
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

244

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Performance enhancement of Blowfish and CAST-128 algorithms and
Security analysis of improved Blowfish algorithm using Avalanche effect

Krishnamurthy G.N†, Dr. V. Ramaswamy†, Leela G.H† and Ashalatha M.E†

†Bapuji Institute of Engineering and Technology, Davangere-577004, Karnataka, India

Summary:
There has been a tremendous enhancement in the field of
cryptography, which tries to manipulate the plaintext so that it
becomes unreadable, less prone to hacker and crackers, and
again obtain the plaintext back by manipulating this unreadable
text in some way. In this regard, we have modified two secure
algorithms Blowfish [1] and CAST-128 [5] which are secret-
key block ciphers that enhance performance by modifying their
function. We have shown that total time taken for encryption
and decryption is reduced for both the algorithms after the
modification. We have also made an attempt to show that this
improvement will not violate the security when compared to
that of existing Blowfish algorithm. For this purpose we have
used avalanche effect [3] as the basis of security analysis.
Because the change in the total time taken for encryption and
decryption cannot be understood on software implementation,
we have implemented VHDL application to show the
differences in the delay.

Key words:

Plaintext; Ciphertext; Encryption; Decryption; Secret-

key; Feistel-network; Avalanche-effect.

Chapter 1: Performance enhancement of
Blowfish algorithm and its security analysis
using Avalanche effect

1.1 Introduction

Blowfish[1] is a variable-length key[1], 64-bit block
cipher. The algorithm consists of two parts: a key-
expansion part and a data- encryption part. Key
expansion converts a key of at most 448 bits into several
subkey arrays totaling 4168 bytes.

Data encryption occurs via a 16-round Feistel network[3]
as shown in Figure 1.1. Each round consists of a key-
dependent permutation, a key and data-dependent
substitution. All operations are EX-ORs and additions on
32-bit words.

1.2 Subkeys

Blowfish uses a large number of subkeys[3]. These keys
must be precomputed before any data encryption or
decryption.

The key array also called P-array consists of 18 32-bit

subkeys: P1, P2,...,P18.

There are four 32-bit S-boxes with 256 entries each:
 S1,0, S1,1,..., S1,255;
 S2,0, S2,1,..,, S2,255;
 S3,0, S3,1,..., S3,255;
 S4,0, S4,1,..,, S4,255.

 64-bits

 32-bits 32-bits

P 1 32-bits

 32-bits 32-bits

P 2

P 16

P 18 P 17

 32-bits 32-bits

 64-bits

 Fig.1.1 [BlowFish Encryption]

 13 more Iterations

 Plaintext

F

F

F

13 More Iterations

 Ciphertext

Decryption for Blowfish is relatively straightforward.
Ironically, decryption works in the same algorithmic
direction as encryption beginning with the ciphertext as
input. However, as expected, the sub-keys are used in
reverse order.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

245

Since Function F plays an important role in the algorithm,
it was decided to modify function F and determine
whether the modified function F` saves the time.

 Original function F is defined as follows:-

 Divide XL into four eight-bit quarters: a, b, c, and d

F(XL) = ((S1,a + S2,b mod 232) S3,c) + S4,d mod 232

 32 bits

Fig.2. Existing Blowfish Function F

Thus modified Blowfish function F is:-

 F(XL)=(S1,a + S2,b mod 232) (S3,c + S4,d mod 232)

Fig..3. Modified Blowfish Function F

This modification supports the parallel evaluation of
two addition operations (S1,a + S2,b mod 232) and (S3,c +
S4,d mod 232) by using threads. But true parallelism
cannot be achieved on a uniprocessor system. So this

modified function can be best adopted for the hardware
implementation of the algorithm. In the hardware
implementation of the function F requires only two
levels of computation, where as the original function F
requires three levels of computation. The parallel
evaluation which reduces the time has been
experimentally verified using VHDL simulation. As the
algorithm uses 16 iterations, this time is saved 16 times
for every encryption/decryption. This is a considerable
improvement.

Fig. 1.4 Waveform for Existing Blowfish Function F

The above Simulation diagram (Figure 1.4) shows the
time required to execute the Function F of the existing
Blowfish Function as marked by the 2 yellow lines. As
per the result it is taking 55ps - 25ps = 30ps.

Fig. 1.5 Waveform for Modified Blowfish Function F
The Simulation diagram (Figure 1.5) shows the time
required to execute the Function F of the modified
Blowfish Function as marked by the 2 yellow lines. As
per the result it is taking 45ps - 25ps = 20ps.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

246

1.3 Security Analysis:

A change in one bit of the plain text or one bit of the
key should produce a change in many bits of the
ciphertext. This change in number of bits in the cipher
text whenever there is a change in one bit of the plain
text or one bit of key is called Avalanche effect.

