on the run-time [2]. The
software architecture in the traditional system is fixed
before the run-time. In contrast, SOA does not compose
services by combining their interfaces statically. It only
sends SOAP messages to the wanted-services and receives
the reply from them dynamically. SOA guarantees that

each service is autonomous as well as loosely-coupled to
other services, and the service does not consider how other
services communicate. Before the run-time, SOA specifies
only the work flow of services in the orchestration
service. Namely, it is not fixed which message is sent to
which service. Therefore, SOA allows the orchestration
service to switch the called-services to others that
implement the right behaviors of the updated
context. Third, UC should guarantee the interoperability
of various platforms. The applications of UC are ported on
the various platforms, and they often communicate each
other across the platforms. SOA enables the
heterogeneous platforms to communicate by using XML
technology, which aims at the platform-independent
messaging. Therefore, XML-based messaging of SOA
supports the interoperability between the platforms in UC.

The web service is counted as one of the SOA
implementation technologies [3]. However, the use of web
services when building UC applications has the following
considerations, even though SOA is able to meet the UC
requirements. First, the web service system should
implement the Context Adaptation, where the service
reacts to the updated context on the run-time[4]. An UC
application dynamically recognizes the changes of context
such as locations, time, user's preferences, and so on. And
then it should be adapted to the changes by finding
appropriate services and binding to them on the run-
time. The orchestration service codes most of the steps
from finding services to sending messages with iterative
loops and variables of services' URLs or SOAP message's
instances. Second, the performance should be considered
because the SOAP messaging is one of the main causes to
drop the performance. Some empirical studies and
experiments [5,6,7,8] show that SOAP messaging could be
a bottleneck in web services. However, UC anticipates a
frequent SOAP messaging of services. Therefore, cutting
down the messaging time of an UC application would
have a good influence on the performance.

Although we should consider both of the context
adaptation and the performance, the implementation of the
context adaptation would drop the performance because it
causes the frequent messaging. As one of the solutions of
this dilemma, this paper applies the polymorphism concept,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

197

"one interface multiple implementations", to the web
services running in UC. The polymorphism is expected to
shorten the steps of the context adaptation, and the short
steps cut down the messaging time. It would result in the
better performance.

2. Polymorphism Implementation Model

Figure 1 harmonizes the UC architecture[9] of the context-
awareness with SOA configuration[10] with putting the
orchestration service on a central junction. In the SOA
side of Figure 1, services located in each layer
communicate each other only through the orchestration
service, instead of binding each other. In the UC side of
Figure 1, the orchestration service is deployed separately
from the part, where the raw context information is caught
and refined. The lower layer is sensor-biased, and the
orchestration is not binding directly to a sensor. This
section describes how to apply the polymorphism to the
mixed architecture of Figure 1 for supporting both of the
context adaptation and the performance.

Figure 1. Integration of UC and SOA [11]

2.1 Polymorphism for the Context Adaptation

Figure 2 shows how the polymorphism operates the
context adaptation under Figure 1. The web service, C or
D, which implements an appropriate behavior of the
changed context, has the same interface as the previous
service, B. In Figure 2, the filled circles of the web
service, B, C, or D, is the interface, while the
implementation of the service is drawn as a different shape
inside the service. The same interface results in the almost
same SOAP messages, and then it also results in the
reduction of steps of sending messages including writing
SOAP messages. Through the polymorphism, the
orchestration service adapts to the updated context without
rebuilding SOAP from the scratch since it has already

knew the interface of the service wanted for the updated
context.

Suppose that the polymorphism is applied to the in-
car information system[7]. It is one of the context aware
applications in UC, and it informs drivers of weather
information, traffic condition, local information, and so on.
The system is installed inside a car, and the car is moving
around. The service, B in Figure 2, provides the general
weather information in the downtown area, and the service,
C or D, could inform the driver of the weather information
with some tips for driving in the mountain area. In Figure
2, ① shows that the service, C or D, has been built to
implement the function of telling the drivers the weather
information with some tips of driving in the mountain-area.
It is about the same context type - the location - and the
different context value - the mountain-area or the
downtown-area. In ② of the figure, the context is
changed as the car has moved to the mountain area. The
context value that was changed from the downtown area to
the mountain area is passed to the orchestration service
with expecting that the service behaves the right function
that the updated context requests. According to the
expectation of the right behavior, the service, C or D, is
selected through ③. The orchestration service does not
need to know which service of B, C, or D is acting, since
all of them have the same interface. That is one of the
advantages coming from the polymorphism.

Figure 2. Context Adaptation through Polymorphism

2.2 Polymorphism for the Performance

There are two different forms of the implementation of the
polymorphism in Object-Oriented Programming; one is
Overloading, and the other is Overriding. Each form of
the polymorphism cuts the steps down through its own
way. Table 1 shows how well the form, the overloading or
the overriding, handles four factors; The context
adaptation and the performance are the main
considerations to be focused on in this paper, and the
implementation of a web service and the implementation
of an orchestration service are two different views in
developing web services. In the preference column of

Context Handler

UC Application

UC

Orchestration Service Layer
Business Service Layer

Application Service Layer

SOA

Context

Web Service

SOAP

Orchestration

Service

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

198

Table 1, << or < shows that a left one is superior to a right
ones, and vice versa. << has a stronger meaning than <.

