
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

278

Optimization of the Hamming Code for Error Prone Media

Eltayeb S. Abuelyaman and Abdul-Aziz S. Al-Sehibani
College of Computer and Information Sciences

Prince Sultan University

Summery

This paper proposes an optimized version of the Hamming
code. The paper begins with identifying a seed that can be used
as basis to generate Hamming codes. It then shows that starting
with a message that is only two bits long, along with three
parity bits; one can add extra message bits incrementally. This
approach results in significant reduction in the circuitry and
provides flexibility to designers. Only the H(7,4) was sufficient
to show an improvement of 33 percent in the hardware
circuitry. Similar gains for larger sizes are also argued for both
hardware and software implementations.

Key words:
Hamming code, parity bits, distance, error correction.

1. Introduction

Transmission errors have various causes including static
on devices, environmental interferences or scratches on
electronic data storage media. When a channel is error
prone, error correction would likely result in better
throughput compared to retransmission. However,
correction is superior to the multiple transmissions
modes used for space vehicle communications. For these
modes, each nibble of data is sent several times and when
received, a majority function is used to select the version
with the highest frequency. The throughput of error
correction codes is the main reason they are favored in
storage devices, digital subscriber lines and mobile
communications.

In general, if the probability of a single bit error is
denoted by e, then the probability of receiving an error
free nibble is (1- e)4. The key for whether or not the
Hamming code is preferable over other modes of
retransmission depends on the value of e. As stated
above, the Hamming code provides an error correction
mechanism that is used by many applications including
dynamic random access memory chips and satellite
communications devices. The Hamming code has been

proposed for deeply faded wireless asynchronous transfer
mode networks [1]. The authors argued that the
Hamming code is a better alternative to solutions
suggested in [2-5]. In the same paper, the authors
proposed a typical ROM implementation of the
Hamming code showing that only 25% of the typical
ROM implementation circuitry would be necessary.

We will briefly review the Hamming code in the next
section. The rest of the paper is organized as follows. An
optimized version of the Hamming code is given in
section 3. Section 4 presents analysis of the parity bits.
The Hamming code H(7,4) as a basis for larger codes is
discussed in section 5 and the conclusion is in section 6.

2. Review of the Hamming Code.

In 1947 R. W. Hamming proposed a thesis in which he
declared that if a message M with m bits is to be
transmitted, then, a code C with c bits must be generated.
The length of M is related to that of C with the following
equation:

 c = m + p ≤ 2p – 1 (1)

where p is the number of redundant bits, also called
parity bits [6]. Without loss of generality, if we take m to
be equal to 4, then solving equation 1 will result in p and
c equal to 3 and 7 respectively.

A Hamming code is computed using either even or odd
parity. Table 1 displays the binary representation of the
first 7 non-zero decimal digits. Here, the first row shows
the decimal digits 3, 5, 6 and 7 as subscripts of column
headers for the 3rd, 5th, 6th, and 7th columns from the right
respectively. There are no column headers for the first,
second and fourth columns from the right simply because
there are not needed at this point. Rows 2 though 4 give
the corresponding binary representations of these
subscripts. The row headers P1, P2 and P4 are the three
parity bits representing the Hamming parity P.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

279

Table 1. Relationship between parity and message bits

We will assume that the parity bits are interleaved with
the bits of the message M. To compute the parity bits,
Hamming used the respective row for each. The values
for P1, P2 and P4 are given by the following equations
where the symbol @ represents the exclusive or
operation:

P1=M7@M5@M3@ P1 (2)
P2=M7@M6@M3@ P2 (3)
P4=M7@M6@M5@ P4 (4)

Observe that the message bits used for computing a
parity bit are the column headers of the nonzero entries
on the row represented by that parity bit. If a column is
without a header, it represents a parity bit that is
associated with the column number. In the figure,
columns 1, 2, and 4 are without headers, hence they
represent parity bits P1, P2 and P4 . We assume an initial
value of 0 for each parity bit to enable evaluation of these
equations. Obviously, building a typical circuit to
generate these parity bits would require 9 dual input
exclusive or gates. In the next section we will introduce
optimization of the Hamming code.

