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Summary 
 The current study presents the hard implementation of a learning 
Vector Quantization (LVQ) neural network. Starting from the 
spectral EEG analysis, we suggest an LVQ serial on-line 
architecture implementation on a Field programmable Gate Array 
(FPGA) circuit. Our concern was mainly to get a light, 
easy-to-wear system for the classification of vigilance levels in 
humans using EEG signals. The results of these classified states 
by LVQ mode are presented in this paper. Furthermore, the 
highly-satisfactory performances of our implementation in terms 
of area speed and delay are described. 
Keywords: LVQ neural network, on-line arithmetics, FPGA, 
EEG and vigilance. 
 
1. Introduction 
Our study is aimed at developing an embedded system able 
to detect hypovigilance from a single EEG derivation. The 
developed system is to be used in an ambulatory manner 
with real-time computation. The approach proposed in this 
paper has two parts. The first part is focused on the 
classification of the states of the awakening-sleep transition 
by using the topological properties of self-organizing maps. 
This connectionist unsupervised approach will be 
summarized in this paper and is fully described in [1]. The 
second part deals with the implementation of an LVQ 
neural network on an FPGA programmable circuit for a 
future exploitation in an embedded system. 
As for the first part, many investigations have led to the 
development of neural network-based systems to assess 
vigilance levels using electroencephalogram (EEG) signals 
[2, 3, 4 and 5]. All these systems ensure the vigilance 
quantification more or less successfully with a monitoring 
analysis capability. In [2], T.P Jung and colleagues 
suggested a method based on the spectral component 
analysis and a multilayer neural network, where 10 subjects 
were studied over epochs of 1.29 s. The aim was to study 
on the one hand the correlation between  the EEG signal 
spectrum and the vigilance level quantified by an auditory 
test, and on the other hand, the automatic classification of 

vigilance states from the spectrum of the same EEG signal 
performed by a neural network. 
In [4], a Radial Basis Function (RBF) neural network made 
it possible to classify the vigilance levels in 12 healthy 
subjects from five-second EEG portions. The considered 
parameters are the coefficients of an autoregressive model 
(AR). Kohonen Self-organizing maps were used to make 
the cartography of the awakening-sleep transition over 
EEG epochs of 1.28 s while taking into account the 
artifacts [5]. 
In a study considered as the most recent and complete one, 
Vuckovic [3] exploited three different models of neural 
networks; a feed-forward multilayer network using a 
supervised training with the Levenberg-Marquardt (LM) 
algorithm, a linear neural network with supervised training 
using the Widrow-Hoff rule and an LVQ.  These three 
algorithms were used to separate only two physiological 
states (alertness and drowsiness) from one-second EEG 
epochs recorded with 14 electrodes in 12 subjects. This 
classification did not take into account the artefacts which 
had been previously eliminated referring to two experts’ 
opinions. It should be noted that the EEG recordings were 
carried out in the particular conditions of darkness while 
forcing the subjects to close their eyes. In this paper, we 
used an LVQ neural network to classify a state of 
vigilance. 
In the second part, various hardware implementations of 
Kohonen neural networks on integrated circuits have been 
presented. They may be divided into two main categories: 

- Analog implementations of the Kohonen neural 
networks on dedicated integrated circuits have 
been designed (for example [6]). These supports 
are technically limited as they lack precision. 
Their performance greatly depends on the 
technology used. 

- Implementations of Kohonen neural network on 
ASIC digital circuits (neuroprocessors) have also 
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been designed [7]. This is now the most used 
category of VLSI for the integration of 
neuromimetic algorithms. However, these devices 
are costly and lack flexibility. 

