
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

267

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

A Block Cipher using Key based Random
Permutations and Key based Random Substitutions

K. Anup Kumar† and S. Udaya Kumar†

SreeNidhi Institute of Science and Technology, Hyderabad, India†

Summary
In this paper, we have developed a large block cipher by
introducing the basic concepts of permutations and substitutions.
The permutations and substitutions are key based. We have taken
the key and the plaintext in the form of numbers and characters
respectively. Where, each one is converted into its 8 bit binary
equivalent based on its ASCII values. In the process of
encryption, we have represented the plaintext as a block of 256
bits and developed a block cipher of 256 bits by using the
classical feistel network. In each round, we have performed
different key based permutations with the help of the equation
that we have derived. Similarly, in each round, we have also
permuted the key based S-Boxes. The cryptanalysis carried out
at end shows that the cipher cannot be broken by any
cryptanalytic attack.
Key words:
Block cipher, plaintext, permutation, substitution, XOR,
encryption and decryption, SBox.

1. Introduction

In the development of Cryptography, majority of
the block ciphers found in literature, are based upon
feistel network. The basic elements of this type undergo a
series of diffusions and confusions. This is achieved
through permutation and substitution of plaintext that is to
be encrypted. In the classical feistel network, which
involves a round function, wherein the number of rounds
is sixteen, provides good strength to ciphers.

In the present paper, our interest is to develop a large
block cipher, using 16 rounds classical feistel network,
which makes use of key based random substitutions and
key based random permutations. In this analysis, we use a
key containing 16 numbers, represented as a block of 128
bits. A plain text of 32 characters is represented as a
block of 256 bits, finally gives us a block cipher of 256
bits. We developed a linear equation for permutation
which depends on the elements of the key. These
permutations are different in different rounds. We have
also developed the key based substitution boxes and
permuted them in each round. So that, a set of
intermediate cipher bits will never enter into the same S-
box in two consecutive rounds. In the process of
encryption- decryption, we have used the same round
function ‘F’ of our classical feistel cipher. In this paper,
since the least significant half of the bits of plaintext is

exactly equal to the no. of bits of key, We don’t need any
expansion permutation table separately. We have also
discussed the cryptanalysis, which indicates the good
strength of the cipher and it is proved by the avalanche
affect.

2. Development of Cipher

Consider a key vector ‘K‘ containing 16 numbers.
Consider a vector
D = {d0, d1,…, d15} (2.1)
Where di = Ki mod 4 (2.2)
 The elements of vector D allows us to implement various
different permutations in different rounds. Let the binary
equivalent of these 16 numbers be represented as a matrix
k16x8. So that,
K0 = {k0x8 + k1x8 +……+ k14x8 + k15x8 } (2.3)
Consider a plaintext vector ‘T‘ containing 32 characters.
Let the binary equivalent of these 32 characters be
represented as a matrix t32x8. So that,
T = {t0x8 + t1x8 +………..+ t30x8 + t31x8 } (2.4)
Here, ‘+’ is the concatenation of bits, tix8 and kix8 are the
8 bits binary equivalent of the ith character of the
plaintext vector ‘T’ and ith number of the key
vector ‘K’ respectively. Let
C0 = {t0x8 + t1x8 +……..+ t30x8 + t31x8 } (2.5)
be the initial plaintext. Let C1, C2, …….. C15, C16 be
the 256 bits intermediate cipher text. Such that, Ci is
obtained after the ith round during encryption. The
linear equation used for Permutation Pi in the ith round
is given by
 s = (r + n/2 + di) mod n (2.6)
Such that, ‘n’ specifies the number of bits on which
permutation is applied and di is the value which makes
permutation distinct in different rounds.
 In each permutation Pi,
 r = 0 to ((n/2) -1) (2.7)
 We interchange ‘sth’ and ‘rth’ bits to get required
permutation Pi on ‘n’ bits.
 The generation of S-Box from the key is explained
in detail with an algorithm in (3.6). During
encryption/decryption, in all the 16 rounds, we have used

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

268

16 S-Boxes; Each S-Box contains 8 rows and 32
columns; takes 8 bits input and gives 8 bits output. In
each round, we have permuted the S-Boxes so that, a set
of bits of intermediate cipher will not enter into the same
S-Box. So that, there is no scope for cryptanalysis with
respect to the substitution boxes.
 Let the 256 bits initial plaintext C0 be divided into
two equal parts L0 and R0. Such that, L0 is the
most significant 128 bits of C0 and R0 is the least
significant 128 bits of C0. Such that
Copy the bits of K1 to kr1. By using the algorithm
given for permutation Pi in (3.3), let us permute the
bits of kr1 by using the value d0. Thus, round key
kr1 = P1 (kr1, d0).