3. Optimized Hamming for the transmission
end

Our optimized Hamming approach depends on the
nonzero bits in a code. It represents another way of
computing the Hamming parity. At best, no computation
is necessary and at worst, the number of operations is
equal to that of the regular Hamming approach. For
example, if only one bit in a message is equal to 1 then
the parity for the whole message is given by the binary
representation of the subscript of that message bit. On the
other hand, if all the bits of a message are equal to one,
then the number of operations needed to compute the
parity is equal to the number of operations needed to
compute the Hamming code. An example is given next to
clarify these concepts.

3.1 Computing the parity at the transmitting end

Without loss of generality and for a message M =
M7M6M5M3 = 1010, we can compute P by simply

performing bit-by-bit exclusive-or operations on the
binary representation of the subscripts of the nonzero bits
of M.

Therefore, P = M7@M5

 = 7 @ 5
 = 111 @ 101
 = 010

The transmitted code (message and parity) will therefore
be equal to:

M7M6M5P4M3P2P1 = 1010010 (5)

We will discuss computing the error bits at the receiving
end next.

3.2 Computing the error bits at the receiving end

At the receiving end, the same process is used but not for
computing parity bits, rather it is used for computing
error bits. First, we will review the Hamming equations
for computing error bits.

3.2.1 Hamming approach

The error E = e1e2e3 is computed using the following
equations:

e1=P4@M5@M6@M7 (6)
e2=P2@M3@M6@M7 (7)
e3=P1@M3@M5@M7 (8)

The next step is to use our optimized version of
Hamming approach in computing the error bits.

3.2.2 Optimized Hamming

We will first consider the received code to be error free.
Then the Right Hand Side (RHS) of equation (5) gives
the following:
M7@M5@P2= 000 (9)
 M5@P2 = M7 (10)
 M7 @P2 = M5 (11)
 M7 @M5 = P2 (12)

 code
parity

M7 M6 M5 M3

P1 1 0 1 0 1 0 1
P2 1 1 0 0 1 1 0
P4 1 1 1 1 0 0 0

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

280

Equation (9) includes only message and parity bit
variables that are equal to 1 in the originally transmitted
code. However, if any of the bits of the code is flipped
during transmission, equation (9) will not be equal to
000. Remember, only message and parity bit variables
that are equal to 1 were included in computing the parity
at the transmitting end.

Clearly, a single bit error would change a 0 to 1 or vice
versa. If a 0 is changed to 1 then, M6, P4, M3 or P1
would be exclusive or-ed with the Left Hand Side (LHS)
of equation (9) at the receiving end. The result would
give the binary equivalence of the subscript of the faculty
bit on the RHS. Consequently, the RHS would be equal
to the binary representation of the offending bit. On the
other hand, if a 1 is toggled to 0 during transmission,
then one of the original variables (M7, M5, or P2) of
equation (9) would not be included in the computation of
the parity at the receiving end. Hence, the RHS of
equation (9) would not be equal to 000. If we exclusive
or both sides of equation (9) with M7, M5, or P2, we will
end up with equation (10), (11) or (12) respectively. The
RHS of each of these equations gives the dropped
variable. The binary representation of the dropped
variable gives the Hamming parity for the received code.

In any case, the value on the RHS of equation (9) will
either be equal to 000 or something else. Henceforth,
these values are referred to as the error E. Once a gain, a

comparison between equations 6, 7 and 8 on the one
hand, and equations 9, 10, 11 and 12 on the other hand
reveals the advantages of the optimized Hamming
approach.

Clearly, the error E may take the equivalence of any
decimal value from 0 to 7. Therefore, the following
conclusions can be drawn.

1. If E is equal to 0 or equal to a power of 2, then
no action should be taken and the received
message section is intact.

2. Otherwise the value of E will determine the
subscript of the bit in M that should be flipped
to restore the correct value.

The next step is to introduce our proposed
implementation of the optimized Hamming. However,
we will furnish for that by a facilitating theorem right
after analyzing the parity bits.

4. Analysis of the parity bits

The first row on Table 2 shows the decimal equivalence
of the 16 possible combinations of 4 bit binary numbers.
Each of the 16 possibilities represents a message. The
second row shows the corresponding Hamming parity
bits in their decimal digit forms.

