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Summery 
 
This paper proposes an optimized version of the Hamming 
code. The paper begins with identifying a seed that can be used 
as basis to generate Hamming codes. It then shows that starting 
with a message that is only two bits long, along with three 
parity bits; one can add extra message bits incrementally. This 
approach results in significant reduction in the circuitry and 
provides flexibility to designers. Only the H(7,4) was sufficient 
to show an improvement of 33 percent in the hardware 
circuitry. Similar gains for larger sizes are also argued for both 
hardware and software implementations.  
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1. Introduction 
 
Transmission errors have various causes including static 
on devices, environmental interferences or scratches on 
electronic data storage media. When a channel is error 
prone, error correction would likely result in better 
throughput compared to retransmission. However, 
correction is superior to the multiple transmissions 
modes used for space vehicle communications. For these 
modes, each nibble of data is sent several times and when 
received, a majority function is used to select the version 
with the highest frequency. The throughput of error 
correction codes is the main reason they are favored in 
storage devices, digital subscriber lines and mobile 
communications.  
 
In general, if the probability of a single bit error is 
denoted by e, then the probability of receiving an error 
free nibble is (1- e)4. The key for whether or not the 
Hamming code is preferable over other modes of 
retransmission depends on the value of e. As stated 
above, the Hamming code provides an error correction 
mechanism that is used by many applications including 
dynamic random access memory chips and satellite 
communications devices. The Hamming code has been 

proposed for deeply faded wireless asynchronous transfer 
mode networks [1]. The authors argued that the 
Hamming code is a better alternative to solutions 
suggested in [2-5]. In the same paper, the authors 
proposed a typical ROM implementation of the 
Hamming code showing that only 25% of the typical 
ROM implementation circuitry would be necessary.  
 
We will briefly review the Hamming code in the next 
section. The rest of the paper is organized as follows. An 
optimized version of the Hamming code is given in 
section 3. Section 4 presents analysis of the parity bits. 
The Hamming code H(7,4) as a basis for larger codes is 
discussed in section 5 and the conclusion is in section 6. 
 
2. Review of the Hamming Code. 
 
In 1947 R. W. Hamming proposed a thesis in which he 
declared that if a message M with m bits is to be 
transmitted, then, a code C with c bits must be generated. 
The length of M is related to that of C with the following 
equation: 
 
  c = m + p ≤ 2p – 1                           (1) 
 
where p is the number of redundant bits, also called 
parity bits [6]. Without loss of generality, if we take m to 
be equal to 4, then solving equation 1 will result in p and 
c equal to 3 and 7 respectively.  
 
A Hamming code is computed using either even or odd 
parity. Table 1 displays the binary representation of the 
first 7 non-zero decimal digits. Here, the first row shows 
the decimal digits 3, 5, 6 and 7 as subscripts of column 
headers for the 3rd, 5th, 6th, and 7th columns from the right 
respectively. There are no column headers for the first, 
second and fourth columns from the right simply because 
there are not needed at this point. Rows 2 though 4 give 
the corresponding binary representations of these 
subscripts. The row headers P1, P2 and P4 are the three 
parity bits representing the Hamming parity P.  



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 
 

279

Table 1.  Relationship between parity and message bits 
 
 
 
 
 
 
 
We will assume that the parity bits are interleaved with 
the bits of the message M. To compute the parity bits, 
Hamming used the respective row for each. The values 
for P1, P2 and P4 are given by the following equations 
where the symbol @ represents the exclusive or 
operation:  
 
P1=M7@M5@M3@ P1                   (2) 
P2=M7@M6@M3@ P2                   (3) 
P4=M7@M6@M5@ P4                   (4) 
 
Observe that the message bits used for computing a 
parity bit are the column headers of the nonzero entries 
on the row represented by that parity bit. If a column is 
without a header, it represents a parity bit that is 
associated with the column number. In the figure, 
columns 1, 2, and 4 are without headers, hence they 
represent parity bits P1, P2 and P4 . We assume an initial 
value of 0 for each parity bit to enable evaluation of these 
equations. Obviously, building a typical circuit to 
generate these parity bits would require 9 dual input 
exclusive or gates. In the next section we will introduce 
optimization of the Hamming code. 
 
