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Summary 
In this paper, we have developed a large block cipher by 
introducing the basic concepts of permutations and substitutions. 
The permutations and substitutions are key based. We have taken 
the key and the plaintext in the form of numbers and characters 
respectively. Where, each one is converted into its 8 bit binary 
equivalent based on its ASCII values. In the process of 
encryption, we have represented the plaintext as a block of 256 
bits and developed a block cipher of 256 bits by using the 
classical feistel network. In each round, we have performed 
different key based permutations with the help of the equation 
that we have derived. Similarly, in each round, we have also 
permuted the key based S-Boxes. The cryptanalysis carried out 
at end shows that the cipher cannot be broken by any 
cryptanalytic attack. 
Key words: 
Block cipher, plaintext, permutation, substitution, XOR, 
encryption and decryption, SBox. 

1. Introduction 

In the development of Cryptography, majority   of    
the   block   ciphers   found   in literature, are based upon 
feistel network. The basic elements of this type undergo a 
series of diffusions and confusions. This is achieved 
through permutation and substitution of plaintext that is to 
be encrypted. In the classical feistel network, which 
involves a round function, wherein the number of rounds 
is sixteen, provides good strength to ciphers. 

In the present paper, our interest is to develop a large 
block cipher, using 16 rounds classical feistel network, 
which makes use of key based random substitutions and 
key based random permutations. In this analysis, we use a 
key containing 16 numbers, represented as a block of 128 
bits. A plain text  of  32  characters  is  represented  as  a 
block of 256 bits, finally gives us a block  cipher of  256  
bits. We developed a linear equation for permutation 
which depends on the elements of the key. These 
permutations are different in different rounds. We have 
also developed the key    based substitution   boxes and  
permuted  them  in each round.  So  that,  a  set  of   
intermediate  cipher  bits will never enter into the same S-
box in two consecutive rounds. In  the process of 
encryption- decryption, we have used the same round 
function ‘F’ of our classical feistel cipher. In this paper, 
since the least significant half of the bits of plaintext is 

exactly equal to the no. of bits of key, We don’t need any 
expansion permutation table separately.  We have also 
discussed the cryptanalysis, which indicates the good 
strength of the cipher and it is proved by the avalanche 
affect. 

2. Development of Cipher 

Consider a key vector ‘K‘ containing 16 numbers. 
Consider a vector  
D = {d0, d1,…, d15}                                                (2.1) 
Where    di = Ki mod 4                                                (2.2) 
 The elements of vector D allows us to implement various 
different permutations in different rounds.  Let the binary 
equivalent of these 16 numbers be represented as a matrix 
k16x8. So that,  
K0 = {k0x8 + k1x8  +……+ k14x8 + k15x8 }            (2.3) 
Consider a plaintext vector ‘T‘ containing 32 characters. 
Let the binary equivalent of these 32 characters be 
represented as a matrix t32x8.         So that,  
T = {t0x8 + t1x8  +………..+ t30x8 + t31x8 }           (2.4) 
Here, ‘+’ is the concatenation of bits, tix8 and kix8 are the 
8 bits binary equivalent of the ith  character  of    the    
plaintext   vector    ‘T’    and ith  number  of   the  key   
vector  ‘K’  respectively.      Let  
C0 = {t0x8 + t1x8  +……..+ t30x8 + t31x8 }             (2.5)  
be the initial plaintext. Let C1, C2, …….. C15, C16 be 
the 256 bits intermediate cipher text. Such that, Ci is 
obtained after  the   ith   round during encryption. The 
linear equation used for Permutation  Pi  in  the  ith  round 
is given by    
 s = ( r + n/2 + di ) mod n                                            (2.6) 
Such that, ‘n’ specifies the number of bits on which 
permutation is applied and di is the value which makes 
permutation distinct in different rounds. 
 In each permutation Pi,    
 r = 0 to ( ( n/2 ) -1 )                                                    (2.7) 
 We interchange ‘sth’ and  ‘rth’ bits to get required 
permutation Pi on ‘n’ bits. 
      The generation of S-Box from the key  is explained  
in  detail  with  an  algorithm  in ( 3.6 ).      During 
encryption/decryption, in all the 16 rounds, we have used 
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16 S-Boxes; Each S-Box contains 8 rows and 32 
columns; takes 8 bits input and gives 8 bits output. In 
each round, we have permuted the S-Boxes so that, a set 
of bits of intermediate cipher will not enter into the same 
S-Box. So that,  there is no scope for cryptanalysis with 
respect to the substitution boxes.  
      Let the 256 bits initial plaintext C0 be divided into 
two equal parts L0  and  R0. Such that, L0 is the  
most significant  128  bits  of  C0 and R0  is the least 
significant      128      bits      of     C0.    Such    that 
Copy the bits of K1 to kr1. By   using    the algorithm 
given for permutation Pi in ( 3.3 ), let us permute the   
bits  of  kr1  by  using  the   value  d0. Thus, round key 
kr1 = P1 ( kr1, d0). 
 