Table 2. Decimal equivalence of 4 bit codes and their parity bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 3 5 6 6 5 3 0 7 4 2 1 1 2 4 7

This table shows that the parity for a message
represented by the number 3 is identical to that of a
message represented by the number 4. The same
conclusion is true about messages represented by the
numbers 11 and 12. A closer look at the analysis of
equations (10) through (12) will justify such equality. We
will comment on two interesting observations here. The
first is the equidistance between (3 and 11) on the one
hand, and (4 and 12) on the other hand. This distance is
equal to 2n-1 where n in this case is the number of bits
(4). That is, if we replaced the Most Significant Bit
(MSB) of the 4 bit binary code of the number 3 with the
digit 1 we will end up with the number 11 and the same
is true for the numbers 4 and 12. The second observation
is that the parity for the number 3 (4) is the complement
of the parity for the number 11 (12). Though trivial, these
observations will be helpful in the presentation of the
theorem. However, we will also need the following

definitions before discussing the theorem:

Definitions:

1. S (L) : The set of all codes of length L bits.
2. SA (L): The subset of S (L) that can be used to

represent the symbol A.
3. C(j, k) : A code with j message bits and k parity

bits where j +k = L.
4. D(Ci,Cj) : The distance or number of bits in which

Ci and Cj are different.
5. 'b : The complement of a binary digit b.
6. Mk: A message bit where k takes any value in the

sequence 3, 5, 6, …, m of positive integers that are
not powers of two.

7. Parity mode: Defines the even or odd parity used
in computing the Hamming parity bits of a
message.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

281

We remind the reader that given any C1 and C2 in S (4),
if C1 = 1011 and C2 = 0101, then D (C1, C2) = 3 because
the three most significant bits are different. We also
remind the reader of a well known coding theorem which
states that: for any code space S (L), if D(Ci,Cj) >1 for
every i and j, where i ≠ j, then the space is capable of
detecting a single error. However, if D(Ci,Cj) > 2, then
the space would be capable of correcting a single error
and detecting two errors. Now we are ready to discuss
the theorem.

Theorem

For any message M = Mm-1 … M5M3, if:

1. The Hamming parity for M is equal to Pq … P4
P2P1

2. q is a power of two
3. m is equal to 2q – 1

Then the parity for MmMm-1 … M5M3 would either be
equal to Pq … P4P2P1 or 'Pq … 'P4'P2'P1 depending
on the value of Mm being a 0 or a 1 respectively.

To prove this theorem we need to show that if the
distance between any pair of codes that are represented
by Mm-1 … M5M3 Pq … P4 P2P1 is at least 3 then:

1. the distance between any pair of codes
represented by 0Mm-1 … M5M3 Pq … P4P2P1 is
at least 3.

2. the distance between any pair of codes
represented by 1Mm-1 … M5M3 Pq … P4P2P1 is
at least 3.

3. The distance between any code from the first
group (1) and any code from the second (2) is
also at least 3.

These conditions simply imply that appending a 0 to the
MSB of a code at the (2q – 1)’s position will not change
the parity bits. On the other hand, appending a 1 at the
same position will force the inversion of each of the
parity bits.

The simplest way to prove this theorem is by induction
hypothesis. Since for a code to correct a single error, the
distance D must be at least 3, it follows that the code
must have a minimum length of 3 bits. However, for L
equals 3, there are exactly two valid codes in the space S
(3) that satisfy the minimum distance. In this case the
codes are C1 and C2 = 'C1.

A legitimate question is as follows: why are there only
two valid codes in S(3)? The answer is given in the
following example. Given the space S(3) = { 000, 001,
010, 011, 100, 101, 110, 111}, let us assume without loss
of generality that the code C1 is encoded as 000. It

follows that C2 would be encoded as 111. But what about
the rest of the bit patterns of S(3) which are included
between the following curl brackets
{001,010,001,011,101 and 110}? Here is the key for the
answer. Assume that the letters A and B are encoded
using C1 = 000 and C2 = 111 respectively. Technically
speaking, a receiver at the other end of transmission
would recognize the letter A upon receiving any of the
members of the subset SA(3) = {000, 001,010, 001}.
Similarly, the letter B would be recognized by a receiver
if any of the members of SB(3) = {011,101, 110, 111} is
received. In both cases, receiving a boldfaced pattern
implies no error had occurred, otherwise, receiving any
of their subset mates implies that a single bit correctable
error has occurred.

Since L = 3 is not challenging enough, we will use a
code with L = 4, or a C (1, 3) code. We will first prove
that our hypothesis is true for L = 4. Then prove the
hypothesis for L = 11 or C (4, 3). Finally, we will
assume that the hypotheses is true for L = m-1 and then
prove it to be true for L = m, where m is greater than 11.

