
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

228

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

High Performance Multithreaded Model for Stream Cipher

Khaled M. Suwais and Azman Bin Samsudin

School of Computer Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia

Summary
New multithreaded model for stream cipher algorithms is
presented as a step to enhance the performance (encryption rate)
of stream ciphers. The architecture of the model relies on the
multi-core technology which has become a common nowadays.
The model is divided into three (components) phases: Thread
Creation Phase, Keystream Generation Phase and Encryption
Phase. Multiple threads will be created and synchronized in order
to ensure higher performance and stable execution among the
model’s components. The experimental results show that the
encryption rate of the tested ECSC-128 stream cipher has
increased greatly. However, the main characteristics of the
proposed model are easy to implement and fast on execution in a
compact structure.

Key words:
Multithreading, Multi-Core, Stream Cipher and Encryption.

1. Introduction

Improving the performance of any system or application is
one of the important issues in our digital life (e.g.
Information Exchanging, Security Applications, etc). The
performance improvements can be seen from two different
perspectives - the hardware and software perspective.
Recently, the performance improvement which is based on
the hardware development has lead to a fascinating
innovation known as multi-core technology, resulting in
faster computation and higher throughput. On the other
hand, since the 1960s [1], the software-based performance
improvement such as multithreading techniques has shown
acceptable results as opposed to the limitation of the
resources at that time. Anyhow, the improvement of the
performance will enhance the systems and the applications
from two angles. It will speed up the execution and
calculations of currently available systems, and from the
other angle, it will give the chance for new systems to be
implemented after it was restricted due to the intensive
calculations and resources limitation. In this paper, we are
presenting multithreading model in cooperation with
multi-core technology to improve the performance of one
of the symmetric cryptographic algorithms known as
Stream Cipher in order to facilitate the chances for such
ciphers to increase their security level even with intensive
computations.

2. Preliminaries

In this Section we highlight the two components of our
proposed model. The two components are the
multithreading techniques and the stream cipher algorithm.

2.1 Multithreading System Architecture

As multi-core computers become more common nowadays,
executing sequential applications has become obstructive
to performance. In order to make use of the extra cores,
applications must be divided into smaller segments (tasks)
and those segments need to be run at the same time on
separate cores in a process known as concurrent
programming.

One way of expressing concurrency is by dealing with
low-level technology known as Threads. It can be viewed
as mapping independent tasks to threads to give the
operating system greater flexibility in processes
scheduling, which in turn helps to hide program latency
[2]. The process of mapping independent tasks to threads,
and the connection between the three systems’ level (user,
kernel and hardware) of the multithreaded system
architecture is portrayed in Fig.1.

Lightweight Processes (LWP) are the underlying threads
of control supported by the kernel. It can be viewed as a
virtual CPU which links the user level to the kernel level.
Fig.1 shows that each process (Proc 1 to Proc 3) can be
executed by different numbers of threads, resulting in

Fig.1. Multithreaded System Architecture [modified from 1]

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

229

faster execution in shorter time. In fact, multi-core
technology provides systems with greater performance
compared to single-core technology by providing extra
cores (Macro-Improvement). Furthermore, multithreading
techniques work in lower levels to improve the
performance by allowing many threads associated with
each core to accomplish one task (Micro-Improvement).
Fig.2 illustrates the performance gained by applying
multithreading techniques to multi-core machine.

We aim to use multithreading technique in our model for
several reasons. Firstly, to improve the stream cipher
responsiveness by dividing the structure of the cipher into
independent or semi-independent tasks. Secondly, to make
use of multi-core efficiency by giving the running threads
more resources (cores). Thirdly, to improve the
performance of stream cipher algorithms by executing the
cipher’s tasks concurrently.

2.2 Stream Cipher Algorithm

One of the cryptographic primitives used to ensure secure
communication over public and unsecured channels is the
stream cipher. Stream cipher algorithm is based on
generating a pseudorandom keystream to encrypt a stream
of plaintext to generate a stream of incomprehensible text
known as ciphertext as shown in Fig.3 [3].