 Next, we permute the S-Boxes according to the
algorithm given in (3.4). Now according to the
classical feistel network, the first step of the round
function is Expansion Permutation table. This is mainly
useful if the number of bits in R0 is less than the number
of bits of round key kr1. Now since R0 contains 128 bits
equal to the number of bits in round key kr1, we need not
use the expansion permutation table and we move to the
next step which is XOR of R0 and round key kr1.
Let R1= R0 XOR kr1. Next based on the bits of R1 we get
the 8 bit outputs from the respective S-Boxes. Then
permute R1 and XOR with L0. Thus, R1 = L0 XOR (P1
(R1)) and L1 = R0. Now concatenation of all { L1 ,
R1 } of respective S-Boxes gives us the intermediate
cipher C1 for the second round. Thus, by using this
process for the remaining rounds finally we obtain the
cipher C16.

 The decryption of cipher is done by using the same
round function. We just need to follow the same
procedure as explained for encryption. But the key is
used in reverse order i.e. kr16 to kr1 and the S-Boxes are
reverse permuted in each round as explained in
algorithms (3.2) and (3.5).
C0 = { L0, R0 }. Now let, K1 = LeftShift (K0).

3. Algorithms

3.1. Algorithm for Encryption

BEGIN
1. Read the Key vector K and plaintext vector T
2. Compute the vector D such that di = Ki mod 4
3. Convert the key vector K and plaintext vectors T to

binary representation as a matrix k16x8 and t32x8
respectively.

4. K0= { k0x8 + k1x8 ……… + k15x8 }
5. C0 = { t0x8 + t1x8 ………. + t31x8 }
6. for i = 0 to 15

{
Ki+1 = LeftShift (Ki

)
Copy Ki+1to kri

Pi+1
 (kri+1, di) //permute 128 bits; see algo (3.3)

Permute (bx , di) // permute S-Boxes; see algo (3.4)
Ci+1 = F(kri+1, Ci, di)
} // end for

END.

3.2. Algorithm for Decryption

BEGIN
1. Read the Cipher C16.
2. Read the last round key K16.

3. Read the vector D = {d0,d1,d2…d15} .
{

 Ci
 =Switchbox (Ci+1

)
 Copy Ki+1 to kri

 Permute (kri

 ,di)
 Ci-1 = F(kri, Ci, di)
 Rightshift (Ki+1

)
 Ci-1=Switchbox(Ci-1)

ReversePermute(bx , di) // permute S-Boxes;
 // see algo (3.5)
 } // end for
END

3.3. Algorithm for Permutation

(To permute the key kri+1
)

Pi+1 (kri+1
 ,di)

BEGIN
1. for r = 0 to (r < n/2)
 {
 s = (r + n/2 + di) mod n
 temp = kri+1

s
 kri+1

r = kri+1
s

 kri+1
s = temp

 } // end for
END.

3.4. Algorithm for Permuting S-Boxes

(To permute the S-Boxes during encryption in ith
round)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

269

Note: Initial order of 16 S-Boxes before encryption is
bx[16] = { 0,1,2,3,………14,15 }.
4. for i = 15 to 0
Permute (bx, di)
BEGIN
1. for r = 0 to (r < 8)
 {
 s = (r + 8 + di) mod 16
 temp = bxs
 bxr = bxs
 bxs = temp
 } // end for
END.

3.5. Algorithm for Reverse Permuting S-Boxes

(To Reverse permute the S-Boxes during decryption in
ith round)

Note: Initial order of 16 S-Boxes before decryption will
be same as the order used in the last round during
encryption.