The above shortcomings of both types of implementation 
devices may be avoided thanks to reprogrammable circuits, 
such as Field Programmable Gate Arrays (FPGA). These 
circuits offer high-performance, high-speed and high 
capacity programmable logic solutions that enhance design 
flexibility while reducing time-to-market. Configurable 
hardware appears well-adapted to obtain efficient and 
flexible neural network implementations. 
Several special-purpose hardware implementation of LVQ 
neural network on FPGA have been proposed. In [8] the 
authors present the implementation of an LVQ with four 
16-bit inputs and 9 neurons on the output layer on an 
FPGA Altera EP20K1500EBC652 for the recognition of 
odors. For distance computation, the L1 norm was adopted 
and Learning was done off chip. 
In [9] the authors propose the implementation of a 
64-neuron LVQ with 16 inputs on ACEX1K100. The used 
arithmetic was parallel. Each input was represented with 16 
bits. The distance was computed with the L1 norm and 
learning was done off chip. 
In [10] the authors describe the implementation of the 
SOM and LVQ algorithms with 23 inputs of 8 bits each 
and 25 neurons on the output layer on an FPGA Xilinx 
XCV1000BG for the classification of vigilance. For 
computing the distance the author adopted the L2 norm and 
learning was done off chip. 
In this context, and in order to ensure an embedded 
implantation of a real time LVQ neural network, we 
adopted a serial approach to reduce the area of implantation. 
The parallelism of artificial neuronal networks and 
particularly the LVQ, as well as the great number of inputs 
and outputs, justified the choice of the serial approach.  
In this paper, the implementation of an authentic LVQ 
architecture to classify human alertness is proposed. FPGA 
circuits have been chosen for the implementation taking 
advantage of their rapid prototyping at a low cost. 
This paper is organized as follows: Section 2, presents our 
experimental setup and its major issues: subjects, 
recordings and spectral processing of EEG, Vigilance level 
classification by LVQ neural network and LVQ 
implementation on FPGA. Section 3, describes the results 
of our implementation: speed, area and delay. Therefore, 
we implement an on-line serial arithmetic with the MSBF 
mode (Most Significant Bit First) using a redundant 
number representation system. Finally, we conclude in 
section 4. 

2. Materials and methods 
2.1 Subjects:  

This study was concerned with a control group of four 
healthy male medical students, aged 18 to  23. The 
recruitment was made by direct contact and voluntary 
membership. Each subject had three 24-hour recordings 
fortnightly with a15-day interval.  
Recordings: The equipment in use is an ambulatory 
long-duration recording system with 8 channels, OXFORD 
MEDILOG 9000 model. The analogical recording was 
made on a magnetic tape. The analogical recordings were 
digitized and visualized by a second reading system. 
Each recording contains two EOG channels, an EMG 
channel of the chin and five EEG channels. For the EOG, 
the active electrodes are placed at the level of the external 
canthus (on the right and on the left) with the reference at 
the level of the contra lateral mastoid. The EMG is 
recorded by a bipolar diversion connected to two 2 cm 
distant electrodes placed on the cowlick and the chin. The 
EEG is recorded by bipolar diversions (F3-F4; C3-P3; 
C3-01; C4-P4 and P4-O2). 
All the registered signals were sampled at 128 Hz. Four 
noisy recordings are eliminated. A 24-hour recording, for 
every subject, is selected (four 4-hour recordings are used 
in our application). These recorded signals are exploited by 
an expert in EEG and polysomnography interpretation to 
label two vigilance levels (sleep and awakening). 
2.2 Pre-processing:  
In our approach, we wish emphasize on a realistic design, 
including the hardware implementation as discussed below. 
In order to allow a portable, easy-to-wear system, we have 
tried to find a compromise between as few electrodes as 
possible and acceptable performances, which is an 
important drawback with regard to existing approaches. 
More precisely, we have opted for only a right 
parieto-occipital EEG derivation (P4-O2). The choice of 
the derivation P4-O2 helps to avoid the ocular frontal 
derivation artefacts and allows to get an alpha activity of a 
posterior topology, a characteristic of the calm awakening 
with closed eyes. 
The spectral pre-processing applied on this derivation 
(P4-O2) consists of a Short Term Fast Fourier 
transformation STFFT with 4-second portions and a 
512-point Hamming window ponderation type. For this 
purpose, 23 bands of 1 Hz, normalized from 1 to 23Hz, are 
used: 

Hz231i

100Hz)1)(iPS(iPS i

tofrom
TPS

toP ×
+

=  

PSPi = Percentage of the power spectrum of the 
corresponding i band. 
TPS = Total power Spectrum. 
PSi = Power Spectrum of the corresponding i band. 
Our corpus is presented in table 1: 
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Table 1: The corpus structure

Epochs     PSP     Expert label  

Epoch 0  PSP0 1  PSP0 2  PSP0 3 ........................  PSP0 21 PSP0 22  PSP0 23  Sleep  

.  .  .  .  ........................  .  .  .  .  

.  .  .  .  ........................  .  .  .  .  

Epoch j  PSPj 1  PSPj 2  PSPj 3  ........................  PSPj 21  PSPj 22  PSPj 23  awakening  

.  .  .  .  ........................  .  .  .  .  

.  .  .  .  ........................  .  .  .  .  

Epoch N  PSPN 1  PSPN 2  PSPN 3  ........................  PSPN 21  PSPN 22  PSPN 23  awakening  

 
After this treatment and the choice of a signal band coding, 
connectionist treatments are applied, as described below. 
2.3 Vigilance level classification:  
In this work, an LVQ connectionist model was used for the 
vigilance state classification. This model of neural 
networks was created by Kohonen [12], and it is a method 
of training neural networks for pattern classification. 
Figure 1 illustrates this network’s architecture, which 
includes: 

 The input (called input layer) represents the space 
of inputs X of dimension NR,   

 The competition layer models the space of the 
inputs, 

 The linear layer of decision allows to make 
decisions. 