In fact, this type of encryption algorithms is recommended
since it is efficient in software and hardware
implementation [3, 4]. Examples on stream ciphers are:
RC4 [5], SNOW [6], ECSC-128 [7] and many other
ciphers. The core of those ciphers are basically based on
simple logical operations and bit manipulation as in RC4,
Linear Feed-Back Shift Registers as in SNOW or complex
mathematical problems as in ECSC-128.

In this research, we will choose ECSC-128 stream cipher
as a targeted algorithm to apply our multithreaded model
in order to show the mechanism and the effects of our
proposed model as described in Section 4.

3. ECSC-128

ECSC-128 is a stream cipher based on the intractability of
the Elliptic Curve Discrete Logarithm Problem (ECDLP)
[7]. The design of this cipher includes three stages:
Initialization Stage (IS), Keystream Generation Stage
(KGS) and the Encryption Stage (ES) as portrayed in Fig.4.

The algorithm starts by IS stage with two parameters (Pt,l),
where Pt is the plaintext and l is the input key of 128 bit.
The output of this stage is a point P1 on the curve E and
initial value of the key k. The value of P1 is calculated by

embedding l on E with the correct (x, y) coordinates.

The output of IS stage will be the input of the following
KGS stage. This stage forms the core of ECSC-128 and it
is based on multiplying the point P1 by a big integer k in a
process known as Point Multiplication. The idea of
performing this multiplication is to calculate new point on
the curve P2 such that P2 = k P1. The resulted point will be
transformed to its binary representation used in the next
stage ES.
As ECSC-128 reaches its last stage, ES, and as other
stream ciphers, it will perform exclusive-OR operation
between the plaintext bits and the generated keystream bits
from the previous stage, KGS. The size of the keystream is

Fig.2. Sequential and Concurrent Execution Performance Comparison

Fig.3. Stream Cipher Algorithm

Fig.4. Overall Design of ECSC-128

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

230

320-bit. It will be divided into ten sub-keystreams as
shown in Fig.5.

There are two important reasons behind applying our
proposed model on the ECSC-128 stream cipher. Firstly,
ECSC-128 shows its resistance against cryptanalysis
attacks since it is based on the well known complex
problem ECDLP. Secondly and most importantly is the
simplicity of its structure which divides the cipher into
stages. In fact, the simplicity of this structure makes
applying our model easier and more efficient. In the next
section we will discuss our proposed model in detail and
show how it is applied on the chosen cipher.

4. The Proposed Multithreaded Model

Our proposed model is divided into three main phases
(components). The first phase includes the threads creation
and initialization processes where we create threads to
perform tasks related to generating keystreams and
encrypting plaintext. The second phase is the keystream
generation phase, where we generate more than one thread
at the same time (concurrent keystream generation). The
last phase of the multithreaded model is designed to
encrypt the stream of plaintext with the incoming
keystream from the previous phase. The encryption
process will be performed concurrently more than once, as
we will describe later.

4.1 Thread Creation and Initialization Phase

In terms of multithreading techniques proposed in our
model, we will start by creating threads to be associated
with specific tasks in a phase called the Thread Creation
Phase (TCPr). We aim to create two threads to be bind
with each task (total of 4 threads) on a multi-core machine.
The two tasks associated with each of the two threads
among the four threads are the keystream generation and

encryption processes. Fig.6 illustrates the TCPr and its
associated tasks.

In general, applying the first phase of our model to ECSC-
128 is straightforward and thread creation can be simply
added to the initialization stage (IS). Therefore, the IS will
be responsible for generating the initial values of key k,
point P1 on curve E and executing the embedded TCPr
component as shown in Fig.7.

4.2 Keystream Generation Phase

Now we move on to the second phase of our model which
deals with the keystream generation process. The
K_O_T/E_O_T and K_E_T/E_E_T threads in the above
figure refer to the processing fashion while the K_O_T
thread generates a sequence of keystream bits based on the
odd increment of the key k, and E_O_T threads use those
keystream bits to encrypt bits at the odd position of the
plaintext. Meanwhile, K_E_T and E_E_T threads of the
keystream generation and encryption processes work in the
same processing fashion but with even increment of k for
K_E_T and even bit position of the plaintext for E_E_T as
shown in Fig.8.