ReversePermute (bx ,di)

BEGIN
1. for r = 7 to (r > = 0)
 {
 s = (r + 8 + di) mod 16
 temp = bxs
 bxr = bxs
 bxs = temp
 } // end for

3.6. Algorithm to generate Key based Substitution
Boxes.

BEGIN
1. p = 0

2. for i = 0 to 15
 {
 for j = 0 to 7
 {
 box p,j = ki,j

 boxp+1,j = k15-i,j
 }
 p = p + 2

 }

3. for i = 0 to 31
 {
 for j = 5 to 7

 {
 If (box i,j equals to 1)

 then

 box i,j =0

 else

 box i,j =1
 }
 }

4. for i = 0 to 31
 {
 p = 0

 for j = 0 to 7
 {
 p = p + (power (2,j) * boxi,7-j)
 }

 Tempbox1i = p
 }
END.

5. tempbox2 0,30 = tempbox10

 tempbox2 0,31 = tempbox11

6. for j = 0 to 29
 {
 tempbox2 0,j = tempbox1j
 }

7. for i = 1 to 15
 {
 tempbox2 i,30 = tempbox2 i-1,0

 tempbox2 i,31 = tempbox2 i-1,1

 for j = 0 to 29
 {
 tempbox2 i,j = tempbox2 i-1,j
 }

 }

8. for i = 0 to 15
 {
 for h = 0 to 7
 {
 for j to 15
 {

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

270

 p = (j + 16 + (i mod
2)) mod 32

tempbox2 i,j = tempbox2 i,j + tempbox2 i,p

tempbox2 i,p = tempbox2 i,j- tempbox2 i,p

tempbox2 i,j = tempbox2 i,j - tempbox2 i,p

 }

 for j = 0 to 31
 {
 SBOXi

h,j=tempi,j
 }

 }

4. Illustration of Cipher

Let the key vector be K = {1, 254, 7, 200, 77, 16, 222, 53,
71, 40, 13, 67, 154, 0, 106, 153 }. (4.1)
Let the vector D = Ki mod 4 = { 1, 2, 3, 0, 1, 0, 2, 1, 3, 0,
1, 3, 2, 0, 2, 1 }. (4.2)
Consider the plaintext vector T = { lets pray together for
all of us }. (4.3)
Let the initial order of S-Boxes be denoted by a vector
bx[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 }. (4.4)
Let the 8 bit binary equivalent of plaintext and key
elements be represented by the matrices t32x8 and k16x8.
According to (2.3) the key K0 is as follows.
0000000111111110000001111100100001001101
0001000011011110001101010100011100101000
0000110101000011100110100000000001101010
10011001. (4.5)
According to (2.5) the plaintext C0 is as follows.
0110110001100101011101000111001100100000
0111000001110010011000010111100100100000
0111010001101111011001110110010101110100
0110100001100101011100100010000001100110
0110111101110010001000000110000101101100
0110110000100000011011110110011000100000
0111010101110011. (4.6)
K1= kr1 =LeftShift(K0).Thus we get K1 and kr1 as
0000001111111100000011111001000010011010
0010000110111100011010101000111001010000
0001101010000111001101000000000011010101
00110010. (4.7)

 }
kr1 = P1 (kr1, d0), then we get kr1 as,
001100011101000010000001110010011110010111
010001100111011101000110000001000001110100

110111011110010001110000110110011010011010
10. (4.8)
Let R0 be the rightmost 128 bits of C0.
Thus, we get R0 as follows.
011001010111001000100000011001100110111101
110010001000000110000101101100011011000010
000001101111011001100010000001110101011100
11. (4.9)
Permute (bx , d0), and we get the order of S-Boxes as .
bx[16] = { 7, 10, 11, 12, 13, 14, 15, 9, 8, 0, 1, 2, 3, 4, 5,
6 } (4.10)
R0 = Permute (R0 ,d0) // similar to algorithm (3.3)
R0 = R0 XOR kr1.
Now the first eight bits of R0 goes to SBox7 and the next
eight bits of R0 goes to SBox10 and so on according to the
order specified in bx[16],i.e. (4.10)
In each SBox, the decimal equivalent of the first 3 bits
from the left specifies the row in the SBox, and the
decimal equivalent of the remaining 5 bits specifies the
column in the SBox.
Let x = SBoxi [row , col], compute the 8 bit binary
equivalent of x which is the output of that SBox. Let us
concatenate all the outputs of the respective SBoxes and
treat it as R0.
R0 = permute (R0 , d0)
R1 = L0 XOR R0

C1 = { most significant 128 bits of C0 , R1 }. Thus
we0110010101110010001000000110011001101111
0111001000100000011000010110110001101100
0010000001101111011001100010000001110101
0111001111100010011010011111010111000000
0001101101001101010010010101101100011110
1011100101111111101000000110010011100110
0101000101100011. (4.11)
Similarly, by completing the remaining rounds we get the
final cipher text C16 as follows.