Each class is referred to a vector of weights that, in turn, 
represents the center of the clusters defining the decision 
hypersurfaces of the classes. 
The linear layer of decision makes decisions thanks to the 
weights wci,j of the matrix Wc in the following way: wci,j = 
1 if the neuron J is associated class I, else wci,j = 0. 
The learning of LVQ network consists in best positioning 
the prototypes by employing Kohonen rule [12]. 
Algorithm 1 describing the four main steps of the LVQ 
neural networks is given below: 
Algorithm 1: LVQ (Learning Vector Quantization) 

1 Select the nearest prototype to the input vector X 

      C = argmin {|| X – wi ||}, for 1 ≤ I ≤ NR  
2 Modify the WC vectors 
     WC (t+1) = WC (T) + α (T) * [X (T) – WC (T)]  
       if X and WC belong to the same class 
3 Modify the WC vectors 
       WC (t+1) = WC (T) – α (T) * [X (T) – WC (T)]  
      if W and WC do not belong to the same class 

4 wi (T) = wi (T) for I ≠ C  

 

 
Figure 1: Structure under layers of the LVQ neural network 

2.4 Implementation performance criteria:  

In order to validate the concepts described above, we 
implemented the decision process of the LVQ neural 
network on FPGAs (using pre-trained parameters obtained 
from software simulation). Such a work has to take into 
account several parameters and useful characteristics such 
as power consumption according to the external clock 
frequency rate, the number of inputs/outputs, integration 
surface, or neural parallelism (the various neurons may 
work concurrently). Some of these parameters are difficult 
to estimate before synthesis.  

Computation speed is sometimes another essential 
criterium. In our case, the decision (hypovigilance 
detection) is done in real time without difficulty thanks to a 
completely parallel implementation that does not require a 
sequential use of the resources or dynamic reconfigurations 
of the FPGA. Therefore, speed does not stand as a real 
constraint for the technological choices that must be made. 
On the contrary, the assumption of an embedded circuit in 
an ambulatory system requires a very low-power 
implementation. Among the parameters quoted above, the 
number of inputs/outputs, and above all the level of neural 
parallelism have a direct influence on the obtained 
implementation consumption. A fully parallel 
implementation is a real challenge, taking into account the 
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size of the neural networks and the FPGA.  

2.5 Implementation environment:  

Xilinx FPGAs [11] have been chosen because they offer a 
high memory/logic ratio: they are well-suited for the 
implementation of serial and on-line arithmetic operators, 
and their computation grain fits well the parallelism of 
neural computations. The configurable logic blocks (CLBs) 
can be connected using a configurable routing structure. In 
Virtex FPGA, CLBs can be efficiently connected to the 
neighboring CLBs as well as the CLBs of the same row or 
column. The configurable communication structure can 
connect external CLBs to input/output blocks (IOBs) that 
drive the input/output pads of the chip.  

Our implementations are based on a Celoxica RC1000-PP 
board with a Xilinx Virtex XCV1000E-BG560 FPGA. 
Each CLB in the Virtex-E FPGA family corresponds to 4 
configurable logic cells. It must be pointed out that current 
FPGAs already out perform the capacity of the Virtex 
XCV1000E: such an FPGA contains 27648logic cells, to 
be compared with the 73008 ones of the largest Virtex-E, 
and with the 125136 logic cells of the largest current 
Virtex-II Pro.  

The board includes 8MB of SRAM directly connected to 
the FPGA in four 32-bitwide memory banks. This memory 
may also be addressed from the host CPU across the PCI 
bus so as to share data between the host CPU and the 
FPGA. The RC1000-PP board suggests a programmable 
clock frequency between 400 KHz and 100 MHz. 

2.6 Technological choices:  

Because of the great number of data involved in a neural 
network application (particularly LVQ neural network), the 
number of wires in hardware implementation might 
represent a critical problem. This problem was overcome 
opting for serial communications. Which take advantage of 
the development of various serial arithmetics.  

In terms of implementation area and delay, the bit-level 
pipeline parallelism and the neuron-level parallelism 
(23input neurons and 5x5 output neurons simultaneously 
handled) lead to better performances with a serial 
arithmetics than with solutions that are based on parallel 
arithmetics.,.  