Fig.5. Encryption Stage of ECSC-128 Fig.6. Thread Creation Process (TCPr)

Fig.7. Applying TCPr component on IS stage of ECSC-128

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

231

The second phase of our model presents high cooperation
between two stream cipher tasks - keystream generation
and Encryption tasks (equivalent to KGS and IS stages in
ECSC-128). The cooperation is based on the Producer-
Consumer fashion that provides the system with some
synchronization between the running threads in order to
ensure successful feeding of bits from the keystream
generator to the encoder. The synchronization between the
KGS and ES stages of ECSC-128 is presented in Fig. 9.

The goal of designing this phase is to generate multiple
keystreams concurrently. Those generated keys are used as
secret keys in the encryption phase. The concurrent
multiple keystream generation process is visualized in
Fig.10.

4.3 Encryption Phase

The encryption phase of our model is designed to encrypt
the given plaintext by applying XOR operation between
the keystream bits and the plaintext bits. The encryption
process is accomplished by dividing the activities into two
parts handled by two threads and synchronized with their
analogue threads in the keystream generator component.
The two threads which control the encryption phase have
an extra job of monitoring keystream bits availability. The

two threads, before performing the encryption process,
will check the available bits of the pre-generated
keystream. If the whole keystream generated in round i
(Ri) is used, the thread is responsible for signaling its
corresponding thread in the keystream generator to
generate a new keystream. The encryption process is
illustrated in Fig.11.

5. Implementation and Performance
Evaluation

As mentioned earlier in this document, the aim of
designing a multithreaded model for stream cipher is to
increase the performance since the current stream ciphers
tend to use intensive calculations for keystream generation
in order to increase the provided security level. Our model
with ECSC-128 was coded in C using MinGW-2.05.
POSIX-2.8.0 (Pthread) library is used to handle thread-
related functions found in the model. For testing purposes
we ran our model (applied on ECSC-128) on a workstation
with Core 2 Duo® 2.13GHz processor and 2GB of RAM.

Single thread execution (sequential) is a one-path
execution whereby the work flow of threads associated
with each core will start the execution at time t0 and finish
at tm. For instance, the time taken to execute KGS and IS
stages of ECSC-128 is 0.09ms and 0.002ms (in one round)

Fig.8. Threads cooperation for keystream generation and
plaintext encryption

Fig.9 Threads Synchronization

Fig.10 Concurrent Keystreams Generation

Fig.11 Synchronized Encryption Phase

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

232

respectively, and the time required during switching is σ =
0.001. Therefore, the work flow of two rounds can be
visualized as appear in Fig.12-A. The total time required
to execute the KGS and ES is computed as the following
(Eq. 1):

1

()
m

m i
i

t R time C σ
=

= +∑

where R is the number of rounds, i is the number of
components to execute in each round, m is the total
number of components in the overall rounds, σ is the
wasted time during switching, and time(Ci) is the time
required to execute each component. In our case, the total
time tm = 2(0.09 + 0.002) + 3(0.001), hence tm = 0.187ms.
In contrast to the single-thread execution, multi-thread
execution provides multiple-paths to accomplish the same
task as shown in Fig.12-B. The total time required to
accomplish the same work flow as discussed above is
divided among multiple cores, resulting in higher
throughput and performance. In this case, tm = 0.09 +
0.002 + 0.001, hence tm = 0.093ms.

The performance of our model can be evaluated by
comparing the encryption rate gained by the traditional
execution of ECSC-128 and the encryption rate gained
after applying the multithreaded model. The encryption
rate of the ECSC-128 stream cipher (single thread) is

27108byte/second (executed on Single-Core machine).
Executing the same cipher on Duo Core 2.13GHz machine
with 2GB RAM has increased the encryption rate
relatively as shown in Fig.13.

