
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

251

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Simulator for evaluating Reliability of Reusable Components in a
Domain Interconnection Network

P.K. Suri1 and Neeraj Garg2
1 Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra

(Haryana) India,
2 Asst. Professor & Head, Department of Masters in Computer Science & Applications , Maharaja Agresen

Institute of Management & Technology , Jagadhri(Haryana), India

Summary
This paper analysis the various domains of a
Interconnection network systems and the different
reusable components that are available for these
Domains. The detailed sub-domain analysis is done and
the Reliability is calculated for each sub-domain of a
domain for each component A number of components are
available for a particular domain for black-box reuse. A
Simulator uses the parameters of the available
components for black box reuse. In Phase-I and only that
component qualifies which can meet the requirements of a
particular domain. In the Phase-II the simulator checks
the reliability of the qualified components by simulating
the actual environment , system , user and other factors
where the components will be used. The reliability of the
system is calculated which incorporating the effects of
every sub-domain of each qualified component. The
component with the highest reliability qualifies to be
reused in the system.

Key words:
Software Reusability-Domain Analysis –Sub-domains-
Operational Profiles of component-Domain Interconnection
Network – System Reliability of – Simulation

1. Introduction

1.1 Domain Oriented reusability

Domain-oriented reusability is a process of identifying the
reusable abstractions in a problem. Domain analysis and
modeling deal with identifying reusable abstractions and
architectures for the development
We have taken a domain-oriented approach frequently
reusable abstractions are identified for the application
domain of a software. Specific domain roles are identified,
reuse guidelines are used for the domain analysis, and a
rule-based approach taken for the domain representation.
The domains are related by virtue of specifications from
abstract domains being refinable to specifications (or

programs) in domains of lower level of abstractions. This
implicitly establishes a domain interconnection network
(an example of which can be found in Figure1) with
specific application domains at the most abstract level,
generic application domains, computer science domains,
and execution model domains at intermediate levels of
decreasing abstraction, and target execution languages at
the lowest level(s) of abstraction. [10]

In this research, we have tried to identify the reusable
component who will give the maximum reliability to the
system . In our approach to domain analysis, we have
identified the following:

• Support for frequently reusable abstractions.

• A specific set of domain roles.

Specific
Application

Domains

Generic
Application

Domains

Computer
Science
Domains

Execution
Model

Domains

Programming
Language
Domains

Electronic
Funds

Transfer

Punch
Press

Control

Fighter
Aircraft

Navigation

Money
Manageme

nt

Real
Time

Control

Global
Navigation

Data
Structures

Parrallelis
m/

Distributio

Control
Flow

Procedural

Logical

Functional

C++

Prolog

Ada

Fig.1 A Domain Interconnection Network[10]

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

252

• Practical and objective reuse guidelines to
represent the application domain knowledge and
language knowledge, and to provide reuse
analysis and advice.

• A rule-based approach for the domain
representation.

• Methods for assessing components for reuse
which provide the maximum reliability to the
system.

The domain knowledge in the network can be heavily
reused in the construction process of many different
software systems, and can consequently be well tested.
Most of the errors that originally might have been
compiled in the domain knowledge are eliminated over
time. This contributes to higher reliability of newly
constructed systems reusing these domains, as well as to
systems already constructed with the possibly erroneous
domain knowledge via maintaining them. Similar to
hardware, software performance is significantly dependent
on the environment in which it operates. With hardware,
the environment physically changes a piece of equipment.
this physical change is mainly responsible for faulty
behavior. A software system doesn’t change, but can still
fail due to the inputs it receives from the external
environment.

