
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

234

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Design of the Light Weight Linux O.S on the DOM Memory

 Seung-Ju Jang

Dept. of Computer Engineering, Dongeui Univ.

Summary

Many people are studying the embedded system. The
embedded system becomes a small size device. The DOM
memory is using in the mobile device and small size
devices. This paper designs the light-weighted Linux O.S
that is running onto the DOM flash memory. The
embedded system with the DOM must have a light-
weigthed O.S due to the memory space restriction. This
paper designs a light-weigthed Linux O.S for the DOM
memory. The new designed LILO boot loader boots the
new designed light-weigthed Linux O.S as a normal Linux
O.S. This paper experiments to compare the designed new
light-weigthed Linux O.S with a Linux PC.
Key words:
DOM, Light Weight Linux

Introduction

The DOM(Disk On Module) storage type, which is
using FDM(Flash Disk Module) semiconductor is a
advanced device substution for E-IDE type. The DOM
storage device has no seek error, but previous storage hard
disk has a seek error. The DOM storage device has no
seek error even shaking this device. The DOM storage
device size is smaller than previous storage hard disk. This
device can be used in the small size devices which are
embedded system. The storage device is a kind of flash
memory [1, 12, 13, 14].

The flash memory is an advanced non-volatile storage
memory substution for the pervious hard disk. The recent
flash memory has improved density and I/O performance
for the device. It is available not only as a secondary
device but also as a storage device for a computer system.
The reading performance of flash memory is the same as
that of a D-RAM. The writing performance of the flash
memory is faster than that of the hard disk.

The size of this storage is less than 30%. And the
stability and error rate is more efficient that it is possible
to make a mass storage device. The flash memory doesn’t
need to read data from IO device. The necessary is located
into itself. By these features, the flash memory can be used
as high performance device [1, 9, 10, 11].

This paper suggests that the Linux O.S is available for
DOM(Disk On Module) storage instead of E-IDE. The
suggesting idea of this paper can be applied to a small

embedded system. The developed system environments
are Intel Pentium III 850MHz CPU, 256Mbyte RAM,
RedHat Linux 9.0 - Kernel Version 2.4.28. The primary
Linux O.S is ported for the embedded system in this paper.
The lightweight Linux O.S is running on the DOM
memory. The system can just use DOM memory. The
DOM memory don’t have enough memory, therefore, this
paper makes a lightweight Linux O.S. In order to make a
lightweight Linux O.S, we analyze Linux directory
structure and the role of each directory.

After analyzing directory, the unnecessary directories
are deleted, the necessary directories are inserted, and
make a Linux kernel image. This working is minimum
works to make a small size Linux kernel that is running on
the DOM memory. After making a small size Linux kernel,
kernel image must be copied onto the DOM memory.

Next we should install LILO boot loader on the DOM
memory to make this system as running PC. We
experiment and test a performance of the developed
lightweight Linux O.S running well.

This paper is composed of followings. Section 2 is a
related studies of this paper. Section 3 designs the Linux
O.S and developing contents. Section 4 is an experimental
result. And finally, Section 5 concludes this paper.

2. Related Research

The section shows the related research of this paper.
The embedded Operating System is bootable on the DOM
memory. The embedded O.S is applied into several areas.
The common features of embedded O.S are real time O.S.
Several embedded O.S is being developed for lightweight
and real time feature. The real time system classifies with
hard and soft. In order to execute task within deadline time,
the real time system supports asynchronous signal
processing and preemptive scheduling
[1,2,3,4,5,15,16,17].

The lightweight embedded O.S is needed for the small
size HW device system. Some embedded system has also
low battery consumption algorithm. Moreover, the internal
architecture supports minimal operation for some results.
The commercial products of the embedded O.S are the
followings [6,7,8].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

235

Table 1. Embedded Operating System
Products vendors

 VxWorks, pSoS Wind River
 VRTX Ready Systems
 MicroC/OS-Ⅱ Micrium INC.
 RTLinux FSM Labs
 Windows CE.NET, XP Embedded, Mobile
2003 Microsoft

The embedded O.S that is stored into the secondary

memory is running on the main memory like PC. The
advanced embedded system architecture has a DOM
memory. Therefore, the classic architecture of the
embedded system should be changed. This paper proposes
to overcome this problem.

3. Design of the Lightweight O.S

This section explains the design concept of this paper’s
proposal. The Fig. 1 shows the lightweight Linux O.S
system architecture that is designed in this paper.

Fig. 1 System Architecture of the Lightweight Linux O.S

The Fig. 1 shows Redhat 9.0 O.S system architecture

using DOM memory. The system architecture are divided
into HOST PC and Target. The DOM are installed into
Target system. The connection between HOST and Target
are serial ports with minicom emulator. The design
procedure of the lightweight Linux O.S is the following
subsection.