3.  Optimized Hamming for the transmission 
end 
 
Our optimized Hamming approach depends on the 
nonzero bits in a code. It represents another way of 
computing the Hamming parity. At best, no computation 
is necessary and at worst, the number of operations is 
equal to that of the regular Hamming approach. For 
example, if only one bit in a message is equal to 1 then 
the parity for the whole message is given by the binary 
representation of the subscript of that message bit. On the 
other hand, if all the bits of a message are equal to one, 
then the number of operations needed to compute the 
parity is equal to the number of operations needed to 
compute the Hamming code. An example is given next to 
clarify these concepts. 
 
3.1 Computing the parity at the transmitting end 
 
Without loss of generality and for a message M = 
M7M6M5M3 = 1010, we can compute P by simply 

performing bit-by-bit exclusive-or operations on the 
binary representation of the subscripts of the nonzero bits 
of M.  
 
Therefore,    P  = M7@M5   

                                 = 7 @ 5  
                        = 111 @ 101 
                        = 010 
 
The transmitted code (message and parity) will therefore 
be equal to:  
 
M7M6M5P4M3P2P1 = 1010010        (5) 
 
We will discuss computing the error bits at the receiving 
end next. 
 
3.2 Computing the error bits at the receiving end 
 
At the receiving end, the same process is used but not for 
computing parity bits, rather it is used for computing 
error bits. First, we will review the Hamming equations 
for computing error bits. 
 
3.2.1 Hamming approach 
 
The error E = e1e2e3 is computed using the following 
equations: 
 
e1=P4@M5@M6@M7                   (6) 
e2=P2@M3@M6@M7                   (7) 
e3=P1@M3@M5@M7                    (8) 
 
The next step is to use our optimized version of 
Hamming approach in computing the error bits. 
 
3.2.2 Optimized Hamming 
 
We will first consider the received code to be error free. 
Then the Right Hand Side (RHS) of equation (5) gives 
the following: 
M7@M5@P2= 000                       (9) 
               M5@P2   =  M7             (10) 
               M7 @P2   = M5             (11) 
               M7 @M5  =  P2              (12) 

        code 
parity  

M7 M6 M5  M3   

P1 1 0 1 0 1 0 1 
P2  1 1 0 0 1 1 0 
P4 1 1 1 1 0 0 0 
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Equation (9) includes only message and parity bit 
variables that are equal to 1 in the originally transmitted 
code. However, if any of the bits of the code is flipped 
during transmission, equation (9) will not be equal to 
000. Remember, only message and parity bit variables 
that are equal to 1 were included in computing the parity 
at the transmitting end.  
 
Clearly, a single bit error would change a 0 to 1 or vice 
versa. If a 0 is changed to 1 then, M6, P4, M3 or P1 
would be exclusive or-ed with the Left Hand Side (LHS) 
of equation (9) at the receiving end. The result would 
give the binary equivalence of the subscript of the faculty 
bit on the RHS. Consequently, the RHS would be equal 
to the binary representation of the offending bit. On the 
other hand, if a 1 is toggled to 0 during transmission, 
then one of the original variables (M7, M5, or P2) of 
equation (9) would not be included in the computation of 
the parity at the receiving end. Hence, the RHS of 
equation (9) would not be equal to 000. If we exclusive 
or both sides of equation (9) with M7, M5, or P2, we will 
end up with equation (10), (11) or (12) respectively. The 
RHS of each of these equations gives the dropped 
variable. The binary representation of the dropped 
variable gives the Hamming parity for the received code.  
 
In any case, the value on the RHS of equation (9) will 
either be equal to 000 or something else. Henceforth, 
these values are referred to as the error E. Once a gain, a 

comparison between equations 6, 7 and 8 on the one 
hand, and equations 9, 10, 11 and 12 on the other hand 
reveals the advantages of the optimized Hamming 
approach. 
 
Clearly, the error E may take the equivalence of any 
decimal value from 0 to 7. Therefore, the following 
conclusions can be drawn. 
 

1. If E is equal to 0 or equal to a power of 2, then 
no action should be taken and the received 
message section is intact.  

2. Otherwise the value of E will determine the 
subscript of the bit in M that should be flipped 
to restore the correct value. 