1.2 Operational Profiles

A reliability of a software-based product depends on how
the computer and the external elements will use it[1]. The
operational profile , a quantitative characterization of how
the software will be used , is therefore essential in any
Software reliability Engineering application.
Since most designers try to reuse software as much as
possible but the process of searching for the reusable
software costs money, use the operational profile to select
operations where looking for the opportunities for the
reuse will be most cost effective [2]

We generally practice Domain Engineering for the
development of components that will be used in a number
of different systems . The process for the developing
operational profile for such components is the same as that
used for the other systems .A need for greater breadth of
analysis to understand all the different ways that such
components may be used is required. [3]

An operational profile is a complete set of operations with
probabilities of occurrence . Probability of occurrence
refers to probability among all invocations of all
operations . [Musa,04] For example , a probability of

occurrences of 0.15 for an operation ‘x’ means that 15 of
every 100 invocations of operations will be ‘x’
A profile is a set of independent possibilities called
elements ,and their associates probability of occurrence . If
operation P occurs 55 percent of time , Q occurs 40
percent , and R occurs 15 percent , the profile is
(P,0.55…Q,0.4…R,0.15).

Operation profile of a software reflects how it will be used
in practice . It consists of a specification of classes a of
input and the probability of their occurrence . [12]

Developing an operational profile for the system involves ;
finding the customer profile, establish the user profile,
define the system mode profile and finally to determine
the functional profile and operational profile itself. The
process for developing the operational profiles is as shown
in figure- 2

Figure 2. Operational profile Development [2]

Operational profiles can be developed by the following
steps[3]

1. Identify initiators of Operations
2. Create Operation List
3. Review operation list
4. Determine occurrence rates
5. Determine occurrence probabilities

A customer profile consists of an array of independent
customer types. A customer type is one or more customers
in a group that intend to use the system in a relatively
similar manner, and in a substantially different manner
from other customer types. Each of these types of
customers may be expected to utilize the software in a
substantially different way. The customer profile is the list
of customer types and associated probabilities. These
probabilities are simply the proportion of time that each
customer would be using the system

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

253

A system users may be different from the customers of a
software product. A user profile is the set of user types
and their associated probabilities of using the system.
A system mode is way that a system can operate. The
system includes both hardware and software . Most
systems have more than one mode of operation. For
example , system testing may take place in batch mode or
user-interactive mode. An airplane consists of takeoff and
ascent mode, level flight mode and descent and land mode.
System modes can be thought of as independent segments
of a system operation or various different ways of using a
system

Functions are essentially tasks that an external entity such
as a user can perform with the system . For instance, the
user , of an e-mail system would want the following
functions : create message, look up address, send
message ,open message , etc. A functional profile can be
explicit or implicit , depending upon the key input
variables which is an external parameter which affects the
execution path of a software system. These key parameters
variables consists of ranges called levels of variables that
cause different operations to be performed . A profile is
explicit if each element is designated by simultaneously
specifying levels of all key input variables needed for its
identification.

For example , there are two independent parameters X and
Y , each taking on three discrete values . Nine operators
can be defined based on combinations of variables as
shown in table below

Table 1: Implicit Operational Profiles

Key Input
Variable

Occurrence
Probability

Key Input
Variable

Occurrence
Probability

X1 0.5 Y1 0.6
X2 0.4 Y2 0.3
X3 0.1 Y3 0.1

Table 2: Explicit Operational Profiles

Key Input Variables
values

Occurrence Probabilities

X1Y1 0.30
X2Y1 0.24
X1Y2 0.15
X3Y1 0.06
X1Y3 0.05
X2Y2 0.12
X2Y3 0.04
X3Y2 0.03
X3Y3 0.01

For five variables with five levels, assuming complete
independence, the implicit profile requires only 25
elements whereas the explicit profile would call for 55, or
3125 elements.[4]

Generating a functional profile .
Development of functional profile generally involves the
following four steps :

1. Generate an initial function list.
2. Determine environment variables
3. Create final function list.
4. Assign occurrence probabilities

The initial function list should be comprised of features
and capabilities needed by the users . The next step is to
define the environmental inputs (this can be provided as
random values by the Simulator) variables and their value
ranges that segregate development.