3.1 Linux kernel directory structure for Lightweight
Linux O.S

The directory structure of the Lightweight Linux O.S is
designed in this section. The below Fig. 2 is directory
structure for the light-weighted Linux O.S.

Fig. 2 Directory structure for Lightweight Linux O.S

Each directory has a role as followings.:

/bin folder – The system related command is stored here.

The boot related command and general command is stored
/bin folder

/boot folder – boot related files are stored boot folder
/dev folder – The device related files are stored /dev

folder
/etc folder – The system environments files and

directories are stored /etc folder
/lib folder – Each libraries are stored /lib folder
/root folder – home directory of the system

administrator
/proc folder – this directory manages processor

information, program information, and HW information.
/sbin folder – modules related environments files are

located this directory
/usr folder – All Linux’s application program and

system files are located this directories

3.2 Design of the Lightweight Kernel

When copying a file to a lightweight Linux kernel
directory, we use “cp –a” Linux command without
changing file permission information.

 The needed library is checked by the ldd command that
makes Linux kernel image easy building. By using ldd
command, we check the needed library for each object,
and then we copy that library to a target O.S directory.
The copyed library is necessary to execute each object.

We make virtual file system to make a lightweight
Linux O.S kernel image. The made virtual file system
becomes new root directory by chroot(1M) command. By
this mechanism, we can handle command and library
easily.

The following is the procedure for making lightweight

Linux O.S kernel image.

(1) making a VFS File System

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

236

(2) copying necessary files or library to the target
directories

(3) compiling necessary source files
(4) making a kernel image

3.2.1 Making VFS(Virtual File System)

The virtual file system makes a lightweight Linux O.S
kernel image easy by copying necessary commands and
libraries to the virtual root directory.

(1) pre-work to make a virtual root file system

Fig. 3 copying procedure for bash object files

Fig. 3 is a copying procedure for bash object files. After

copying object files to the virtual root directory, it copies
library files to the virtual root directory.

A notice point of this case, if the library has a symbolic
link, we must copy this symbolic link, too.

Fig. 4 Copy Procedure of Symbolic Link Library

(2) copy necessary files and library to the target
directories

The necessary files and library are copied to the target
directory. A notice point of this case is that the related
files’ information should not be changed by using “cp –a”
option. In addition, the necessary library files are checked

by ldd command. The copying files from /bin directory are
the following.

awk, basename, bash, cat, chgrp, chmod, chown, cp, cut, date, dd, df,
dmesg, dnsdomainname, doexec, domainname, echo, egrep, env, false,
fgrep, gawk, grep, hostname, igawk, ipcalc, link, ln, login, ls, mkdir,
mknod, mount, mv, netstat, nice, nisdomainname, pgawk, pwd, rm,
rmdir, sed, sh, sleep, sort, stty, su, sync, touch, true, umount, uname,
unlink, usleep, vi, ypdomainname

Fig. 5. Copying Files from /bin

The Fig. 5 shows the copying procedure /bin directory.

Fig. 6 Copying Procedure Screen for /bin Directory Files

The Fig. 6 shows the copying procedure for /bin

directory files.

grub*, System.map-2.6.17-1.2157_FC5, initrd-2.6.17-1.2157_FC5.img,
config-2.6.17-1.2157_FC5, vmlinuz-2.6.17-1.2157_FC5

Fig. 7 Copy Files to the /boot Directory

The Fig. 7 shows the copy files to the /boot directory.

Fig. 8 Copying Procedure to the /boot Directory Files

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

237

The Fig. 8 shows the copy files to the /lib directory.

modules*, security*, tls*, ld-linux.so.2, libacl.so.1, libattr.so.1,
libblkid.so.1, libblkid.so.1.0, libc.so.6, libcom_err.so.2, libcrypt.so.1,
libdevmapper-event.so.1.02, libdl.so.2, libe2p.so.2, libe2p.so.2.3,
libext2fs.so.2, libext2fs.so.2.4, libm.so.6, libnsl.so.1, libnss_files.so.2,
libpam.so.0, libpam_misc.so.0, libpamc.so.0, libpcre.so.0,
libpcre.so.0.0.1, libpthread.so.0, libresolv.so.2

Fig. 9 Copy Files to the /lib Directory

The Fig. 9 shows the copy files to the /sbin directory.

agetty, arp, arping, badblocks, blockdev, consoletype, debugfs, depmod,
dumpe2fs, e2fsck, e2image, e2label, ether-wake, findfs, fsck, fsck.ext2,
fsck.ext3, getkey, grub, grub-install, grub-md5-crypt, grub-terminfo,
grubby, halt, hwclock, ifconfig, ifdown, ifup, init, initlog, insmod,
insmod.static, ip, ipmaddr, iptunnel, killall5, klogd, kudzu, ldconfig,
lsmod, mii-tool, mingetty, mke2fs, mkfs.ext2, mkfs.ext3, modinfo,
modprobe, nameif, netreport, pam_console_apply, pam_tally,
pam_timestamp_check, pidof, plipconfig, poweroff, ppp-watch, reboot,
resize2fs, rmmod, route, runlevel, service, setsysfont, shutdown, slattach,
sulogin, sysctl, syslogd, telinit, tune2fs, unix_chkpwd

Fig. 10 Copy Files to the /sbin Directory

Following above procedure, the lightweight O.S is

made and implemented. After making basic running
environments, we can make a lightweight Linux image.
The making procedure of making kernel image is the
following.