0100100101100010101011001101001100100000
1110110111101111100111100010000000101100
1100011000100111100001111011010010001110
1110011011011000100100100010110000101111
0000000111011011011110101101111011100101
1011011011111000101111001001001100111011
0110100011110000. (4.12)
In the process of decryption we use the same round
function but the SBoxes are reverse permuted as
explained in algorithm (3.5). Thus we obtain the original
plain text from the given cipher text.

5. Cryptanalysis

The various cryptanalytic attacks available in the
literature depend upon the facts that, the cipher text is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

271

known or pairs of plaintext and cipher text are known or
they are chosen in a special manner.
 When the cipher text only is known, the breaking of
the cipher depends upon the size of the key space, and
this is carried out by the brute
get C1 as,
force attack. When the pairs of plaintext and cipher text
are known, the cipher can be broken if the key can be
determined and this is done by known plain text attack.
Thus, we examine the brute force attack and the known
plaintext attack on our cipher to assess the strength of our
cipher. Here we show that the brute force attack is
formidable and the known plaintext attack leads to a
system of equations from which the key cannot be
determined due to the unknown term di.
Brute Force Attack
 As the key matrix is of the order 16 x 8, the size of the
key space is
 2128 ≈ (210)13 ≈ (103)13 ≈ (10)39 (5.1)
Thus, one cannot break the cipher by applying brute force
attack.
Known Plaintext Attack
 Let us consider the known plaintext attack. In this case,
we have as many plaintext and cipher text
pairs as we require. Through this paper, it is worth
noticing the unknown term di induced in the equations for
permutation and substitution in the repetitive process of
feistel cipher.
 Firstly, we have used different permutations in
different rounds through the equation that we have derived
(see (2.6)).
 Secondly, the substitution boxes, which used to be
static in feistel cipher, are now made random (see 7.3).
Now first let us see the known plaintext then we will
prove how our algorithm tackles this attack.
 According to classical feistel network, the linear
relation between plaintext and cipher text is as follows.
c1 F ((c0), kr1) (5.2)
c2

 F ((c1) , kr2
) (5.3)

c2
 F ((F (c0), kr1

) , kr2
) (5.4)

c3 F ((c2), kr3) (5.5)
c3 F ((F ((F (c0), kr1

) , kr2
) , kr3) (5.6)

similarly,
c15

 F (c14, kr15). (5.7)
c16

 F (c15, kr16). (5.8)
Now let us say the know plaintext-ciphertext pair is c0
and c16. Similarly, we can use as many plaintext-
ciphertext pairs as we require. Since c0 and c16 are
linearly dependant (see (5.2) to (5.8)) and since the
permutations and substitutions are static in all the rounds,
The XOR difference of different ciphertext – plaintext
pairs will allow us to determine the key.
Now let us see the known plaintext attack on key based
permutations and key based substitutions.

c1 F ((c0), kr1),d0) (5.9)
c2

 F ((c1) , kr2
 ,d1) (5.10)

c2
 F ((F (c0), kr1

 ,d0) , kr2
 ,d1) (5.11)

c3 F ((c2), kr3 ,d2) (5.12)
c3 F (F ((F (c0), kr1

 ,d0) , kr2
 ,d1) , kr3 ,d2)

 (5.13)
similarly, c15 F(c14,kr15,d14) (5.14)
c16

 F (c15, kr16,d15) (5.15)
attack on classical feistel ciphers and

 (a) (b)
Encryption using key Decryption using key
based permutations & based permutations &
key based substitutions. key based substitutions.
In this case, even if the plaintext-ciphertext pair c0 and c16
are known, any number of such pairs is of no use mainly
because of two reasons. Firstly, the key based
permutations are not same in all the rounds. They vary

c2

c16

c15

:
:

 Rounnd16

c14

c1

:
:

c15

 d15

c16

c0

 d0

 d14

 d15 d0 c0

Rounnd16

r0

kr16

c15

r1

 d15

F

Permute s-boxes

 d15

r1

ReversePermute
s-boxes

r0

F

 Rounnd15

 kr16

c14

 d14

 d13

r1

ReversePermute
s-boxes

r0

F
 kr15

 Rounnd1

 d0 r1

ReversePermute
s-boxes

r0

F
 kr1

r1Rounnd1

r0

kr1

c1

r1Rounnd2

r0

kr2

 d0

F

 d1

F

Permute s-boxes

d1

Permute s-boxes

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

272

from one round to another round based on permutations,
then he should first know the values of d0, d1,…,d15. And
the values d0, d1, ….d15 are unknown as long as the key is
unknown. Secondly, the order of the key based
substitution boxes is not same in all the rounds. They are
permuted in each round based on the value of di.
Therefore, to know which substitution box is used for
what bits, one must actually know the value of di. And we
know di is unknown as long as the key secret. Thus the
known plaintext attack is also not possible.

Avalanche Effect
 Consider the plaintext “lets pray together for all of
us” (see (4.3)), we have obtained the cipher text given by
(4.12). on changing the first character of the above
plaintext from ‘l’ to ‘k’ (as we know the ASCII codes
of ‘l’ and ‘k’ differ in one bit),keeping the key constant,
we obtain the corresponding cipher as
0001011101001111101101000100110011111100
0101010101110000010010001001000011101100
1100011000001000100111000111011011111110
0100001110000011100111101111101001000100
1111010010101000100000101111101001011101
1101011011111000101100100001111111100110
0010110110111101. (5.16)
Comparing (4.12) and (5.16), we notice that the two
cipher texts differ in 121 bits out of 256 bits. This shows
that that the algorithm exhibits strong avalanche effect. the
value di. And if one has to guess the
 Now let us change the key in one bit and keep the
plaintext as it is. This is achieved by changing the first
number ‘1’ to ‘0’ (since ‘1’ and ‘0’ differ in one bit) in
the key vector K given by (4.1). Then we obtain the
corresponding cipher as

10010100001001011100101000001111000000010
10101000001101111101100100101100110101111
11001010001110000010101110011100010011110
00010100110111111011110100100010110011101
00001011110111011000001011110101110010101
01100011111100001010100001001001001001100
0010111011. (5.17)

On comparing (4.12) and (5.17),we readily notice
that the two ciphers differ in 130 bits out of 256 bits. This
shows that, in our encryption algorithm, the permutations
and substitution boxes that we have derived from the key
exhibit strong avalanche effect.

6. Illustration of permutations

(To get required key based permutation Pi in
the ith round, use

di = Ki mod 4
s = (r + n/2 + di) mod n.
Let the bits to be permuted are as follows.

(6.1)
Since these are the 8 bits.
Here n = 8.
Case 1:
In the ith round, Let di = 0.
Then according to the equation
s = (r + n/2 + di) % n
r = 0 to r < n/2 = { 0, 1, 2, 3 }
Then according to (2.6) & (2.7), The corresponding ‘s’
values will be s = {4, 5 , 6 , 7}
Now interchange the corresponding bits of the ‘rth’ and ‘s

th’ positions in the following order.

Bits after permutation are

Case 2:
Consider the bits of (6.1)
In the ith round, Let di = 2.
Thus, n = 8, r = { 0, 1, 2, 3 } and corresponding ‘s’
values will be
s = { 6, 7, 0, 1 }
Interchange the bits of rth and sth positions in the
following order.

1 0 1 0 0 1 1 1

0 1 2 3 4 5 6 7

0 1 1 1 1 0 1 0

1

3
4

0 1 1 1 1 0 1 0

0 1 2 3 4 5 6 7

2

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

273

Bits after permutation are

Case 3:
Let the number of bits be 4. Thus, n = 4.
Let the bits be as follows.

 (5.2)
In the ith round,
Let di = 1 and
r = 0 to (r < n/2) = { 0 , 1 }. Then,
according to (2.6) & (2.7), the corresponding ‘s’
values will be.
S = { 3, 0 }.
Now interchange the corresponding bits of the
‘rth’ and ‘s th’ positions in the following order.