The next step is to define the environmental input
variables and their value ranges that segregate
development. Environmental variables characterize the
conditions that influence the paths traversed by a program ,
but do not correspond directly to features. Examples of
environmental variables include hardware configuration
and traffic load.

The final numbers of functions in the list are calculated as
the product of the number of functions in the initial list ad
the number of environmental variable levels, minus the
combinations of initial functions and environmental
variables values that do not occur. The final function list
consists of the functions and environmental variables for
each function.

The final step in functional profile development is
assigned of occurrence probabilities . These measurement
may be obtained from the system logs and data storage
devices . Occurrence probabilities computed with the
historical data should- be updated to account for new
functions , users , or environments

2. Occurrence Probabilities of Domains and
Sub-Domains

Figure no . -- shows the elements involved in determining
operational profiles from the functions. After each input
variable is portioned into ranges , probabilities associated
with each domain and sub-domain must be identified. A
interaction matrix is created where input variables are
plotted against other key input variables. The matrix
reveals the combinations of variables that do not occur or
contain dependencies. The remainder of matrix contain

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

254

independent combinations where the estimates of
occurrence probabilities are the product of individual input
variable probabilities.

Figure3 Operational profile Development[2]

2.1 Operational Profile Mapping

A component developer provides a data sheet giving a set
of sub-domains, and two mappings of an input profile. A
profile is assumed to be expressed as a weighting over the
sub-domains. Let the sub-domains Si partition the
component input domain

D = S1 U S2 U ::: U Sn.

A profile W is then a vector of weights to be assigned to
each Si:

W =< h1; h2; :::; hn > :

2.2 Reliability mapping

Carries a profile vector to a real value R є [0; 1], the
probability that the component will not fail on an input
drawn according to this profile. Failure rates fi are
measured within each sub-domain using random testing.
Then reliability R of a domain is given by the equation
 n
R = ∑(1- hifi)
 I=1

3. Profile-transformation mapping

Carries an input profile vector to an output profile, the
latter expressed as a weighting vector over an arbitrary set
of sub-domains U1; U2; :::; Um (unrelated to the sub-
domains on the data sheet). The weightings of the output
profile

Q =< k1; k2; :::; km >

on these sub-domains is the sum of the contributions from
each input sub-domain,
 n
kj = ∑ hi |{z є Si | c(z) є Ui }| / |Si|
 i=1

where c is the function computed by the component. The
information on the data sheet and the ability to execute the
component to calculate c, are sufficient to estimate the ki
given Ui, by making a random selection from each Si. [5]
The profile-transformation describes how a profile is
altered across a component, and the reliability mapping
gives a component’s independent contribution to the
system reliability.

3.1 System Design and Reliability

The example of a system design and reliability calculation
using two Domains A and B in sequence will illustrate
our ideas.

Components available for black box reuse are for domain
A . The available component are Xa, Ya, Za , La, Ma.

 Inputs Outputs

Fig.4 A typical Component

Fig.5 System and its sub-domains

4. Assumptions

1. The components must be functional, that is,
must not communicate through global state.

2. A is given the system input, and invokes B,
passing its output as B’s input; B’s output is the
system output. A must invoke rather than use B,
in the sense of Parnas [6. The system developer

Component

 System
Invokes

Domain

B

Domain

A

Run Category
(Subdomain)

Run Type
(Input State)

Input Space

Function
Operation
(Domain)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

255

has a profile vector for the system, and the data
sheets for A and B.

3. The domain analyzer and improver must know
the attributes to be generalized within that
domain so that it enhances reusability of that
abstraction. For example, if a component of a
dynamic abstract data structure is to be
generalized then the system should check for
generic abstraction.

4. It is necessary to provide advice on structural
information on existing abstractions and on
newly required abstractions. For example, it is
not always clear how to select the most suitable
abstract data structure for a specific application,
and how to hide representation details.