In a preliminary work [10], we have described the 
implementation of a Kohonen neural network on a 
Virtex-type FPGA, using an LSBF (Least Significant Bit 
First) serial arithmetic: it mostly uses arithmetical 
operations that may be performed in an LSBF way 
(subtraction, addition, squaring) except for comparisons, 
for which a buffer reverses digit streams from LSBF to 
MSBF. This work has led to very satisfactory 
performances (the whole LVQ being implemented in 
parallel on the Virtex XCV1000E FPGA). In order to adapt 
our solution to smaller devices, we also needed to reach 
smaller implementation areas. That is why we have 
developed another LVQ, based on an L1 norm so as to get 
rid of quadratic operators. Nevertheless, numerous MSBF 
operators are added: absolute value computations. 
Therefore, in this paper, we handle only radix-2 MSBF 
serial arithmetics: the on-line arithmetics [13]. 

 

Figure 2: Data path architecture of the LVQ neural network. 
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2.7 LVQ neural network serial implementation:  

The global architecture of the LVQ neural network consists 
of 3 blocks (figure 2):  

1- A block of internal ROM memories used to store fixed 
LVQ weights.  

2- A column of K neurons (K=25). For each neuron j of 
the LVQ output layer, the L1 norm distance dj must be 

computed ( ∑
−

=

−=
1

0

N

i
ijij WXd , N is the number of 

inputs of the LVQ, in our case N=23). The architecture 
of operator |Xi − Wij| is formed with a serial on-line 
subtracter and a serial on-line absolute value processing. 
The global architecture of the distance computation is 
given in figure 2. The rather small area of serial 
operators allows to perform all computations 
simultaneously by means of a column of N subtracters 
followed by a column of N absolute value processing. 
It provides N outputs that are connected to the N inputs 
of a simple tree of serial adders. Weights Wij are fixed, 
and they are stored in the internal ROM of the FPGA.. 

3- A serial on-line comparer to select minimal distance di 
and the corresponding winner neuron.  
The architecture of the K-inputs comparer of the third 

block is specific to the requirements of an LVQ: it 
simultaneously extracts the minimal distance and the 
number of the winner neuron in serial on-line architecture 
(figure 2).  

 
Figure 3: Schematic Implementation of on-line Comparator 

Element (CE) 
We used on-line Comparator Elements (CE) capable of 
extracting the minimum of two redundant radix-2 numbers. 
An on-line algorithm with zero on-line delay is developed 
[14]. Based on this algorithm a finite state transducer, with 
5 states and15 transitions, is derived. Figure 3 shows a 
schematic implementation of our on-line radix-2 
comparator.  

To carry out a comparison of the 25 inputs, we used the 
on-line CE arranged in stages; with the output of neurons 

connected to the first stage on-line CEs. The output of the 
first stage on-line CEs are connected to the inputs of the 
second stage CEs and so on figure 2. The last stage has a 
single on-line CE whose output is the minimum distance. 
To extract the winner neuron number, we decode the 
output controls of the on-line CE first stage. This extraction 
is performed after minimal distance processing. The global 
comparator is composed of stages with delay 5.  

3. Results and discussion 
3.1 Vigilance level classification: 

 The results presented below and related to the application 
of the neuronal tools on EEG signal portions recorded in 
the various subjects, are described and analyzed in order to 
obtain the best approach to quantify the various states of 
vigilance. 

The LVQ network architecture includes 23 units on the 
input layer, which represent the 23 spectral bands, and 25 
units on the output layer that characterize the two states 
(sleep and awakening).  

The global performance is first computed for all subjects. 
One LVQ network is learned with the training corpora of 
the four subjects and is globally tested with all the test 
corpora. This experiment yields a total success rate on the 
test corpus of 76.73% with a recognition rate of the 
Sleep-Wakening states of 72.28% and 81.19% respectively 
(see table 2). The performance computed for each subject 
is presented in table 3. 

Table 2: LVQ global performances for all subjects (task: 
awakening and sleep state recognition) 

TRAINING CORPUS TEST CORPUS   
WAKENING SLEEP WAKENING SLEEP

SUCCESS 
RATE (%)

95.36 88.17 81.19 72.28

TOTAL 
SUCCESS 

RATE (%) 
92.01 76.73 

 

Table 3: LVQ performances for four subjects (awakening 
and sleep states) 

  Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Awakening 97.42 96.14 100 98.23 

Sleep 93.84 97.48 100 100 
Training 
corpus 

Total 95.63 96.81 100 99.11 

Awakening 100 92.70 100 93.70 

Sleep 100 85.78 100 100 Test corpus

Total 100 89.24 100 96.85 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 
 

 

265

3.2 Computation time and implementation area on FPGA:  

Firstly, hardware performances were independently 
evaluated for each module of the network architecture. 
Then the whole network has been studied. Table 4, lists 

results in terms of computation time and implementation 
area for the different arithmetical operators, control blocks, 
data storage blocks and the whole network. The results are 
given according to Xilinx ISE 9.1 synthesis tool with a 
25-MHz frequency.  