      Next, we permute the S-Boxes according to the 
algorithm given in  ( 3.4 ). Now according to the 
classical feistel network, the first step of the round 
function is Expansion Permutation table. This is mainly 
useful if the number of bits in R0 is less than the number 
of bits of round key kr1. Now since R0 contains 128 bits 
equal to the number of bits in round key kr1, we need not 
use the expansion permutation table and we move to the 
next step which   is   XOR  of  R0  and  round  key  kr1. 
Let R1= R0 XOR kr1. Next based on the bits of R1 we get 
the 8 bit outputs from the respective S-Boxes. Then 
permute R1 and XOR with L0. Thus, R1 = L0 XOR ( P1 
( R1 ) ) and      L1 = R0. Now concatenation of all { L1 , 
R1 } of respective S-Boxes gives us the intermediate 
cipher C1 for the second round.  Thus, by using this 
process for the remaining rounds finally we obtain the 
cipher C16. 
 
      The decryption of cipher is done by using the same 
round function. We just need to follow the same 
procedure as explained for encryption. But the key is 
used in reverse order i.e. kr16 to kr1 and the S-Boxes are 
reverse permuted in each round as explained in 
algorithms (3.2) and  (3.5). 
C0 =  { L0,  R0 }.  Now let,  K1  =   LeftShift  ( K0 ). 

3. Algorithms  

3.1. Algorithm for Encryption 

 
BEGIN 
1. Read the Key vector K and plaintext vector T 
2. Compute the vector D such that  di = Ki  mod  4 
3. Convert the key vector K and plaintext vectors T to 

binary representation as a matrix k16x8  and t32x8 
respectively. 

 
4. K0= { k0x8  + k1x8  ……… + k15x8   } 
5. C0 = { t0x8  +  t1x8  ………. +  t31x8  } 
6. for   i = 0 to 15 

{      
Ki+1 = LeftShift ( Ki

 ) 
Copy Ki+1to kri 

Pi+1
 ( kri+1, di )    //permute 128 bits; see algo (3.3) 

Permute ( bx , di ) // permute S-Boxes; see algo (3.4) 
Ci+1 = F( kri+1, Ci, di )  
}  // end for 

END. 

3.2. Algorithm for Decryption 

BEGIN 
1. Read the Cipher C16.     
2. Read the last round key  K16. 

3. Read the vector D = {d0,d1,d2…d15} .  
{      

          Ci
 =Switchbox ( Ci+1

 ) 
          Copy Ki+1 to kri

 
          Permute ( kri

 ,di) 
        Ci-1 = F(kri, Ci, di) 
          Rightshift ( Ki+1

 )  
        Ci-1=Switchbox(Ci-1)  

ReversePermute( bx , di ) // permute S-Boxes;  
                                         //  see algo (3.5) 
    } // end for 
END 

3.3. Algorithm for Permutation 

(To permute the  key kri+1
 ) 

Pi+1 ( kri+1
 ,di) 

BEGIN 
1.  for  r = 0 to ( r  < n/2  ) 
    {  
       s =  ( r + n/2 + di ) mod n  
       temp  =  kri+1

s 
       kri+1

r =  kri+1
s 

       kri+1
s =  temp 

   } // end for 
END. 

3.4. Algorithm for Permuting S-Boxes  

(To permute the S-Boxes  during encryption in ith  
round ) 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 

 

269

Note: Initial order of 16 S-Boxes before encryption is  
bx[ 16 ] = { 0,1,2,3,………14,15 }. 
4. for  i = 15 to 0 
Permute ( bx, di ) 
BEGIN 
1.  for  r = 0 to ( r  < 8  ) 
    {  
       s =  ( r + 8 + di ) mod 16  
       temp  =  bxs 
       bxr =  bxs 
       bxs =  temp 
   } // end for 
END. 