5. It is always difficult for the reuser to understand
how a particular abstraction can be reused and
what are the possible applications. For example,
it is not always clear to component reusers what
are the possible applications of a selected
abstraction. Therefore, the domain analyzer must
know to advise on how to reuse and what are the
possible applications of an abstraction.

6. The domain system should analyze and assess
components against reuse guidelines that are
represented and should report the percentage of
matching guidelines, so that the designer is aware
of his component's potential for reuse. Also it
should provide suggestions on how that
abstraction can be improved for reuse
automatically. Assessment reports can be
produced based on the grading system introduced
earlier, a component is weakly/ limitedly/
strongly/ immediately reusable.

5. System Reliability

Software Reliability is the probability of failure-free
operation of a program for a specified time under a
specified set of operating conditions[flakes – Foundational
Issues in software Reuse and Reliability]
Software often fails when the when it is given input and
used in operating environments not foreseen by the
software developers . Domain Engineering and reuse
design address this problem by trying to predict the
various users to which the software will be put . This is
sometimes k known as the oracle hypothesis.
A key difference between software and hardware
Reliability is that software does not deteriorate or
physically change in any other way . The typical hardware
notion of components “wearing out “ does not apply to
software .
The software reliability modeling is based on some other
source of randomness in the failure times. The most

fruitful understanding of the sources of randomness in
software seems to be that some inputs will produce correct
outputs and others will produce incorrect Outputs
(failures), and the unpredictability of the next input means
that a model based on random input sequences may be
best one can do
 Using the system profile (which is input to A), A’s
reliability mapping can be used to calculate RA, the
reliability of A alone. (The sub-domains of the system are
projected onto the sub-domains of A’s data sheet.) A’s
profile-transformation mapping can be used with the sub-
domains from B’s data sheet as the Ui, to calculate the
profile B will see. Then B’s reliability mapping can be
used to calculate reliability RB for B alone. The system
reliability is finally calculated as RARB.

6. Simulator

The guidelines discussed in this paper have been partially
or completely automated in our system for which a
prototype has been developed as shown in Figure 3 & 4.
For most of these guidelines, Simulation depends on some
user interactions and domain knowledge.

6.1 Simulator -Phase I

In Phase-I Simulator analysis the components on the basis
of inputs from Environment , Hardware System on which
the component is going to run and the other factors which
vary from time to time; in comparison with the parameters
of the component . The output is the component which
qualifies for Reuse .

Qualification of a component for Reuse assessment

Two measures of software quality that qualify for a data
sheet are
(1) that the component has been proved correct, or
(2) that it has been randomly tested using an accurate user
profile. Both of these require a formal specification of
what the component is supposed to do (the part of the data
sheet that we do not consider).

Fig :6 Simulator – Phase I – Qualifying Components

Simulator
Phase I

Other
Factors

Hardware
System

Input
Component

Environ-
ment

Intermediate
Outputs

Qualifying
Modules

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

256

A statement that the component has been proved correct is
a guarantee that it will perform according to its
specification. A statement that (say) its reliability is better
than 1 _ 10_4 per execution with an upper confidence
bound of 99%, is a statistical assertion that there is no
more
than 1 chance in 100 that it will not perform according to
the specification in 10,000 trials. Correctness proofs (1)
can be thought of as the special case of a profile-
independent reliability
of 1.0, with 100% confidence. The reader of a data sheet
might doubt that the developer has actually established
such precise technical claims. But this is a question that
can be answered scientifically, and if the developer has
lied there are legal remedies. When the quality information
on a component’s data sheet is statistical, it must be
obtained by random testing. The fundamental problem of
assessing component quality is that any standard profile
from which test inputs are drawn will not match the
profile that the component will experience when placed in
a system. We solve the profile problem with data-sheet
mappings based on a sub-domain decomposition of the
component input domain. A system designer can use these
maps to predict the system reliability before
implementation.