 
The next step is to introduce our proposed 
implementation of the optimized Hamming. However, 
we will furnish for that by a facilitating theorem right 
after analyzing the parity bits. 
 
4. Analysis of the parity bits 
 
The first row on Table 2 shows the decimal equivalence 
of the 16 possible combinations of 4 bit binary numbers. 
Each of the 16 possibilities represents a message. The 
second row shows the corresponding Hamming parity 
bits in their decimal digit forms.  

 
Table 2. Decimal equivalence of 4 bit codes and their parity bits 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 3 5 6 6 5 3 0 7 4 2 1 1 2 4 7 

 
This table shows that the parity for a message 
represented by the number 3 is identical to that of a 
message represented by the number 4. The same 
conclusion is true about messages represented by the 
numbers 11 and 12. A closer look at the analysis of 
equations (10) through (12) will justify such equality. We 
will comment on two interesting observations here. The 
first is the equidistance between (3 and 11) on the one 
hand, and (4 and 12) on the other hand. This distance is 
equal to 2n-1 where n in this case is the number of bits 
(4). That is, if we replaced the Most Significant Bit 
(MSB) of the 4 bit binary code of the number 3 with the 
digit 1 we will end up with the number 11 and the same 
is true for the numbers 4 and 12. The second observation 
is that the parity for the number 3 (4) is the complement 
of the parity for the number 11 (12). Though trivial, these 
observations will be helpful in the presentation of the 
theorem. However, we will also need the following 

definitions before discussing the theorem:  
 
Definitions: 
 

1.  S ( L) : The set of all codes of length L bits. 
2. SA (L): The subset of S ( L) that can be used to 

represent the symbol A. 
3. C(j, k) : A code with j message bits and k parity 

bits where j +k = L. 
4. D(Ci,Cj) :  The distance or number of bits in which 

Ci and Cj are different. 
5. 'b : The complement of a binary digit b. 
6. Mk: A message bit where k takes any value in the 

sequence 3, 5, 6, …, m of positive integers that are 
not powers of two.  

7. Parity mode: Defines the even or odd parity used 
in computing the Hamming parity bits of a 
message. 
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We remind the reader that given any C1 and C2 in S (4), 
if C1 = 1011 and C2 = 0101, then D (C1, C2) = 3 because 
the three most significant bits are different. We also 
remind the reader of a well known coding theorem which 
states that: for any code space S (L), if D(Ci,Cj) >1 for 
every i and j, where i ≠ j, then the space is capable of 
detecting a single error. However, if D(Ci,Cj) > 2, then 
the space would be capable of correcting a single error 
and detecting two errors. Now we are ready to discuss 
the theorem. 
 
 
Theorem  
 
For any message M =  Mm-1  … M5M3,  if: 

1. The Hamming parity for M is equal to  Pq  … P4 
P2P1 

2.  q is a power of two  
3.  m is equal to 2q – 1   

Then the parity for  MmMm-1  … M5M3  would either be 
equal to   Pq  … P4P2P1 or   'Pq  … 'P4'P2'P1  depending 
on the value of Mm  being a 0  or a 1 respectively. 
 
To prove this theorem we need to show that if the 
distance between any pair of codes that are represented 
by Mm-1  … M5M3 Pq  … P4 P2P1 is at least 3 then: 

1.  the distance between any pair of codes 
represented by 0Mm-1  … M5M3 Pq  … P4P2P1 is 
at least 3. 

2. the distance between any pair of codes 
represented by 1Mm-1  … M5M3 Pq  … P4P2P1 is 
at least 3. 

3. The distance between any code from the first 
group (1) and any code from the second (2)  is 
also at least 3. 

These conditions simply imply that appending a 0 to the 
MSB of a code at the (2q – 1)’s position will not change 
the parity bits. On the other hand, appending a 1 at the 
same position will force the inversion of each of the 
parity bits.  
 
The simplest way to prove this theorem is by induction 
hypothesis. Since for a code to correct a single error, the 
distance D must be at least 3, it follows that the code 
must have a minimum length of 3 bits. However, for L 
equals 3, there are exactly two valid codes in the space S 
(3) that satisfy the minimum distance. In this case the 
codes are C1 and C2 = 'C1.   
 