3.2.2 Making 64MByte Linux Kernel Image

We are using dd(1) Linux command to make a
lightweight Linux kernel image. The usage of dd(1)
command is the following.

dd if=/dev/zero of=szips.img bs=1k
count=[size]

The bs option should be 1k and multiply count option

[size] so that we can make 64Mbytes a lightweight Linux
kernel image. The minimized Linux kernel is working
minimum kernel function.

3.2.3 Making File System for Linux Kernel Image

We make ext3 file system and copy the related files
using “ mkfs.ext3 -N 23000” command. This file system

is enable to use Linux files in the lightweight Linux
system. The -N 23000 option indicates inode number in
the Linux file system. The related files should be copied
into ext3 file system by using “cp –a” command. We are
making final lightweight Linux image.The created ext3
file system can be mounted on a certain folder using
“ mount [image name] [mount point] -o loop” command.

We can make a light weight Linux O.S kernel image by
this procedure.

The made light weight Linux O.S kernel image is
loaded into DOM memory.

4. Experiments

We use the “minicom” to experiment a light-weight
Linux operating system environment in which the
experiment is implemented.

4.1 Set the Minicom

We connect a com port of the target system and com1
port of the host system. After that we construct the
environment for an o'clock real communication. We use
the s - option of a minicom order and set the minicom. We
do here the setting up about an o'clock real communication.

The transmission chooses the setup and sets the back of
Serial port which is the third environment. An
initialization screen of the target system is equal to Fig. 11.
if the setting up is completed normally. A minicom setting
up is right to become if this screen appears.

Fig. 11 Screen of connection to the Target System using “minicom”

4.2 Memory Performance Measurement Program
Creation and Test.

The experiment about a light weight Linux operating
system to propose was performed in this paper. The
creation tested the program for a memory performance
measurement besides of the experiment. We used a
performance benchmark program and also experimented a
light weight Linux operating system. A memory

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

238

performance measurement program is equal to a next Fig.
12.

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <sys/types.h>
#include <stdlib.h>
#define BUFSIZE 2048
#define MAX 999999
int main() {
 clock_t start;
 int i, j;
 float diff;
 char testTmp[BUFSIZE], buf[BUFSIZE];
 start = clock();
 for(i=1; i <= MAX; i++) {
 for(j=0; j < BUFSIZE; j++) {
 testTmp[j] = 'a';
 }
 }

 start = clock();
 for(i=1; i <= MAX; i++) {
 for(j=0; j < BUFSIZE; j++) {
 buf[j] = testTmp[j];
 }
 }
 diff = diff + (float)((clock()-start)/((double)1000000));
 printf(" Total %4d th execution %.3f sec \n", MAX, diff);
 return 0;
}

Fig. 12 Test Program for a Light-Weight Linux Operating System
Performance Measurement.

Fig. 12 is a performance measurement test program.
This program puts a fixed value in a buffer space.
Continuously this value is a movement, deletion, and copy.

This task is achieved by 4 for loop statement. Each of
loop statement measures particularly. We base the time
which the recursion measures to carry.

We make 4 for loop statements accomplishing each as
Fig. 12. We experimented the format the cumulative
makes the price and to rescue a processing hour ultimately.

The Fig. 12 is the procedure which gets the result of the
experiment to fill in the program. This program
accomplishes 4 for loop statements each for a performance
measurement. The execution result of this program is
equal to a Fig. 13, Fig. 14. We installed Linux to
accomplish this test program in E-IDE system. We also
installed Linux operating system in DOM memory.

The result of a performance measurement is equal to a
Fig. 13., Fig. 14. in two systems. A Fig. 14 is the result of
a performance measurement in E-IDE system. The result
of a performance measurement came out the 4664 seconds.

Fig. 14. is the result of a performance measurement in
the DOM memory. The result of a performance
measurement came out the 4634 seconds.

Fig. 13 Test Screen on the E-IDE Linux System

Fig. 14 Test Screen on the DOM Memory System

The conclusion of the result of a performance
measurement in Fig. 13, Fig. 14 is as follows. The
performance of DOM memory with light weight O.S is
better than that of the general IDE system. Table 2. shows
the result of a performance measurement. This shows the
result of a performance measurement in a memory E-IDE
system and DOM system.