3.5. Algorithm for Reverse Permuting S-Boxes  

(To Reverse permute the S-Boxes  during decryption in 
ith  round ) 
 
Note: Initial order of 16 S-Boxes before decryption will 
be same as the order used in the last round during 
encryption. 
 
ReversePermute ( bx ,di) 
 
BEGIN 
1.  for  r = 7 to ( r  > = 0  ) 
    {  
       s =  ( r + 8 + di ) mod 16  
       temp  =  bxs 
       bxr =  bxs 
       bxs =  temp  
     } // end for 

3.6. Algorithm to generate Key based Substitution 
Boxes. 

BEGIN  
1. p = 0 
 
2. for i = 0 to 15 
 { 
  for j = 0 to 7 
  { 
   box p,j = ki,j 
 
   boxp+1,j = k15-i,j 
  } 
               p = p + 2 
 
 } 
 
3. for  i = 0 to 31 
 { 
        for j = 5 to 7 

  { 
   If  ( box i,j equals to 1 ) 
 
   then  
 
                      box i,j =0 
 
   else 
 
   box i,j =1 
  } 
 } 
 
4. for i = 0 to 31 
 {      
               p = 0 
 
  for j = 0 to 7 
  { 
  p = p + ( power (2,j) * boxi,7-j ) 
  } 
 
  Tempbox1i = p 
 } 
END. 
 
5.  tempbox2 0,30 = tempbox10 
 
 tempbox2 0,31 = tempbox11 
 
6. for j = 0 to 29 
 { 
  tempbox2 0,j = tempbox1j 
 } 
 
7. for i = 1 to 15 
 { 
  tempbox2 i,30 = tempbox2 i-1,0 
 
  tempbox2 i,31 = tempbox2 i-1,1 
 
  for j = 0 to 29 
  { 
   tempbox2 i,j = tempbox2 i-1,j 
  } 
 
 } 
 
8. for i = 0 to 15 
 { 
  for h = 0 to 7 
  { 
   for j  to 15 
   { 
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    p = ( j + 16 + (i mod 
2 ) ) mod 32 
 
tempbox2 i,j = tempbox2 i,j + tempbox2 i,p 
 
tempbox2 i,p = tempbox2 i,j- tempbox2 i,p 
 
tempbox2 i,j = tempbox2 i,j - tempbox2 i,p 
 
   } 
 
   for  j = 0 to 31 
   { 
    SBOXi

h,j=tempi,j 
   } 
    
  } 

4. Illustration of Cipher 

Let the key vector be K = {1, 254, 7, 200, 77, 16, 222, 53, 
71, 40, 13, 67, 154, 0, 106, 153 }.                               (4.1)  
Let the vector D = Ki mod 4  =  { 1, 2, 3, 0, 1, 0, 2, 1, 3, 0, 
1, 3, 2, 0, 2, 1 }.                                                           (4.2) 
Consider the plaintext vector T = { lets pray together for 
all of us }.                                                                    (4.3)  
Let the initial order of S-Boxes be denoted by a vector 
bx[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15 }.                                                                             (4.4) 
Let the 8 bit binary equivalent of plaintext and key 
elements be represented by the matrices t32x8 and k16x8. 
According to (2.3) the key K0 is as follows. 
0000000111111110000001111100100001001101 
0001000011011110001101010100011100101000 
0000110101000011100110100000000001101010 
10011001.                                                        (4.5) 
According to (2.5) the plaintext C0 is as follows. 
0110110001100101011101000111001100100000 
0111000001110010011000010111100100100000 
0111010001101111011001110110010101110100 
0110100001100101011100100010000001100110 
0110111101110010001000000110000101101100 
0110110000100000011011110110011000100000 
0111010101110011.                                       (4.6) 
K1= kr1 =LeftShift( K0).Thus we get K1 and kr1 as  
0000001111111100000011111001000010011010 
0010000110111100011010101000111001010000 
0001101010000111001101000000000011010101 
00110010.                                                       (4.7) 
   
 } 
kr1  =  P1 ( kr1, d0 ),  then  we  get    kr1   as, 
001100011101000010000001110010011110010111 
010001100111011101000110000001000001110100 