Our C (1, 3), which can be represented by M3P4P2P1 is
equal to 'M30M3M3. This shows that there are only two
valid codes in S (4); namely (0011) and (1000) according
to our theorem. Obviously the distance between these
two codes is 3, so, the hypothesis is true for C (1, 3).

Our C (4, 3) is just another notation for Hamming code
H (7, 4). The proof for C (4, 3) which is represented by
M7M6M5M3P4P2P1 is as follows:

Assume the theorem is true for C (3, 3), that is, the
minimum distance between any pair of codes represented
by R1 = M6M5M3P4P2P1 is at least 3. Here, R1
represents an S(6) code space.

We will divide the proof into three parts. That is, we will
prove that:

1. D(Ci,Cj) > 2 where both Ci and Cj are
represented by R2 = M6M5M3'P4'P2'P1 and i
≠j.

2. D(Ci,Cj) > 2 where Ci is represented by
0M6M5M3P4P2P1 and Cj is represented by
1M6M5M3'P4'P2'P1, and i can be equal to j.

3. D(Ci,Cj) > 2 where Ci = 0N6N5N3Q4Q2Q1 and
Cj = 1M6M5M3'P4'P2'P1 and i can be equal to
j

Part (1): To prove this part we need to examine R1.
Since every pair of codes represented by R1 satisfies a

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

282

minimum distance of at least 3, it follows that R2 will
also satisfy the minimum distance of at least 3. The
reason is simple, the parity bits for R1= M6M5M3P4P2P1
which are given by P4P2P1, were originally computed
using even (odd) parity mode. If we invert each of these
parity bits, then we would get the parity mode changed
to odd (even) and the message part of R1 along with the
inverted parity bits would be equal to M6M5M3'P4'P2'P1.
However, the distance between any pair of codes of the
modified R1 would still remain at least 3. Since the
modified R1 is identical to R2, it follows that the distance
between every pair of codes represented by R2 is also at
least 3.

Part (2): This part follows from the first. That is,
appending M7 = 1 as the most significant digit to
M6M5M3P4P2P1 results in a code that is equal to
1M6M5M3P4P2P1. However, this code cannot retain both
the same parity bits and the original parity mode. Either
the parity mode has to survive at the cost of inverting
the parity bits or the parity bits have to survive at the cost
of accepting the flipped parity mode. Since for our case
the parity mode has to remain the same, we need to
complement each of the Hamming parity bits. This
proves that the two forms: 0M6M5M3P4P2P1 and
1M6M5M3’P4’P2’P1 follow the same parity mode and
the distance between any code from the first and another
from the second is at least 3.

Part (3): For the last part, we have to consider the
distance between 1M6M5M3'P4'P2'P1 and
0N6N5N3Q4Q2Q1. If the distance between N6N5N3 and
M6M5M3 is the minimum, that is, equals to 1, then we
need to show that the distance between Q4Q2Q1 and
'P4'P2'P1 is at least 2. Without loss of generality, assume
that: N6N5 = M6M5; N3 = 1; and M3=0. Hence, using the
optimized Hamming approach we can compute the parity
bits for M6M5M3 and N6N5N3 as M6@M5 @000 =
'P4'P2'P1 and N6@N5@011= Q4Q2Q1 respectively.
Since: N6N5 = M6M5 it follows that Q2Q1 would be equal
to P2P1. Hence, the distance between the parity bits
'P4'P2'P1 and Q4Q2Q1 is at least 2. This completes the
proof for the case when the distance between the
message bits is 1. When the distance between the
message bits is 2 (or 3), a similar argument will prove
that the distance between their respective parity bits is at
least 1(or 0). In any case, the overall distance (message

+ parity) will always be at least 3. This completes the
proof of the theorem.

Corollary 1

The parity bits for a Hamming code of length 2n – 1 can
be obtained from the set of parity bits of the Hamming
code of length 2n-1 – 1.

Lemma 1

For a Hamming code where c = m + p < 2p – 1, the
parity for a message of length m bits can be computed
from the parity of the least significant (m-1) message bits
simply by performing exclusive-or operation of the bits
of the number m with those of the parity bits for the (m-
1) bits section.

The proof follows directly from the proof of theorem 1,
hence it is ignored.

Corollary 2

Our C(4,3) forms a basis from which any Hamming code
of any length could be generated.