A legitimate question is as follows: why are there only 
two valid codes in S(3)? The answer is given in the 
following example. Given the space S(3) = { 000, 001, 
010, 011, 100, 101, 110, 111}, let us assume without loss 
of generality that the code C1 is encoded as 000. It 

follows that C2 would be encoded as 111. But what about 
the rest of the bit patterns of S(3) which are included 
between the following curl brackets 
{001,010,001,011,101 and 110}? Here is the key for the 
answer. Assume that the letters A and B are encoded 
using C1 = 000 and C2 = 111 respectively. Technically 
speaking, a receiver at the other end of transmission 
would recognize the letter A upon receiving any of the 
members of the subset SA(3) = {000, 001,010, 001}. 
Similarly, the letter B would be recognized by a receiver 
if any of the members of SB(3) = {011,101, 110, 111} is 
received.  In both cases, receiving a boldfaced pattern 
implies no error had occurred, otherwise, receiving any 
of their subset mates implies that a single bit correctable 
error has occurred. 
 
Since L = 3 is not challenging enough, we will use a 
code with L = 4, or a C (1, 3) code.  We will first prove 
that our hypothesis is true for L = 4. Then prove the 
hypothesis for L = 11 or C (4, 3). Finally, we will 
assume that the hypotheses is true for L = m-1 and then 
prove it to be true for L = m, where m is greater than 11.  
 
 
Our C (1, 3), which can be represented by M3P4P2P1 is 
equal to 'M30M3M3. This shows that there are only two 
valid codes in S (4); namely (0011) and (1000) according 
to our theorem. Obviously the distance between these 
two codes is 3, so, the hypothesis is true for C (1, 3).   
 
 
Our C (4, 3) is just another notation for Hamming code 
H (7, 4). The proof for C (4, 3) which is represented by 
M7M6M5M3P4P2P1 is as follows: 
 
Assume the theorem is true for C (3, 3), that is, the 
minimum distance between any pair of codes represented 
by R1 = M6M5M3P4P2P1  is at least 3. Here, R1 
represents an S(6) code space.  
 
 
We will divide the proof into three parts. That is, we will 
prove that: 

1. D(Ci,Cj) > 2 where both Ci and Cj are 
represented by R2 = M6M5M3'P4'P2'P1 and i 
≠j. 

2. D(Ci,Cj) > 2 where Ci is represented by 
0M6M5M3P4P2P1 and Cj is represented by 
1M6M5M3'P4'P2'P1, and i can be equal to j. 

3. D(Ci,Cj) > 2  where Ci = 0N6N5N3Q4Q2Q1 and 
Cj = 1M6M5M3'P4'P2'P1  and i can be equal to 
j 

 
Part (1): To prove this part we need to examine R1. 
Since every pair of codes represented by R1 satisfies a 
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minimum distance of at least 3, it follows that R2 will 
also satisfy the minimum distance of at least 3. The 
reason is simple, the parity bits for R1= M6M5M3P4P2P1 
which are given by P4P2P1, were originally computed 
using even (odd) parity mode. If we invert each of these 
parity bits, then we would get the parity mode changed 
to odd (even) and the message part of R1 along with the 
inverted parity bits would be equal to M6M5M3'P4'P2'P1. 
However, the distance between any pair of codes of the 
modified R1 would still remain at least 3. Since the 
modified R1 is identical to R2, it follows that the distance 
between every pair of codes represented by R2 is also at 
least 3.  
 
Part (2): This part follows from the first. That is, 
appending M7 = 1 as the most significant digit to 
M6M5M3P4P2P1 results in a code that is equal to 
1M6M5M3P4P2P1. However, this code cannot retain both 
the same parity bits and the original parity mode. Either 
the parity mode has to survive at the cost of inverting 
the parity bits or the parity bits have to survive at the cost 
of accepting the flipped parity mode.  Since for our case 
the parity mode has to remain the same, we need to 
complement each of the Hamming parity bits.  This 
proves that the two forms: 0M6M5M3P4P2P1 and 
1M6M5M3’P4’P2’P1 follow the same parity mode and 
the distance between any code from the first and another 
from the second is at least 3. 
 