Table 1. Comparison of the Overloading and the Overriding
 Overloading Preference Overriding

Context adaptation OK = OK
Implementation of a

web service
weak

restrictions > strong
restrictions

Implementation of an
orchestration service complex << simple

Performance long steps for
the adaptation << short steps for

the adaptation

In Table 1, the preference of the context adaptation in
the overloading is equal to that in the overriding, because
both of them implement the context adaptation with
making the steps shorter. In case of the implementation of
a web service, the overloading allows some more
variations than the overriding. That's because a web
service implemented with the overloading is allowed to
have a different type of arguments, while that with the
overriding is not. Therefore, the preference of the
implementation of a web service in the overloading is
better than that in the overriding. However, the
implementation of an orchestration service in the
overloading is much worse than that in the overriding. In
case of the overriding, an orchestration service only send a
message, while an orchestration service in the overloading
should write a new message and then send it as long as the
context is updated. This is since the strong restriction, that
keeps the name of the web service same, does not have a
good influence on the implementation of a web service.
The performance depends on how many steps the
orchestration service has for handling the context
adaptation. Therefore, the overriding is better than the
overloading as much as in the implementation of an
orchestration service. In conclusion, the overriding is
superior to the overloading in the performance with
handling the context adaptation, and it is because the
overriding simplifies the orchestration service more than
the overloading.

3. Performance of the Context Adaptation

This section explains some contributions with an empirical
study based on J2EE, because J2EE was evaluated to
guarantee the better performance than .NET through the
experiment [12].

The orchestration service works with some APIs for
handling the context adaptation. First of all, it gets WSDL
from UDDI by accessing to UDDI and getting the URL of
WSDL through JAXR API. After downloading WSDL, it
writes SOAP messages. It uses JAX-RPC API and JAXP

API for generating a DOM tree to treat WSDL files and
SOAP messages, which are XML documents, and it also
uses SAAJ API to write and send SOAP messages. After
sending messages, the orchestration service receives the
messages replied from the web services with SAAJ API.
The orchestration service is finally deployed on J2EE
container. The sequence described above is written as the
steps in Figure 3.

Usually, ① and ② of Figure 3 are done before
executing the orchestration service. It means that the
orchestration service only sets some real values to a SOAP
message and sends it to the web service that has been
selected before. WSDLs and SOAP messages has been
already fixed when implementing the orchestration service.
In this usual case, only ③ and ④ need to be implemented
as codes inside the orchestration service. However,
suppose that the orchestration service is in UC. It is the
orchestration service that should handle all the steps, from
① to ④, inside itself. That was one of the requirements
of the application in UC as mentioned before.

0

0

0

0

0

2

0.5

0.5

0

0

1

3

2

2

0.5

0.5

5

1

1

3

2

8

0.5

0.5

0 1 2 3 4 5 6 7 8 9

①Access UDDI(5)

②Take the URL of WSDL(1)

③Download WSDL(1)

④Generate DOM(3)

⑤Read WSDL(2)

⑥Write SOAP(8)

⑦Send the SOAP(0.5)

⑧Receive the SOAP(0.5)

execution weight

w/o polymorphism
overloading
overriding

Figure 3. Execution Weight of the Orchestration Service

Figure 3 shows how many weights each step executes
in each case of without-polymorphism, overloading, and
overriding. The weight is calculated by counting the lines
of the algorithms [13] of each step. For instance, "Write
SOAP" in ② of Figure 3 has the weight, 8, where it
consists of all the eight steps of Figure 4. The
orchestration service of without-polymorphism executes
all the 8 lines, while that of the overloading or the
overriding needs only two steps - the line 7 and the line 8
in Figure 4. That's why the chart draws the two-length bar
on it. All the full weight of each step is described inside
the parenthesis of Figure 3. From the chart, the total
weight, where the orchestration service executes for the
context adaptation, is calculated as 21 for without-
polymorphism, 9 for overloading, or 3 for overriding. The
overriding carries the less weight than the overloading,
and the use of the overriding could reduce the weight

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

199

more considerably if compared to without-polymorphism,
as we expected in Section 3.

Figure 4. Steps of "WriteSOAP"

The difference of the execution weight of the cases
would be getting considerable depending on how many
context changes are recognized by the orchestration
service. Suppose that the changes of context have
happened three times during the run-time, the adaptation
would be repeated at three times. It also means that the
steps from ① to ⑧ of Figure 3 are repeated. The
orchestration service developed through without-
polymorphism would be heavier than that of the
overriding by (21-3)*3. The difference between without-
polymorphism and the overloading would be (21-
9)*3. Figure 5 shows how much heavier the execution
weight would be on each case as the number of the
iterations of the context adaptation goes big. As seen in
the figure, the line of without-polymorphism is rising more
sharply than the others, and the line of overriding is rising
more slowly than that of overloading.