110111011110010001110000110110011010011010 
10.                                                                        (4.8) 
Let R0 be the rightmost 128 bits of C0.  
Thus, we get R0 as follows. 
011001010111001000100000011001100110111101 
110010001000000110000101101100011011000010 
000001101111011001100010000001110101011100 
11.                                                                       (4.9) 
Permute ( bx , d0 ), and we get the order of S-Boxes as . 
bx[16] = { 7, 10, 11, 12, 13, 14, 15, 9, 8, 0, 1, 2, 3, 4, 5, 
6 }                                                                       (4.10) 
R0 = Permute ( R0 ,d0)    // similar to algorithm  (3.3) 
R0 = R0 XOR kr1. 
Now the first eight bits of R0 goes to SBox7 and the next 
eight bits of R0 goes to SBox10 and so on according to the 
order specified in bx[16],i.e. (4.10) 
In each SBox, the decimal equivalent of the first 3 bits 
from the left specifies the row in the SBox, and the 
decimal equivalent of the remaining 5 bits specifies the 
column in the SBox. 
Let  x =  SBoxi [ row , col ], compute the 8 bit binary 
equivalent of x which is the output of that SBox. Let us 
concatenate all the outputs of the respective SBoxes and 
treat it as  R0. 
R0 = permute ( R0 , d0 ) 
R1 = L0 XOR R0 

C1 = { most significant 128 bits of C0 , R1 }. Thus 
we0110010101110010001000000110011001101111 
0111001000100000011000010110110001101100 
0010000001101111011001100010000001110101 
0111001111100010011010011111010111000000 
0001101101001101010010010101101100011110 
1011100101111111101000000110010011100110 
0101000101100011.                                     (4.11) 
Similarly, by completing the remaining rounds we get the 
final cipher text C16 as follows. 
 
0100100101100010101011001101001100100000 
1110110111101111100111100010000000101100 
1100011000100111100001111011010010001110 
1110011011011000100100100010110000101111 
0000000111011011011110101101111011100101 
1011011011111000101111001001001100111011 
0110100011110000.                                     (4.12) 
In the process of decryption we use the same round 
function but the SBoxes are reverse permuted as 
explained in algorithm (3.5). Thus we obtain the original 
plain text from the given cipher text. 

5. Cryptanalysis  

The various cryptanalytic attacks available in the 
literature depend upon the facts that, the cipher text is 
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known or pairs of plaintext and cipher text are known or 
they are chosen in a special manner. 
      When the cipher text only is known, the breaking of 
the cipher depends upon the size of the key space, and 
this is carried out by the brute  
get C1 as, 
force attack. When the pairs of plaintext and cipher text 
are known, the cipher can be broken if the key can be 
determined and this is done by known plain text attack. 
Thus, we examine the brute force attack and the known 
plaintext attack on our cipher to assess the strength of our 
cipher. Here we show that the brute force attack is 
formidable and the known plaintext attack leads to  a 
system of equations from which the key cannot be 
determined due to the unknown term di. 
Brute Force Attack 
 As the key matrix is of the order 16 x 8, the size of the 
key space is  
      2128  ≈  (210)13  ≈  (103)13  ≈  (10)39                 (5.1) 
Thus, one cannot break the cipher by applying brute force 
attack.  
Known Plaintext Attack 
      Let us consider the known plaintext attack. In this case, 
we have as many plaintext and cipher text  
pairs as we require.  Through this paper, it is worth 
noticing the unknown term di induced in the equations for 
permutation and substitution in the repetitive process of 
feistel cipher.  
      Firstly, we have used different permutations in 
different rounds through the equation that we have derived 
(see (2.6)).  
      Secondly, the substitution boxes, which used to be 
static in feistel cipher, are now made random (see 7.3 ). 
Now first let us see the known plaintext then we will 
prove how our algorithm tackles this attack.  
      According to classical feistel network, the linear 
relation between plaintext and cipher text is as follows. 
c1   F (( c0 ), kr1)                                          (5.2) 
c2

   F ((c1) , kr2
 )                                          (5.3) 

c2
  F (  (F (c0), kr1

 ) , kr2
 )                            (5.4) 

c3  F ( (c2), kr3 )                                          (5.5) 
c3  F ( (F (  (F (c0), kr1

 ) , kr2
 ) , kr3 )          (5.6) 

similarly, 
c15

  F ( c14, kr15).                                         (5.7) 
c16

  F ( c15, kr16).                                         (5.8) 
Now let us say the know plaintext-ciphertext pair is c0 
and c16. Similarly, we can use as many plaintext-
ciphertext pairs as we require. Since c0 and c16 are 
linearly dependant (see (5.2) to (5.8)) and since the 
permutations and substitutions are static in all the rounds, 
The XOR difference of different ciphertext – plaintext 
pairs will allow us to determine the key. 
Now let us see the known plaintext attack on key based 
permutations and key based substitutions. 