A desirable feature of any encryption algorithm is that a
small change in either the plaintext or the key should
produce a significant change in the ciphertext.

If the changes are small, this might provide a way to
reduce the size of the plaintext or key space to be
searched and hence makes the cryptanalysis very easy.

So, in order to say that any cryptographic algorithm is
secure, it should exhibit strong avalanche effect, and this
is the reason why we have considered Avalanche effect
for comparing security of our modified algorithm with
that of original Blowfish algorithm.

1.4 Implementation

We have taken 300 samples each for the original
algorithm and modified algorithm and noted down the
Avalanche effect by changing the plain text by one bit
between the successive samples. The results observed in
security analysis are shown below.

Tabulation of results observed by changing one bit of
plaintext in the successive samples is shown in TABLE I

TABLE I : Comparison of avalanche effect for Original and modified
Blowfish algorithms

Chapter 2: Performance enhancement of
CAST-128 algorithm

2.1 Introduction

CAST-128[3] is a design procedure for symmetric
encryption algorithm developed by Carlisle Adams and
Stafford Tavares. CAST has a classical Feistel network
with 16 rounds. It operates on 64-bit blocks of plaintext
to produce 64-bit blocks of cipher text. The key size
varies from 40-bits to 128-bits in 8-bit increments.

Here, we have tried to improve the existing CAST-128
algorithm by modifying its function(F) by parallel
evaluation of two operations. The parallel execution is
efficient in processing, such that it requires only 66.66%
of the time required for the original function. As the
algorithm uses 16 iterations, this time is saved 16 times
for every encryption /decryption.

CAST-128 employs two sub keys in each round namely
a 32-bit masking sub key (Kmi) and a 5-bit rotate sub
key (Kri). The function F depends on the round. It has
the structure of classical Fiestel network with 16 rounds
of operation. It is a variable-length key, 64-bit block
cipher. The algorithm consists of two parts: a sub key
generation part and a data- encryption part. The
algorithm uses four primitive operations, Addition (+)
and subtraction (-) using modulo 232 arithmetic, Bitwise
ex-OR (^) and Left Circular Rotation (<<<).

2.2 Encryption

CAST-128 is a Feistel network consisting of 16
rounds (Fig. 1.6). The input is a 64-bit data element. The
plaintext is divided into two 32-bit halves: L0 and R0

We use variables Li and Ri to refer to the left and right of
the data after round i is completed. The cipher text is
formed by swapping the output of the sixteenth round, in
other words, the cipher text is a concatenation of R16
and L16.

No. of
samples

No. of
rounds

No. of times
the original
algorithm
gives better
avalanche
effect

No. of times
the modified
algorithm
gives better
avalanche
effect

No. of times
the original
and modified
algorithms
give same
avalanche
effect

100 4 41 55 4
100 8 41 46 13
100 16 41 50 9

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

247

 Fig. 1.6. CAST-128 Original Encryption Scheme.
L0 || R0 = Plaintext
For i = 1 to 16 do

 Li = Ri-1;
 Ri = Li-1 XOR Fi[Ri-1,Kmi,Kri];
 Ciphertext = R16 || L16

The function F includes the use of four 8 * 32 S boxes,
the left circular rotation function, and four functions that
vary depending on the round number. We label these
functions as f1i, f2i, f3i and f4i.

We use I to refer to the intermediate 32-bit value after
the left circular rotation function, and the labels Ia, Ib, Ic
and Id to refer to the 4 bytes of I, where Ia is the most
significant and Id is the least significant byte. With these
conventions function F is defined as shown in TABLE II:

TABLE II: Definition of CAST-128 original function

Rounds
1,4,7,10,13,16

I = ((Kmi + Ri-1) <<< Kri)
F = ((S1[Ia] ^ S2[Ib]) – (S3[Ic]))+ S4[Id]

Rounds
2,5,8,11,14

I = ((Kmi ^ Ri-1) <<< Kri)
F = ((S1[Ia] - S2[Ib]) + (S3[Ic])) ^ S4[Id]

Rounds
3,6,9,12,15

I = ((Kmi - Ri-1) <<< Kri)
F = ((S1[Ia] + S2[Ib]) ^ (S3[Ic]))- S4[Id]

2.3 Substitution Boxes

There are eight 32-bit S-boxes with 256 entries each

S1[0],S1[1],….,S1[255]; S2[0],S2[1],….,S2[255];
S3[0],S3[1],.....,S3[255]; S4[0],S4[1],….,S4[255];
S5[0], S5[1],….,S5[255]; S6[0],S6[1],.....,S6[255];
S7[0],S7[1],.….,S7[255]; S8[0],S8[1],.....,S8[255];

Four of these namely S-box1 through S-box4 are used in
encryption and decryption process. The remaining four
namely S-box5 through S-box8 are used in sub key
generation. Each S-box is an array of 32 columns by 256
rows. The 8-bit input selects a row in the array; the 32-
bit value in that row is the output. All of the S-boxes
contain fixed values.