Bits after permutation are

 Hence, by following the above procedure, bits of block
sizes 64, 128 , 256 etc. or bits of any other higher block
sizes can also be permuted. The interesting thing to be

observed in this process is the key based value di. Since
each round will have distinct di values, we can generate
random permutations in each round without bothering the
block size.

7. Generating key based substitution boxes.

Generation of key based substitution boxes:
 We need 16 Substitution boxes, each containing 8
rows and 32 columns. Let us expand the elements of key
vector K from 16 to 32 numbers. This is done by picking
the 16 numbers of K in the reverse order and placing them
in between every two consecutive elements of vector K
itself. Due to this process, each row of a substitution box
will contain a number which is repeated exactly
twice. Hence, we get a balanced substitution box.
Let this new vector be K1 which is as follows.
K1 = {K0, K15, K1, K14, K2, K13, K3, K12, K4, K11, K5, K10,
K6, K9, K7, K8, K8, K7, K9, K6, K10, K5, K11, K4, K12, K3,
K13, K2, K14, K1, K15 , K0} (7.1) Now compute the 8 bit
binary equivalent of each element in K1 and then convert
the 6th, 7th and 8th bits from 1’s to 0’s and 0’s to 1’s
respectively.

Next Compute the decimal equivalent of respective 8 bits
and place them in a new vector called Kd. Such that
Kd = { Kd

0, Kd
1,….Kd

31 } (7.2)

Left shift vector Kd twice and place these 32 numbers as
the first row in matrix B16x32. Again left shift vector Kd
twice and place those 32 numbers as the second row in
the matrix B16x32. Continue this process for 14 more times
and we get the remaining 14 rows of matrix B16x32.

Now we will take the first row of matrix B16x32 and
permute those 32 numbers by using the following
equation.

 t = (j + n/2 + (i mod 2)) mod n (7.3)

Here n = 32, since we are permuting 32 numbers. Let j =
0 to (j < n/2). Such that, ‘t ‘ and ‘j ’ indicates the
positions at which the elements are to be interchanged.

Let i = 0 to 7. So that, ‘i’ indicates the row
that is to be generated in a substitution box. Such that,
For each value of ‘i’, j = 0 to (j < n/2). Similarly, the
other elements of the SBox can be demonstrated.

0 0 1 1

0 1 2 3

1 0 1 0

1

2

1 0 1 0

0 1 2 3

1 1 1 0 1 0 0 1

0 1 2 3 4 5 6 7

0 1 1 1 1 0 1 0

1
2

3
4

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

274

7.1 Illustration of generating key based substitution boxes

7.2 Illustration of generating substitution boxes:

Consider the following code for required permutations in a substitution box.

K1

K

K0, K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K12, K13, K14, K15.

K d

Kd
0, Kd

1, Kd
2, Kd

3, Kd
4 …………………………………………….. K

d
28. K

d
29. K

d
30. K

d
31.

B0,0, B0,1, B0,2, B0,3, ………………………… B0,29, B0,30, B0,31.
Left shift twice

B1,0, B1,1, B1,2, B1,3, ………………………… B1,29, B1,30, B1,31.

K0, K15, K1, K14, K2, K13, K3, K12, K4, K11, K5, K10, K6, K9, K7, K8,

K8, K7, K9, K6, K10, K5, K11, K4, K12, K3, K13, K2, K14, K1, K15 , K0

Left shift twice

:
:
:
:

:
:
:
:

B14,0, B14,1, B14,2, ………………………… B14,29, B14,30, B14,31.
Left shift twice

B15,0, B15,1, B15,2, ………………………… B15,29, B15,30, B15,31.
Left shift twice

B2,0, B2,1, B2,2, B2,3, ………………………… B2,29, B2,30, B2,31.
Left shift twice

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

275

for b = 0 to 15 // ‘b’ indicates the substitution box
{
 for i = 0 to 7 // ‘i’ indicates the row in bth substitution box
 {
 for j = 0 to 15
 {

 t = (j + n/2 + (i mod 2)) mod n //Permute // ’t’ and ’j’ indicates the interchange (Bi,j , Bi,t)
positions at which elements are to be interchanged.