6.2 Simulator -Phase II

In Phase-II , the Simulator does the detailed reliability
testing of the qualified components . The reliability of
each domain and sub-domains are calculated for every
component and then the system reliability is calculated.
The component which gives the highest reliability to the
system in a Domain Interconnection Network is selected
for reuse in that system.

Fig :7 Simulator – Phase II – Selected Components with highest System
Reliability

6.3 Algorithms

Phase I

Read the parameters of the available components

IF the parameters meet the domain requirements up to
95% THEN

Accept the component (qualifies) for the Phase II

ELSE Reject the component .

Phase II

For Independent Domain :

IF abstract structure is reliable AND

all reliability R of the sub-domain Analysis is greatest
THEN

Component should be implemented as a generic package
with the element type as a generic parameter; End if;

For Domain Interconnection Network

Domain A ------ Domain B

IF abstract structure is reliable AND

all reliability R of the sub-domain Analysis is greatest
AND

IF in the Interconnection Network the output Profile of
component is Greater than the output profile of other
components THEN

Component should be implemented as a generic package
with the element type as a generic parameter; End IF.

Calculations and Observations From the Simulator

Case: The system has two domains A and B.A invokes B .
Xa , Ya, Za, La, Ma are reusable components available for
black box reuse . The respective failure rates in each sub-
domain for each component is available.

 Table 3: Specifications of Domain A

Domain A
Sub domain

Operational Profile

hi
A1 0.3
A2 0.1
A3 0.6

 Total 1

Simulator
Phase II

System
parameters

Operational
Profiles

Qualified
Component
Parameters

Domain
Knowledge

Final
Reliable
Output

Modules

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

257

Simulator Phase-I

Table 4: Results of Phase I of Simulator
Component Percentage

Applicability
Decision

Xa 98% Qualifies
Ya 99% Qualifies
Za 97% Qualifies
La 93% Not Qualified
Ma 94% Not Qualified

Simulator Phase II

Table 5: Reliability of component X

Component Xa
Sub domain hi fi 1-fi hi(1-fi)

Xa1 0.3 0.01 0.99 0.297
Xa2 0.1 0.009 0.991 0.0991
Xa3 0.6 0.001 0.999 0.5994

 1 0.9955
Reliability of component Xa=0.9964

Table 6: Reliability of component Ya

Component Ya
Subdomain hi fi 1-fi hi(1-fi)

Ya1 0.3 0.01 0.99 0.297
Ya2 0.1 0.02 0.98 0.098
Ya3 0.6 0.003 0.997 0.5982

 1 0.9932
Reliability of component Ya=0.9932

Table 7: Reliability of component Za

Component Za
Subdomain Hi fi 1-fi hi(1-fi)

Za1 0.3 0.07 0.93 0.279
Za2 0.1 0.008 0.992 0.0992
Za3 0.6 0.005 0.995 0.597

 1 0.9752
Reliability of component Za=0.9964

Calculated Reliability of B as it sees from Xa

Table 8: Invocations of Domain B from Xa

Subdomain From Xa1 From Xa2 FromXa3 Fi

B1 0 0 0 0.1

B2 0.003 1 0.002 0

B3 0.147 0 0.162 0.0

B4 0.85 0 0.836 0.02

Table 9 :Calculation of K from Xa

Xa

 h1
From
Xa h2

From
Xa2 H3

From
Xa3 K

K1 0.3 0 0.1 0 0.6 0 0

K2 0.3 0.003 0.1 1 0.6 0.002 0.1021

K3 0.3 0.147 0.1 0 0.6 0.162 0.1413

K4 0.3 0.85 0.1 0 0.6 0.836 0.7566

K1= 0.3(0)+0.1(0)+0.6(0)= 0
K2= 0.3(0.003)+0.1(1.0)+0.6(0.002)= 0.102
K3= 0.3(0.147)+0.1(0)+0.6(0.162)= 0.141
K4= 0.3(0.850)+0.1(0)+0.6(0.836)= 0.757
So the Profile B sees from A is <0,0.102,0.141,0.757> and
B’s Reliability is