2.4 Generating the Sub keys

Sub key generation is a complex process. To begin,
label the bytes of the 128- bit key as follows:
x0x1x2x3x4x5x6x7x8x9xAxBxCxDxExF

Here x0 represents the most significant byte and xF
represents the least significant byte.

Also use the following definitions:

• Km1,…..,Km16 Sixteen 32-bit masking sub keys.
• Kr1,…...,Kr16 Sixteen 32-bit rotate sub keys of

which only the least significant 5-bits of each are used.
• z0…….zF Intermediate (temporary) bytes.
• K1……K32 Intermediate (temporary) 32-bit words.

The values K1 through K32 are calculated from the key
using S-boxes 5 through 8.

Then the sub keys are defined by:

 for i =1 to 16 do
 Kmi = Ki;

 Kri = K16+i;

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

248

Fig. 1.7. CAST-128 Original F function.

2.5 Decryption

Decryption for CAST-128[4] is relatively
straightforward. Ironically, decryption works in the same
algorithmic direction as encryption beginning with the
ciphertext as input. However, as expected, the sub-keys
are used in reverse.

2.6 Function F

The function F(Fig. 1.7) is designed to have good
confusion, diffusion and avalanche properties. It uses S-
box substitutions, modulo 232 addition and subtraction,
exclusive OR operations and key dependent rotation. The
strength of the F function is based primarily on the
strength of the S boxes, but further use of arithmetic,
boolean and rotate operations add to its strength.

2.7 Proposed Modification

Without violating the security requirements, the CAST-
128 function F can be modified as shown in TABLE III
below.

TABLE III: Definition of original function

Rounds
1,4,7,10,13,16

I = ((Kmi + Ri-1) <<< Kri)
F` = (S1[Ia] ^ S2[Ib]) – (S3[Ic] + S4[Id])

Rounds
2,5,8,11,14

I = ((Kmi ^ Ri-1) <<< Kri)
F`= (S1[Ia] - S2[Ib]) + (S3[Ic] ^ S4[Id])

Rounds
3,6,9,12,15

I = ((Kmi - Ri-1) <<< Kri)
F`= (S1[Ia] + S2[Ib]) ^ (S3[Ic] - S4[Id])

Fig. 1.8 CAST-128 Modified Encryption Scheme.

This modification (Fig. 1.8) supports the parallel
evaluation of two operations by using threads. The
parallel evaluation reduces the time from two operations
to time required for one operation. As the algorithm uses
16 iterations, this time is saved 16 times for every
encryption/decryption. This is a considerable
improvement. Also, as the security of CAST-128 lies in
the fact that it uses variable key, this modification does
not make the algorithm vulnerable in any way so that
cryptanalysis becomes easy.

 But true parallelism cannot be achieved on a

uniprocessor system. So the effect of the modification
can be seen only in multiprocessor system, with at least
two processors. So this modified function can be best
adopted for the hardware implementation of the
algorithm. In the hardware implementation the modified
function F (Fig. 1.9) requires only two levels of
computation, where as the original function F (Fig. 1.7)
required three levels of computation.

 The above modification does not require any

change to be made in the original algorithm. The original

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

249

algorithm works fine with the modified function for both
encryption as well as decryption.

The same four primitives namely addition,

subtraction, bitwise exclusive OR and left circular
rotation operations are used in the modified function.

 Fig. 1.9. CAST-128 Modified F function.

 The generation of sub keys is done in the same way
as done in the existing CAST-128 Algorithm. i.e., similar
8 S-boxes with 256 entries each are used to generate the
sub keys.

2.8 Sample Waveforms And Results Analysis

Following simulation diagram (Fig. 2.0) shows the time
required to execute the Function F of the existing CAST-
128 function as marked by the 2 yellow lines. It is taking
55ps - 5ps = 50ps

Fig. 2.0. Waveform for CAST-128 Original Function F

Fig. 2.1. Waveform for CAST-128 Modified Function F

Above simulation diagram (Fig. 2.1) for the time
required to execute the modified Function F of the
CAST-128 as marked by the 2 yellow lines. It is taking
45ps - 5ps = 40ps.

The ratio of time taken between CAST-128 with
modified and existing Function=40/50=0.8; Hence we
have 20% improvement in the performance.