21

42

63

84

105

9

18

27

36

45

3 6 9 12 15

0

20

40

60

80

100

120

1 2 3 4 5
iterations of the adaptation

ex
ec

ut
io

n
w

ei
gh

w/o polymorphism
overloading
overriding

Figure 5. Increasing of the Cases

 The first conclusion is that with-polymorphism is
better than without-polymorphism, and the second one is
that the overriding is better than the overloading, in the
execution weight of handling the context adaptation from
the view of the orchestration service. The decrease of the
execution weight would result in the decrease of the
messaging cost, which is one of the factors of the web
service performance.

4. Conclusions

The characteristics of SOA satisfy the requirements of the
applications running in UC from the three reasons
explained in Section 1. However, the usual way to
implement the orchestration service can hardly handle the
context adaptation, where the application in UC updates
itself to do the right function that the updated context
expects on the run-time. The orchestration service needs
to implement all the steps, shown in Figure 3, inside its
own codes in order to handle the context adaptation. It
causes the orchestration service to have lots of SOAP
messaging and it finally has a bad influence on the
performance. The performance of the web service is one
of the main issue the web service should solve practically
[5,6,7,8], however UC expects fast reactions as the real-
time services. That's why this paper proposes the
polymorphism model, which cuts the steps of the
orchestration service down.

The empirical study of Section 3 showed that the
polymorphism implementation model contributes to
simplifying the orchestration service that handles the
context adaptation and it would have a positive influence
on the performance. As a compensation of simplifying the
orchestration service, it constrains the web services to use
the fixed interface. However, it is not a big weak point
because the polymorphism model focuses on the
development of applications running in UC not on the
development of web services. Section 3 concluded that
with-polymorphism is better than without-polymorphism
and the overriding is better than the overloading from the
view of the orchestration service’s performance of
executing the context adaptation.
References
[1] Hoijin Yoon, Byoungju Choi, "The Context Driven

Component Supporting the Context Adaptation and the
Content Extension," Journal of Information Science and
Engineering, Vol. 22 No.6 pp.1485-1504, 2006

[2] Gregory D. Abowd, "Software Engineering Issues for
Ubiquitous Computing," Proceedings of ICSE ’99, pp.75-84,
May 1999, LA, CA, USA

[3] Thomas Erl, Service-Oriented Architecture -A Field Guide
to integrating XML and Web Services, Prentice Hall, 2004

[4] Ian Sommerville, 'Software Engineering', 8th edition,
Addison Wesley, 2007

[5] K.Chiu, M.Govindaraju, and R.Bramley, "Investigating the
limits of SOAP performance for scientific computing,"
Proceedings of IEEE International Symposium on High
Performance Distributed Computing, pp.246-254, 2002

[6] D.David and M.Parashar, "Latency Performance of SOAP
implementations," Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid," pp.407-412, 2002

[7] R.Elfwing, U.Paulsson, and L.Lunberg, "Performance of
SOAP in Web Service Environment Compared to CORBA,"

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

200

Proceedings of the 9th Asia-Pacific Software Engineering
Conference, 2002

[8] Wei Jun et al, "Speed-up SOAP Processing by Data
Mapping Template," Proceedings of the 2006 International
workshop on Service-oriented Software Engineering, 2006

[9] Karen Henricksen and Jadwiga Indulska, "Developing
context-aware pervasive computing applications : Model
and approach," Pervasive and Mobile Computing, Vol.2,
No.1, pp.37-64

[10] Thomas Erl, Service Oriented Architecture - Concepts,
Prentice Hall, 2005

[11] Hoijin Yoon, "A Convergence of Context-Awareness and
Service-Orientation in Ubiquitous Computing,” IJCSNS
International Journal of Computer Science and Network
Security, Vol. 7 No.3, pp.253-257, 2007

[12] Sun Microsystems Inc. Web Services Performance
comparing Java2 Enterprise Edition and .NET Framework,
http://java.sun.com/performance/reference/whitepapers/WS
_Test-1_0.pdf, 2004

[13] Mincheol Shin, XML Web Services, Freelec, 2004

Hoijin Yoon received the B.S.
and M.S. degrees in Computer Science
and Engineering from Ewha Womans
University in 1993 and 1998,
respectively. She also received her
ph.D with the dissertation about
software component testing from Ewha.
After the degree, she stayed in Georgia
Institute of Technology as a visiting

scholar and then worked at Ewha Womans University. She has
been teaching at Hyupsung University as a full-time lecturer
since 2007, She is interested in Software Testing, Service
Oriented Architecture, and Context awareness in Ubiquitous
Computing.

Youngcheol Park completed his B.S.
in 1992 and M.S. in 1994, both from
Yonsei University. In 2004, he
completed his Ph.D. in Electrical
Engineering at Georgia Tech. In
March 2007, Dr. Park joined the
faculty at Hankuk University of
Foreign Studies, where he is Assistant
Professor in Dept. of Electronics
Engineering. Dr. Park has over 12

years of industrial experience of such as CDMA, mWiMAX
mobiles as well as RF circuits and systems.