Table 10 : Reliability of B from Xa

Subdomain K K-Value Fi of B 1-FiB K1*FiB
B1 K1 0 0.1 0.9 0
B2 K2 0.22 0 1 0.22
B3 K3 0.156 0 1 0.156
B4 K4 0.624 0.02 0.98 0.61152

 Rb 0.98752

Calculated Reliability of B as it sees from Ya

Table 11: Invocations of Domain B from Ya
Subdomain From Xa1 From Xa2 FromXa3 fi

B1 0 0 0 0.1

B2 0.01 1 0.009 0

B3 0.156 0 0.19 0.0

B4 0.834 0 0.801 0.02

Table 12 : Calculation of K from Ya

Ya

 h1
From
Ya1 h2

From
Ya2 h3

From
Ya3 K

K1 0.3 0 0.1 0 0.6 0 0

K2 0.3 0.01 0.1 1 0.6 0.009 0.1084

K3 0.3 0.156 0.1 0 0.6 0.19 0.1608

K4 0.3 0.834 0.1 0 0.6 0.801 0.7308

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

258

Table 13: Reliability of B from Ya

Subdomain K K-Value Fi of B 1-FiB K1*FiB

B1 K1 0 0.1 0.9 0

B2 K2 0.1084 0 1 0.1084

B3 K3 0.1608 0 1 0.1608

B4 K4 0.7308 0.02 0.98 0.716184
 0.985384

Calculated Reliability of B as it sees from Za

Table 14: Invocations of Domain B from Za
Subdomain From Za1 From Za2 FromZa3 fi

B1 0 0 0 0.1

B2 0.2 1 0.1 0

B3 0.12 0 0.2 0.0

B4 0.68 0 0.7 0.02

Table15 : Calculations of K from Za

Za

 h1
From
Za1 h2

From
Za2 H3

From
Za3 K

K1 0.3 0 0.1 0 0.6 0 0

K2 0.3 0.2 0.1 1 0.6 0.1 0.22

K3 0.3 0.12 0.1 0 0.6 0.2 0.156

K4 0.3 0.68 0.1 0 0.6 0.7 0.624

Table17 : Reliability of B as it sees from Za

7. System Reliability

System Reliability
Reliability using Xa= RY+Xa* RBXa= 0.9804281

Reliability using Ya= RYa* RBYa= 0.9786834

Reliability using Xa= Rxa* RBZa= 0.9630295

Result : Reusable component Xa will give maximum
system reliability

8. Discussions and conclusions

In the example the system reliability was calculated by
simulating the inputs from three available components Xa,
Ya and Za. The maximum reliability was observes when
Xa was used.

The independent reliability may be different for each
component if used separately but the effect on the system
may vary depending upon th e operational profiles and the
reliability of a particular sub-domain. The decision for the
selection of a Component is thus based on the combination
of both Domains A and B whose sub-domains are also
referred to.

One reason most software engineers think reused software
should be more reliable is that more frequent use should
reveal any faults in the product. Instead , we may take it as
an axiomatic that more frequent use of a software product
increases the likelihood that any failure modes that may
exist in the product will be uncovered and, sometimes ,be
repaired . This is a standard reliability
the guiding principles of the open source community. To
apply this argument sensibly to reused software , however ,
requires that we divide the reused software ‘s failure
modes into two classes : those pertaining to functionality
of software and those connected with the incidental work
that has to go on for the software to be reused.[15]
There have been attempts to improve software reliability
by using OR configurations of components that are
identical in function but developed by different
organizations. (Black Box Reuse)

Reference:

[1] Musa ,John D; Iannino, A.; Okumoto, K; “Software

Reliability Measurement “, Prediction , Application ,
McGraw Hill,1987

[2] Musa,J.D., “Operational Profiles in Software Reliability
Engineering ,” IEEE Software Magazine, March 1993.