 }
 for r = 0 to 31
 {
 Sboxb

i,r = Bi,r
 }
 }
}

7.3 Illustration of permuting substitution boxes:

Let the initial order of substitution boxes be bx[16] = { 0, 1, 2, 3,…14, 15}
After permuting the substitution boxes in the first round,
Let bx = { 4, 7, 2, 0,……..15, 9, 1, 11 }. And
After permuting the substitution boxes in the second round,
Let bx = { 1, 12, 6, 15,……..8, 11, 5, 0 }.

Bb,0, Bb,1, Bb,2, Bb,3, ………………………… Bb,29, Bb,30, Bb,31.

 Permute Sboxb
0,0, Sboxb

0,1, Sboxb
0,2, ………………., Sboxb

0,30, Sboxb
0,31.

 Permute Sboxb
1,0, Sboxb

1,1, Sboxb
1,2, ………………., Sboxb

1,30, Sboxb
1,31.

 Permute Sboxb
2,0, Sboxb

2,1, Sboxb
2,2, ………………., Sboxb

2,30, Sboxb
2,31.

 Permute Sboxb
3,0, Sboxb

3,1, Sboxb
3,2, ………………., Sboxb

3,30, Sboxb
3,31.

 Permute Sboxb
4,0, Sboxb

4,1, Sboxb
4,2, ………………., Sboxb

4,30, Sboxb
4,31.

 Permute Sboxb
5,0, Sboxb

5,1, Sboxb
5,2, ………………., Sboxb

5,30, Sboxb
5,31.

 Permute Sboxb
6,0, Sboxb

6,1, Sboxb
6,2, ………………., Sboxb

6,30, Sboxb
6,31.

 Permute Sboxb
7,0, Sboxb

7,1, Sboxb
7,2, ………………., Sboxb

7,30, Sboxb
7,31.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

276

8.Computational experiments and Conclusions

 In this paper, we have developed a block cipher for a
block of size 256 bits. The key contains 32 numbers and
it is represented as a block of 256 bits by using a matrix.
The plaintext which is of 32 characters is also represented
as a matrix of 256 binary bits. The development of cipher

is essentially represented by feistel network and we have
used 16 rounds for encryption. The algorithms given
for the encryption- decryption, permutation and
substitution are all written in C language.
 From the cryptanalysis presented, we have found
that the cipher cannot be broken by the brute force attack
or known plaintext attack. Moreover since we have used
the random substitution boxes and since the permutations

R0 (128 bits)

 P
Permute

Substitution boxes
+ Kr1

128 bits

S4 S7 S11 S1 ……S2 S9

 P

R1 (128 bits)

R0 (128 bits)

 P
Permute

Substitution boxes
+ Kr1

128 bits

S1 S12 S0 S5 ……S6 S11

 P

R1 (128 bits)

Round 1

Round 2

Permutation of Substitution boxes during encryption.
Similarly, during decryption, we perform reverse permutation of substitution boxes.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

277

and substitutions are based on key, the cryptanalysis is
very difficult. Keeping all the above aspects in view, we
conclude that the cipher is a very interesting one and it
cannot be broken by any cryptanalytic attack.
Acknowledgment:

The authors are very thankful to Prof. Depanwita Roy
chaudhury, IIT Kharagpur, for giving her valuable inputs
while writing this paper. We are also thankful to the
management of SreeNidhi Institute of Science and
Technology, for their support and encouragement given
during this research work.

References

[1] William Stallings, “Cryptography and Network
Security: Principles & Practices”, Third edition,
2003,Chapter 2.

[2] Feistel, H. “Cryptography and Computer Privacy”,
Scientific American, vol.228, No.5,pp15-23, 1973.

[3] Feistel, H. , Notz. W. , and Smith. J. “Some
Cryptographic Techniques for machine to machine
Data Communications”, Proceedings of the IEEE, vol.
63, No. 11, pp, 1545- 1554, Nov. 1975.

[4] “Avalanche Characteristics of Substitution –
Permutation Encryption Networks” Tavares S. Heys
H. IEEE Transactions on computers 44(9): 1131-1139,
1995.

[5] Shakir M. Hussain and Naim M. Ajlouni, “key based
random permutation”, “journal of computer science
2(5): 419-421, 2006. ISSN 1549-3636.