c1   F (( c0 ), kr1),d0)                                                 (5.9) 
c2

   F ((c1) , kr2
 ,d1)                                                 (5.10) 

c2
  F (  (F (c0), kr1

 ,d0) , kr2
 ,d1)                              (5.11) 

c3  F ( (c2), kr3 ,d2)                                                 (5.12) 
c3  F ( F (  (F (c0), kr1

 ,d0) , kr2
 ,d1) , kr3 ,d2) 

                                                                                  (5.13) 
similarly,  c15 F(c14,kr15,d14)                                   (5.14) 
c16

  F ( c15, kr16,d15)                                  (5.15)  
attack on classical feistel ciphers  and  

 
                 (a)                                      (b) 
Encryption using key         Decryption using key  
based permutations &        based permutations & 
key based substitutions.     key based substitutions. 
In this case, even if the plaintext-ciphertext pair c0 and c16 
are known, any number of such pairs is of no use mainly 
because of two reasons. Firstly, the key based 
permutations are not same in all the rounds. They vary 

c2
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:
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from one round to another round based on permutations, 
then he should first know the values of d0, d1,…,d15. And 
the values d0, d1, ….d15 are unknown as long as the key is 
unknown. Secondly, the order of the key based 
substitution boxes  is not same in all the rounds. They are 
permuted in each round based on the value of di. 
Therefore, to know which substitution box is used for 
what bits, one must actually know the value of di. And we 
know di is unknown as long as the key secret. Thus the 
known plaintext attack is also not possible. 
 
Avalanche Effect 
      Consider the plaintext “lets pray together for all of 
us” (see (4.3) ), we have obtained the cipher text given by 
(4.12). on changing the first character of the above 
plaintext from ‘l’ to ‘k’     ( as we know the ASCII codes 
of ‘l’ and ‘k’ differ in one bit ),keeping the key constant, 
we obtain the corresponding cipher as 
0001011101001111101101000100110011111100 
0101010101110000010010001001000011101100 
1100011000001000100111000111011011111110 
0100001110000011100111101111101001000100 
1111010010101000100000101111101001011101 
1101011011111000101100100001111111100110 
0010110110111101.                                   ( 5.16 ) 
Comparing ( 4.12 ) and (5.16), we notice that the two 
cipher texts differ in 121 bits out of 256 bits. This shows 
that that the algorithm exhibits strong avalanche effect. the  
value  di. And    if   one   has   to   guess  the  
      Now let us change the key in one bit and keep the 
plaintext as it is. This is achieved by changing the first 
number ‘1’ to ‘0’ ( since ‘1’ and ‘0’ differ in one bit) in 
the key vector K given by (4.1). Then we obtain the 
corresponding cipher as  
 
10010100001001011100101000001111000000010 
10101000001101111101100100101100110101111 
11001010001110000010101110011100010011110 
00010100110111111011110100100010110011101 
00001011110111011000001011110101110010101 
01100011111100001010100001001001001001100 
0010111011.                                                    (5.17) 
 
On comparing  (4.12)  and  (5.17),we  readily  notice  
that the two ciphers differ in 130 bits out of 256  bits. This 
shows that, in our encryption algorithm, the permutations 
and substitution boxes that we have derived from the key 
exhibit strong avalanche effect. 

6. Illustration of permutations 

( To get required  key based permutation Pi in 
the ith round,  use 

di = Ki  mod 4  
s = ( r + n/2 + di ) mod n.   
Let the bits to be permuted are as follows. 

 
(6.1) 
Since these are the 8 bits. 
Here n = 8.  
Case 1:    
In the ith round, Let di = 0.  
Then according to the equation 
s = ( r + n/2 + di ) % n  
r = 0 to  r < n/2  = { 0, 1, 2, 3 } 
Then according to (2.6) & (2.7), The corresponding ‘s’ 
values will be s = {4, 5 , 6 , 7} 
Now interchange the corresponding bits of the  ‘rth’ and ‘s 

th’ positions in the following order. 
 

 
 
Bits after permutation are  

 
 
Case 2: 
Consider the bits of (6.1) 
In the ith round, Let di = 2. 
Thus,  n = 8, r = { 0, 1, 2, 3 } and corresponding  ‘s’ 
values will be  
s = { 6, 7, 0, 1 }  
Interchange the bits of rth and sth positions in the 
following order. 