[3] Musa ,John D;” Software Reliability Engineering’, Tata
McGraw-Hill , 2005.

[4] Operational Profiles, www.cs.colostste.edu
[5] Hamlet Dick; Mason Dave; Woit Denise ; “ Theory of

Software Reliability Based on Component”.
[6] David Pranas, on a ‘buzzword’: hierarchical structure, Proc.

IFIP Congress ’74, North Holland 1974.
[7] Denise Woit and Dave Mason , Software Component

Independence , Proc. 3rd IEEE High- Assurance Systems
Engineering Symposium 1998.

[8]Hamlet Dick; “ Software Component dependability , a
Subdomain based Theory , Technical Report RSTR-96-999-
01, Reliable Software Technologies , Sterling, VA, 1996

[9] Denise Woit and Dave Mason , Software system reliability
from component Reliability, Proc. Of 1998 Workshop on
software Reliability Engineering (SRE’98) , July 1998.

Subdomain K K-Value Fi of B 1-FiB K1*FiB

B1 K1 0 0.1 0.9 0

B2 K2 0.22 0 1 0.22

B3 K3 0.156 0 1 0.156

B4 K4 0.624 0.02 0.98 0.61152
 0.98752

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

259

[10] Pidgeon W. Christopher, ‘Organizing and Enabling Domain
Engineering to Facilitate Software Maintenance’

[11] Jacobson Ivar, Griss Martin , Jonsson Patrik ; ‘Software
Reuse – Architecture , Process and Organization for Business
Success’, Pearson Education ,2004

[12] Somerville Ian, ‘Software Engineering ‘, 6th edition ,
Pearson Education ,2001

[13] Suri PK, Aggarwal KK , Software Reliablity of
Programs with Network Structure. Microelectron
reliab Vol 21 ,1981.

[14] Pressman S. Roger ,’ Software Engineering – A
practitioner’s Approach’, McGraw-Hill International
Edition, Computer Science Series, 2001.

[15] Ramchandran M., Sommerville I. ‘Software Reuse
Guidelines.

P.K. Suri received his Ph.D.degree
from Faculty Of Engineering
Kurukshetra University, Kurukshetra,
India and Master’s degree from
Indian Institute of Technology,
Roorkee (formerly known as
Roorkee University), India. He is
working as Professor in the
Department of Computer Science &
Applications, Kurukshetra
University, Kurukshetra - 136119

(Haryana), India since Oct. 1993. He has earlier worked as
Reader, Computer Sc. & Applications, at Bhopal University,
Bhopal from 1985-90. He has supervised five Ph.D.’s in
Computer Science and thirteen students are working under his
supervision. He has more than 100 publications in International /
National Journals and Conferences. He is receipient of ‘’THE
GEORGE OOMAN MEMORIAL PRIZE’ for the year 1991-
92 and a RESEARCH AWAWD – “The Certificate of Merit-
2000” for the paper entitles ESMD- An Expert System for
Medical Diagnosis from the Institution of Engineers, India. His
Teaching and Research include Simulation and Modeling, SQA,
Software Reliability , Software Testing & Software Engineering
Process, Temporal Databases , Ad Hoc Networks , Grid
Computing , and Biomechanics.

Neeraj Garg received his B.E.
Degree and Masters in Computer
Science and Applications (MCA)
Panajb University , Chandigarh and
Kurukshetra University, Kurukshetra
in the year 1992 and 2001
respectively. Presently he is Head of
the Department of MCA department
at Maharaja Agresen Institute of
Management and Technology ,

Jagadhri, Haryana, India . He had also worked with various
organizations including C-DOT where he had carried out
research work in SS#7 Protocol of Telephone Networks. He is
co- editor of MAIMT- Journal of IT and Management. His
research areas include Simulation and Modeling, Software
engineering , System Programming and Networks.