Table 4: Results of the LVQ implementation 
CLB use rate 

Block type 
Delay  

(cycle clock) Slices (2 per CLB) LUT FF 
On-line substracter/adder 2 5 8 4 
On-line 23-inputs adder 6 56 98 18 
On-line absolute value 1 2 4 - 

On-line Comparator Element - 17 32 3 
On-line 25-input Comparator 5 425 797 124 

On-line |Xi−Wij| 4 7 12 8 
On-line neuron 10 241 401 214 
parallel neuron 3 1390 1936 586 

ROM (Wij storage) - 3 4 - 

LVQ: 23 inputs, 5×5outputs [LSBF] 34 12286 14557 17659 

LVQ: 23 inputs,5×5outputs [On-line] 23 6190 10701 5275 

In the previous work we have evaluated parallel and LSBF 
serial implementations [10]:  

1- Using standard 8-bit parallel arithmetics, each neuron 
requires 1390 slices so that the Virtex FPGA available 
on the RC1000-PP board is too small to fully 
implement the LVQ neural network: at most 9 neurons 
may be simultaneously implemented. Furthermore, 
such arithmetics would require a too large number of 
I/O pads for the Virtex.  

2- A serial arithmetics appeared as a solution to reduce the 
implementation area. We develop a solution using a 
standard serial LSBF arithmetic in [10], still using the 
standard L2 norm for the LVQ. The results are quoted 
in the last row of table 4. This solution has allowed a 
fully parallel implementation of the whole network 
with 12886 slices. It uses the whole FPGA surface. 
Decision time Texec is equal to 1.37 µs with a 25 MHz 
clock frequency. The approach requires the 
implementation of an internal SRAM memory block to 
reverse the bit propagation order before comparison 
(MSBF mandatory).  

This has led us to develop a solution using on-line 
arithmetic operators. Nevertheless, the LVQ model 
includes operations that must be performed in an MSBF 
mode (the comparator). Therefore, choosing to develop a 
version that uses the L1 norm for the LVQ, and to 
implement it with on-line arithmetics has two advantages: 
unlike the LSBF solution, the implementation area is 

reduced by half. Bsides, the pipeline is fully exploitable 
(for consecutive input vectors), whereas the above LSBF 
solution uses a buffer that breaks the pipeline.  

The results of the three  solutions (parallel, LSBF and 
serial MSBF) are quoted in table 4.These results 
characterizing hardware performances were independently 
evaluated  in terms of computation time and 
implementation area for the different arithmetical operators, 
control blocks, data storage blocks and the whole network. 
They are  given according to Xilinx ISE 9.1 synthesis tool 
with a 25-MHz frequency. 

It can be concluded that the on-line LVQ implementation 
requiring 6190 slices and taking 0.92 µs at a 25-MHz clock 
frequency is the best solution 

4. Conclusion 
This current paper describes an efficient parallel LVQ 
neural network implementation (used to separate vigilance 
states in humans from EEG) on FPGA using on-line serial 
arithmetic operators. L1 norm was adapted to measure the 
distance, thus reducing the computational complexity. 
Therefore, the main advantage of this implementation is 
the strong relationship between the neural architecture and 
its hardware realization. The generated circuit contains 
only the necessary operators and communications whatever 
the neural network size parameters are. The choice of an 
FPGA device is justified by its flexibility, parallelism and 
reduced consumption. The required implementation had to 
minimize the inputs/outputs pin, and maximize internal 
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parallelism to lead to a very low consumption.  

Furthermore, this solution enables us to deal with more 
accurate numbers, whereas the precision problem is critical 
for analog implementations. The use of on-line arithmetics 
also reduces the circuit size and is compatible with all 
operators of the chosen LVQ model. The used 
technological choices are aimed at reaching area-saving 
and an entirely parallel solution where all the neurons 
function and treat all their input simultaneously. The 
performances obtained by our implementation have largely 
achieved our aims (very low-power parallel 
implementation).  

Having acquired some experience in this field, we are now 
working on implementing the Learning Vector 
Quantization (LVQ) used to detect artefact states and to 
determine thereafter the physiological state of the subject 
(awakening or sleep states). We are following the same 
approach developed in this paper except that the 
precalculated weights have been modified. Once this phase 
is achieved, our embedded system is fully amenable. 
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