These corollaries are helpful in situations where a lookup
table has to be stored to avoid real time computation.
Instead of storing all the message and parity bits of a
large Hamming code, one can simply store the table for
C (4, 3) and then generate the required code size on real
time quite easily. In the next section we will discuss the
advantages of using C (4, 3) as basis.

5. The H (7, 4) as basis

Figure 1 show an implementation of our C(4,3) code.
One can easily verify that this figure is consistent with
the proposed theorem since the second level exclusive or
gates will either pass or invert the outputs of the first
level exclusive or gates depending on the value of M7.
Expectedly, the first level gates produce the parity bits
for codes with up to three message bits. It is important to
assume that the default value for an input line is logical
zero.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

283

Figure 1. Exclusive Or Implementation of the H(7,4) Code

As discussed earlier, the implementation of an H(7,4)
with dual input exclusive or gates will require 9 gates
compared to only 6 in figure 1. That is a saving of 33%.
We can achieve a better design with only 1 exclusive or
gate and 5 inverters as shown in figure 2. The parity bits
can be computed for two, three and four message bits. In
the first stage we start with only two message bits M3
and M5 and show the required circuit. We then add M6 in

the second stage followed by M7 in the third. The
addition of M6 will enable the inverters to toggle P4 and
P2 when M6 is equal to 1. When M6 is equal to 0 no
inversion takes place. Similarly, on the last stage, the
addition of M7 would flip all three parity bits when M7 is
equal to 1. Otherwise, no inversion takes place. The
figure assumes both M6 and M7 to be equal to 1.

Figure 2. Incremental Implementation of the Hamming code

P4 P2 P1

'P4' 'P2 P1

P4 P2 'P1 M7

M6

M3

2 message bits

Adding a fourth

Adding a third

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

284

6. Conclusion

A modular implementing of a Hamming code has been
introduced. The implementation is based on first building
a seed circuit for a smaller size code and then
incrementally adding message bits as necessary. Such
approach provides flexibility to both hardware and
software designers. Moreover, incremental addition of
message bits provides savings in circuitry that is directly
proportional to the size of the intended Hamming code.
The paper demonstrated a reduction of 33% in circuitry
when incremental approach is used for the H(7,4) case.
Furthermore, in situations where a Hamming table needs
to be store, the proposed optimization enables storing
only the seed thereby saving storage space.

References

[1] Abuelyaman E. and Daniel S. "SPEC: Single-Packet Error Control

Protocol for WATM Networks" Proceedings of the 2003 ICWN, pp
504-509, Las Vegas, USA, 2003

[2] G. Bernelli, et al " A Data Link Layer Protocol for Wireless ATM,"
IEEE Tran on Communications, pp 1438-1442, 1997

[3] I. F. Alkyildiz et al "A new ARQ Protocol for Wireless ATM
Networks," IEEE Trans on Communications, pp 1109-1113, 1998

[4] H. Xie et al "Data Link Control Protocol for WATM Access
Channels" Internet Document on E6950 Wireless on Mobile
Networking, 1996

[5] G. A. Aderounmu et al " Performance Comparison of Data Link
Control Protocols for wireless ATM Networks," International
Journal of Computers and Applications 2002, vol 24, No 3, pp 144-
152, September, 2002

[6] R. W. Hamming "Error Detection and Error Correction Codes" Bell
Systems Tech. Journal, vol 29, pp 147-160, April, 1950

Eltayeb Salih Abuelyaman
received a PhD degree in Computer
Engineering from the University of
Arizona in 1988. He served as faculty
member at various universities in the
US for 18 years before moving to
Prince Sultan University in Saudi
Arabia where he served as a Faculty
Member, the Director of the
Information Technology and

Computing Services and currently serves as the Dean of the
College of Computer and Information Sciences. His current
research Interest is in the areas of Computer Networks,
Information Security and Database.

Dr. Abdul-Aziz Sultan Alsehibani
received a BS and MS degrees in
Computer Engineering from King
Saud University in 1989 and
Syracuse University in 1993
respectively. He received a PhD
degree in Computer Science from
Syracuse University in 1999. He
served as faculty member at King
Saud University before joining
Prince Sultan University where he
is currently serving as the Dean of

Admissions and Registration. He also served as interim Dean
for the College of Computer and Information Sciences form
2006 to 2007. Dr. Alsehibani's research is in the areas of
Multimedia and Object Allocations, Computer Architecture,
and Networking Security.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

285