The multithreaded model proposed in this paper shows
good results compared to the sequential execution of the
stream cipher. The multi-core architecture provides us
with better performance due to the extra resources (core)
added to machines. Fig.14 evaluates the results gained
from applying our model (on ECSC-128) based on
executing it on two-core machine (machine specification
as given above) compared to the sequential execution.

From another perspective applying the multithreaded
model on a single-core machine has shown some relatively
good results compared to the sequential execution. Fig.15
illustrates different results obtained by executing our
model in different architectures.

After evaluating the performance of the model from
different perspectives, we can conclude that increasing the
number of cores of the machine and multithreading will
enhance the performance of the model. This conclusion
comes from the technical aspect, whereby adding extra

Fig.12 Single and Multiple Path Execution comparison

Fig.13 ECSC-128 Performance Comparison

Fig.14 Performance Evaluation of the Multithreaded Model

(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

233

cores to the machine will provide the running threads with
more resources needed for faster execution.

6. Conclusion

In this paper we present a new multithreaded model for
enhancing the performance of the stream cipher algorithms
(ECSC-128 as a case study). The multithreaded model is
based on generating multiple threads that able to
accomplish the overall works handled by some
synchronization techniques. The model divides the
execution of the stream cipher into three stages: Thread
Creation Phase (TCPr), Keystream Generation Phase and
the Encryption (Encoder) Phase. The implementation and
performance evaluation and analysis show that the model
is reliable and easy to implement. The strength of our
architecture is in the utilization of currently available
technology, whereby the model is implemented on multi-
core technology. The multithreaded model showed great
improvement in performance compared to the single
thread (sequential) model. Lastly, complete descriptions of
the proposed model phases and their implementation have
been discussed in details in the context of this document.

Acknowledgments

The authors would like to express their thanks to
Universiti Sains Malaysia for supporting this study.

References
[1] SunSoft, Multithreaded Programming Guide, CA: Sun

Microsystems, 2002.
[2] Gabb, H., Common Concurrent Programming Errors, 2002,

www.linux-mag.com/content/view/983/2038/1/0/ (accessed
March 2, 2008).

[3] Mollin, R., An Introduction to Cryptography, 2nd Edition,
Edited by Kenneth H. Rosen. Boca Raton: Chapman &
Hall/CRC, 2007.

[4] Stalling, W., Cryptography and network security: principles
and practice. 3rd, New Jersey: Prentice Hall, 2003.

[5] Rivest, R.., The RC4 Encryption Algorithm, RSA Data
Security Inc., Document No, 003-013005-100-000000, 1992.

[6] Ekdahl, P. and Johansson, T., "A New Version of the
Stream Cipher SNOW", In Selected Areas in Cryptography,
Berlin / Heidelberg: Springer, 2003, pp. 47-61.

[7] Suwais, K. and Samsudin, A., "ECSC-128: New Stream
Cipher Based on Elliptic Curve Discrete Logarithm
Problem", First International Conference on Security of
Information and Networks (SIN 2007), Famagusta: Trafford,
2007, pp.13-23.

Khaled M. Suwais received a
B.Sc. degree in Computer Science
from Al al-Bayt University in
2004. He obtained his M.Sc in
Computer Science from Universiti
Sains Malaysia (USM) in 2005.
Since 2006, he has been working
as a research and teaching assistant
at the School of Computer
Sciences, USM. Currently he is a

PhD student at the School of Computer Sciences, USM. His
research interests are in Cryptography and Parallel Computing.

 Azman Samsudin is a lecturer at
the School of Computer Sciences,
Universiti Sains Malaysia. He
received the B.Sc. degree in
Computer Science from the
University of Rochester, USA, in
1989. He obtained his M.Sc. and Ph.D.
degrees in Computer Science from
University of Denver, USA, in 1993
and 1998, respectively. His research
interests are in the field of

Cryptography, Interconnection Switching Networks, and Parallel
Computing.

Fig.15 Performance Evaluation of the Multithreaded Model Applied
on Different Architectures