1 0 1 0 0 1 1 1 

0 1 2 3 4 5 6 7

0 1 1 1 1 0 1 0 

1

3 
4 

0 1 1 1 1 0 1 0

0 1 2 3 4 5 6 7

2
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Bits after permutation are  

 
 
Case 3:   
Let the number of bits be 4. Thus,  n = 4.  
Let the bits be as follows. 

                      (5.2) 
In the ith round, 
Let di = 1 and 
r = 0 to ( r < n/2 )  =  { 0 , 1 }. Then,  
according to (2.6) & (2.7), the  corresponding ‘s’ 
values will be. 
S = {  3, 0  }. 
Now interchange the corresponding bits of the  
‘rth’ and ‘s th’ positions in the following order. 

                                  
Bits after permutation are  

                                  
      Hence, by following the above procedure, bits of block 
sizes  64, 128 , 256 etc. or bits of any other higher block 
sizes can also be permuted. The interesting thing to be 

observed in this process is the key based value di. Since 
each round will have distinct di values, we can generate 
random permutations in each round without bothering the 
block size.  

7. Generating key based substitution boxes. 

Generation of key based substitution boxes: 
      We need 16 Substitution boxes, each containing 8 
rows and 32 columns. Let us expand the elements of key 
vector K from 16 to 32 numbers.  This is done by picking 
the 16 numbers of K in the reverse order and placing them 
in between every two consecutive elements of vector K 
itself. Due to this process, each row of a substitution    box   
will   contain   a   number   which   is repeated exactly 
twice. Hence, we get a balanced substitution box. 
Let this new vector be K1 which is as follows. 
K1 = {K0, K15, K1, K14, K2, K13, K3, K12, K4, K11, K5, K10, 
K6, K9, K7, K8, K8, K7, K9, K6, K10, K5, K11, K4, K12, K3, 
K13, K2, K14, K1, K15 , K0} (7.1) Now compute the 8 bit 
binary equivalent of each element in K1 and then convert 
the 6th, 7th and 8th bits from 1’s to 0’s and 0’s to 1’s 
respectively. 
 
Next Compute the decimal equivalent of respective 8 bits 
and place them in a new vector called Kd. Such that 
Kd = { Kd

0, Kd
1,….Kd

31  }                                    ( 7.2 ) 
 
Left shift vector Kd twice and place these 32 numbers as 
the first row in matrix B16x32. Again left shift vector Kd 
twice and place those 32 numbers as the second row in 
the matrix B16x32. Continue this process for 14 more times 
and we get the remaining 14 rows of matrix B16x32.  
 
Now we will take the first row of matrix B16x32 and 
permute those 32 numbers by using the following 
equation. 
 
 t = ( j + n/2 + ( i mod 2 ) ) mod n                   ( 7.3  ) 
 
Here n = 32, since we are permuting 32 numbers. Let j = 
0 to ( j < n/2 ). Such that,  ‘t ‘  and  ‘j ’ indicates the 
positions at which the elements are to be interchanged. 
 
Let i = 0 to 7. So that, ‘i’ indicates the row  
that is to be generated in a substitution box. Such that, 
For each value of ‘i’,  j = 0  to  ( j < n/2 ).  Similarly, the 
other elements of the SBox can be demonstrated. 

0 0 1 1 

0 1 2 3 

1 0 1 0 

1

2 

1 0 1 0 

0 1 2 3

1 1 1 0 1 0 0 1 

0 1 2 3 4 5 6 7 

0 1 1 1 1 0 1 0 

1 
2 

3 
4 
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7.1 Illustration of generating key based substitution boxes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2 Illustration of generating  substitution boxes: 

Consider the following code for required permutations in a substitution box. 
 
 
 
 

K1 

K 

 
K0, K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K12, K13, K14, K15. 

K d

Kd
0, Kd

1, Kd
2, Kd

3, Kd
4 …………………………………………….. K

d
28. K

d
29. K

d
30. K

d
31. 

B0,0, B0,1, B0,2, B0,3, ………………………… B0,29, B0,30, B0,31. 
Left shift twice 

B1,0, B1,1, B1,2, B1,3, ………………………… B1,29, B1,30, B1,31. 