Conclusion

The improved modified algorithm has enhanced the
performance over existing blowfish algorithm by
reducing the number of clock cycles required for the
execution of Blowfish function by 33% and hence
reducing the overall execution time of the modified
Blowfish algorithm by 14%. This is explained in detail in
the Appendix along with sample waveforms. We have
demonstrated that change in one bit in the plaintext
produces strong avalanche effect. Hence security of
modified algorithm is at least as strong as the original
algorithm. We are now trying to theoretically prove this
fact. Also we are studying the effects when one bit of the
key is changed.

It is also found that the improved modified algorithm
increases the performance of CAST-128 algorithm by
reducing total time from 1285 ps to 1125 ps. Using
VHDL implementation, it is observed that the reduction

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

250

in time achieved for encryption and decryption is above
12.5 % compared to the existing algorithm.

References

[1] B. Schneier, “Description o f a New Variable-Length Key,
64-Bit Block Cipher (Blowfish)”, Fast Software Encryption,
Cambridge Security Workshop roceedings (December
1993), Springer-Verlag, 1994, pp. 191-204.

[2] B. Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd ed., John Wiley & Sons, 1995.

[3] W. Stallings, Cryptography and Network Security:
Principles and Practices, 2nd ed., Prentice Hall, 1999.

[4] Kishnamurthy G.N, Dr.V.Ramaswamy and Mrs.
Leela.G.H “Performance Enhancement of Blowfish
algorithm by modifying its function” Proceedings of
International Conference on Computers, Information,
System Sciences and Engineering 2006, University of
Bridgeport, Bridgeport, CT, USA. pp. 240-244

[5] Adams, C. The CAST-128 Encryption Algorithm. RFC
2144, May 1997.

[6] Anne Canteaut(Editor) “Ongoing Research Areas in
Symmetric Cryptography” ECRYPT, 2006.

[7] Dr.V.Ramaswamy, Kishnamurthy.G.N, Mrs. Leela.G.H,
Ashalatha M.E, “Performance enhancement of CAST –128
Algorithm by modifying its function” Proceedings of
International Conference on Computers, Information,
System Sciences and Engineering 2007, University of
Bridgeport, Bridgeport, CT, USA.

[8] Lausanne, Statistical Cryptanalysis of Block Ciphers,
Doctoral Thesis, EPFL, 2005.

[9] Orr Dunkelman, Techniques for Cryptanalysis of Block
Ciphers, Doctoral Thesis, Haifa, 2006

[10] L. Knudsen, "Block Ciphers: A Survey", State of the Art
in Applied Cryptography: Course on Computer Security
and Industrial Cryptography (Lecture Notes in Computer
Science no. 1528), Springer-Verlag, pp. 18-48, 1998.

Krishnamurthy G N
received the B.E. degree in
Electronics & Communication
Engineering from Kuvempu
University in 1996 and
M.Tech. degree in Computer
Science & Engineering from
Visveswaraya technological
University in 2000. He has

registered for his Ph.D and has published papers in national and
international conference, journals in the area of Cryptography.
After working as a lecturer (from 1997) he has been promoted
to Assistant Professor (from 2005), in the Department of
Information Science & Engineering, Bapuji Institute of
Engineering & Technology, Davangere, affiliated to
Visveswaraya Technological University, Bel;gaum. His area of
interest includes Design and analysis of Block ciphers, He is a
life member of ISTE, India.

Dr. V Ramaswamy Aobtained
his Ph.D degree from Madras
University, in 1982, He is working
as Professor and Head in the
Department of Information Science
and Engineering. He has more the 25
years of teaching experience
including his four yers of service in
Malaysia. He is guiding many

research scholars and has published many papers in national
and international conference and in many international journals.
He has visited many universities in USA and Malaysia.

Leela G.H. received the B.E.
degree in Electronics &
Communication Engineering from
Kuvempu University in 1994 and
M.E. degree in Digital Electronics
from Karnataka University in 1998.
After working as a lecturer (from
1994) she has been a Assistant
Professor (from 2007), in the
Department of Electronics &
Communication Engineering,

Bapuji Institute of Engineering & Technology, Davangere,
affiliated to Visveswaraya Technological University, Bel;gaum.
Her area of interest includes VLSI Design, FPGA Design and
Cryptography. She is a member of ISTE, India.

M.E.Ashalatha received the B.E.
degree in Electronics & Communication
Engineering from Mysore University in
1987 and M.Tech degree in Industrial
Electronics from Mysore University in
1990. After working as a lecturer (from
1990) and as Assistant Professor (from
1995), she has been a Professor (from
2007) in the Department of Electronics
& Communication Engineering, Bapuji
Institute of Engineering & Technology,
Davangere, affiliated to Visveswaraya

Technological University, Bel;gaum. Her area of interest
includes VLSI Design, Cryptography and Embedded System
Design. She is a member of ISTE and IE, India.