Part (3): For the last part, we have to consider the 
distance between 1M6M5M3'P4'P2'P1 and 
0N6N5N3Q4Q2Q1.  If the distance between N6N5N3 and 
M6M5M3 is the minimum, that is, equals to 1, then we 
need to show that the distance between Q4Q2Q1 and 
'P4'P2'P1 is at least 2. Without loss of generality, assume 
that: N6N5 = M6M5; N3 = 1; and M3=0. Hence, using the 
optimized Hamming approach we can compute the parity 
bits for M6M5M3 and N6N5N3 as M6@M5 @000 = 
'P4'P2'P1 and N6@N5@011= Q4Q2Q1 respectively. 
Since: N6N5 = M6M5 it follows that Q2Q1 would be equal 
to P2P1. Hence, the distance between the parity bits 
'P4'P2'P1 and Q4Q2Q1 is at least 2. This completes the 
proof for the case when the distance between the 
message bits is 1. When the distance between the 
message bits is 2 (or 3), a similar argument will prove 
that the distance between their respective parity bits is at 
least 1( or 0). In any case, the overall distance (message 

+ parity) will always be at least 3. This completes the 
proof of the theorem. 
  
Corollary 1 
 
The parity bits for a Hamming code of length 2n – 1 can 
be obtained from the set of parity bits of the Hamming 
code of length 2n-1 – 1. 
 
Lemma 1 
 
For a Hamming code where c = m + p <  2p – 1, the 
parity for a message of length m bits can be computed 
from the parity of the least significant (m-1) message bits 
simply by performing exclusive-or operation of the bits 
of the number m with those of the parity bits for the (m-
1) bits section. 
 
The proof follows directly from the proof of theorem 1, 
hence it is ignored. 
 
Corollary 2 
 
Our C(4,3) forms a basis from which any Hamming code 
of any length could be generated.  
 
These corollaries are helpful in situations where a lookup 
table has to be stored to avoid real time computation. 
Instead of storing all the message and parity bits of a 
large Hamming code, one can simply store the table for 
C (4, 3) and then generate the required code size on real 
time quite easily. In the next section we will discuss the 
advantages of using C (4, 3) as basis.  
 
5. The H (7, 4) as basis  
 
Figure 1 show an implementation of our C(4,3) code. 
One can easily verify that this figure is consistent with 
the proposed theorem since the second level exclusive or 
gates will either pass or invert the outputs of the first 
level exclusive or gates depending on the value of M7. 
Expectedly, the first level gates produce the parity bits 
for codes with up to three message bits. It is important to 
assume that the default value for an input line is logical 
zero. 
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Figure 1. Exclusive Or Implementation of the H(7,4) Code 
 
As discussed earlier, the implementation of an H(7,4) 
with dual input exclusive or gates will require 9 gates 
compared to only 6 in figure 1. That is a saving of 33%. 
We can achieve a better design with only 1 exclusive or 
gate and 5 inverters as shown in figure 2. The parity bits 
can be computed for two, three and four message bits. In 
the first stage we start with only two message bits M3 
and M5 and show the required circuit. We then add M6 in 

the second stage followed by M7 in the third. The 
addition of M6 will enable the inverters to toggle P4 and 
P2 when M6 is equal to 1. When M6 is equal to 0 no 
inversion takes place.  Similarly, on the last stage, the 
addition of M7 would flip all three parity bits when M7 is 
equal to 1. Otherwise, no inversion takes place. The 
figure assumes both M6 and M7 to be equal to 1.  

 
                                                                                          

                                                                                                    
  
                                                                                             

 
                        
 
 
                        
 
 
 

                                     
 
 
 
 
                        
 

 
 
 

Figure 2. Incremental Implementation of the Hamming code 
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6. Conclusion 
 
A modular implementing of a Hamming code has been 
introduced. The implementation is based on first building 
a seed circuit for a smaller size code and then 
incrementally adding message bits as necessary. Such 
approach provides flexibility to both hardware and 
software designers. Moreover, incremental addition of 
message bits provides savings in circuitry that is directly 
proportional to the size of the intended Hamming code. 
The paper demonstrated a reduction of 33% in circuitry 
when incremental approach is used for the H(7,4) case. 
Furthermore, in situations where a Hamming table needs 
to be store, the proposed optimization enables storing 
only the seed thereby saving storage space. 
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