Table 2 Result of Performance Measurement in Two systems

Experiment methods
E-IDE

(Hard Disk)
DOM(Disk On Module)

Write a data in BUFSIZE 28.850 28.855
Write, copy, delete in

BUFSIZE
115.760 115.750

For loop statements 4664.870 4634.160

A performance measurement program is for the first

time to record simply at BUFSIZE as Table 2. In this case,
we can know the DOM Linux operating system
performance is some bad. The next, when we eliminate,
reproduce, and copy the record data at the buffer, we
know a performance difference among the two systems.

We used four times FOR loop and experimented this
task finally. This is the performance measurement result
which is accomplished in the paper. Existing action of E-
IDE on the Linux operating system is faster in a hardware
than Linux operating system of DOM memory. But, in this
paper, The reason is inside the DOM memory's
performance of the light-weight Linux operating system is
good because the kernel is made as light-weight.

5. Conclusion

This paper proposes the design of a light-weight Linux
operating system. It is that the existing Linux operating
system was modified to the center of an essential module
in the DOM memory. The module of this a light-weight
Linux operating system which is designed in the paper
resides within the DOM memory and is operated to an

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

239

embedded system privately. The proposing light-weight
Linux operating system in the paper has the basic facility
of the kernel such as process, file system, memory, and IO
management.

We accomplish the light-weight commands and the
library task which the user uses as the kernel. After
finishing such design task finished, we construct a
simulated file system. We accomplish a necessary
operating system image setup task for actual system. We
use a “dd” Linux command for a 64KB Linux image setup.
After we go via such course, a light-weight Linux
operating system image generation is finished. We use this
image. We run a light-weight Linux operating system
image which actual DOM is produced within the memory.
We can do the booting course to the DOM memory. The
booting after we install Lilo becomes the finish if it
becomes this task. Here the task can use DOM at general
PC.

To measure the performance of this a light-weight
Linux operating system which proposes in the paper, we
fill in a benchmark program for a performance
measurement. We measured a light-weight Linux
operating system performance which uses the proposing
program. The result of the experiment. DOM memory's
Linux O.S performance is good.

Acknowledgment

This work was supported by Dong-eui University

Grant.(2007AA181)

References

[1] Linux Kernel Programming, ADDISON WESLEY, Beck,

2002.
[2] Korea Embedded Linux Project, http://www.kelp.or.kr
[3] Syed Mansoor Sarwar, "Unix - A Textbook 2nd Edition",

RADDISON WESLEY, Aug. 2004
[4] Daniel P.Bovet, Marco Cesati, "Understanding the LINUX

KERNEL", O'Reilly, 2001.
[5] Preston, W. Curtis, "Unix Backup & Recovery", Oreilly &

Associates Inc, Nov. 1999.
[6] Karim Yaghmour, "Building Embedded Linux Systems",

O'Reilly, 2003.
[7] Skawratananond, Chakarat, "Unix to Linux Porting",

Prentice Hall, Apr. 2006.
[8] W. Richard Stevens, "Advanced Programming in the

UNIX(R) Environment", Addison-Wesley, Jun. 1992.
[9] W. Richard Stevens, "Unix Network Programming: The

Sockets Networking API(Updated)", Addison-Wesley
Professional, Nov. 2003

[10] W. Richard Stevens, "UNIX NETWORK
PROGRAMMING VOLUME 2,2/E", Prentice Hall, Aug.
1998

[11] Maurice J. Bach, "The Design of the UNIX Operating
System", Prentice Hall, Feb. 2000.

[12] Worldwide Embedded Operating Environments Forecast,
2003-2007, IDC #29308,2003,5.

[13] Eric S. Raymond, "Art of UNIX Programming", Addison-
Wesley, Sep. 2003

[14] Syed Mansoor Sarwar, "Unix - A Textbook 2nd Edition",
RADDISON WESLEY, Aug. 2004

[15] Preston, W. Curtis, "Unix Backup & Recovery", Oreilly
& Associates Inc, Nov. 1999.

[16] Worldwide Embedded Operating Environments Forecast,
2003-2007, IDC #29308,2003, 5.

Seung-Ju, Jang received a B.Sc. degree in
Computer Science and Statistics, and M.Sc.
degree, and his Ph.D. in Computer
Engineering, all from Busan National
University, in 1985, 1991, and 1996,
respectively. He is a member of IEEE and
ACM. He has been an associate Professor
in the Department of Computer
Engineering at Dongeui University since
1996. He was a member of

ETRI(Electronic and Telecommunication Research Institute) in
Daejon, Korea, from 1987 to 1996, and developed the National
Administration Multiprocessor Minicomputer during those years.
His current research interests include fault-tolerant computing
systems, distributed systems in the UNIX Operating Systems,
multimedia operating systems, security system, and parallel
algorithms.