K0, K15, K1, K14, K2, K13, K3, K12, K4, K11, K5, K10, K6, K9, K7, K8, 

K8, K7, K9, K6, K10, K5, K11, K4, K12, K3, K13, K2, K14, K1, K15 , K0 

Left shift twice 

: 
: 
: 
: 

: 
: 
: 
: 

B14,0, B14,1, B14,2,  ………………………… B14,29, B14,30, B14,31. 
Left shift twice 

B15,0, B15,1, B15,2,  ………………………… B15,29, B15,30, B15,31. 
Left shift twice 

B2,0, B2,1, B2,2, B2,3, ………………………… B2,29, B2,30, B2,31. 
Left shift twice 
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for b = 0  to 15                                 // ‘b’ indicates the substitution box 
{ 
                         for i = 0 to 7           //  ‘i’ indicates the row in bth substitution box 
                          { 
                            for j = 0 to 15 
                             { 

    t = ( j + n/2 + ( i mod 2 ) ) mod n      //Permute // ’t’ and ’j’ indicates the interchange ( Bi,j , Bi,t )                  
positions at which elements are to be interchanged.  

                             } 
                                   for r = 0 to 31 
                                   { 
                                                      Sboxb

i,r =     Bi,r 
                                   } 
                           }  
} 

 

 
 
 
 
 

 
 

7.3 Illustration of permuting  substitution boxes: 

Let the initial order of substitution boxes be  bx[16] = { 0, 1, 2, 3,…14, 15} 
After permuting the substitution boxes in the first round,  
Let bx = { 4, 7, 2, 0,……..15, 9, 1, 11 }. And  
After permuting the substitution boxes in the second round,  
Let bx = { 1, 12, 6, 15,……..8, 11, 5, 0 }. 

Bb,0, Bb,1, Bb,2, Bb,3, ………………………… Bb,29, Bb,30, Bb,31. 

 Permute Sboxb
0,0, Sboxb

0,1, Sboxb
0,2, ………………., Sboxb

0,30, Sboxb
0,31. 

 Permute Sboxb
1,0, Sboxb

1,1, Sboxb
1,2, ………………., Sboxb

1,30, Sboxb
1,31. 

 Permute Sboxb
2,0, Sboxb

2,1, Sboxb
2,2, ………………., Sboxb

2,30, Sboxb
2,31. 

 Permute Sboxb
3,0, Sboxb

3,1, Sboxb
3,2, ………………., Sboxb

3,30, Sboxb
3,31. 

 Permute Sboxb
4,0, Sboxb

4,1, Sboxb
4,2, ………………., Sboxb

4,30, Sboxb
4,31. 

 Permute Sboxb
5,0, Sboxb

5,1, Sboxb
5,2, ………………., Sboxb

5,30, Sboxb
5,31. 

 Permute Sboxb
6,0, Sboxb

6,1, Sboxb
6,2, ………………., Sboxb

6,30, Sboxb
6,31. 

 Permute Sboxb
7,0, Sboxb

7,1, Sboxb
7,2, ………………., Sboxb

7,30, Sboxb
7,31. 
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8.Computational experiments and Conclusions 

      In this paper, we have developed a block cipher for a 
block of size 256 bits. The key contains 32 numbers and 
it is represented as a block of  256 bits by using a matrix. 
The plaintext which is of 32 characters is also represented 
as a matrix of 256 binary bits. The development of cipher 

is essentially represented by feistel network and we have 
used 16 rounds for encryption.       The algorithms given 
for the encryption- decryption, permutation and 
substitution are all written in C language.  
        From the cryptanalysis presented, we have found 
that the cipher cannot be broken by the brute force attack 
or known plaintext attack. Moreover since we have used 
the random substitution boxes and since the permutations 

R0 (128 bits ) 

 P 
Permute  

Substitution boxes
+ Kr1 

128 bits 

S4 S7 S11 S1 ……S2 S9 

 P 

R1 (128 bits ) 

R0 (128 bits ) 

 P 
Permute  

Substitution boxes
+ Kr1 

128 bits 

S1 S12 S0 S5 ……S6 S11 

 P 

R1 (128 bits ) 

Round 1 

Round 2 

Permutation of Substitution boxes during encryption. 
Similarly, during decryption, we perform reverse permutation of substitution boxes. 
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and substitutions are based on key, the cryptanalysis is 
very difficult. Keeping all the above aspects in view, we 
conclude that the cipher is a very interesting one and it 
cannot be broken by any cryptanalytic attack. 
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