
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

285

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Suggested Functionalities of a Software Maintenance Tool for a
University Application System

Hidayah Sulaiman

Informatics Department
Universiti Tenaga Nasional

Malaysia

Rusli Abdullah
Faculty of Computer Science and Information

Technology
Universiti Putra Malaysia

Malaysia

Abstract
Using the right type of tool for maintenance activity and
application support is essential in order to meet today’s
technological demands. These days, almost all business
operations rely on application system efficiency. Maintenance is
also seen as the highest percentage of work activity done in a
software development life cycle as many software practitioners
and researchers have quoted. Even in 1991 there was already a
study by Abran et.al that showed a mere increased in the
maintenance activity and support to users. This paper will
present the result of a study done on various public and private
universities of Klang Valley in Malaysia. Based on the findings,
the maintenance tool is seen as helpful and useful for the
developers or maintainers of a university application system to
assist them in their daily maintenance activity.

Keywords:
Software Maintenance Tool, First level support, second level
support, knowledge base

1. INTRODUCTION
Software maintainers have long been acutely aware of the
challenges involved in managing software change processes
(Dean Jin, 2005). Activities such as source code manipulation,
change, testing, documentation, change management and user
support rely heavily on the analysis and understanding of the
complex system structure of both legacy system and modern
software system. Jin (2005) claims that it is widely accepted that
tools that support software analysis and maintenance tasks
would go a long way towards addressing the constraints that the
software developer and maintainers work with on day-to-day
basis. As defined by Lethbridge & Singer (1997) tools can be
everything from large scale integrated CASE products to simple
one-function command or features. It includes anything
functional that can help software maintainer to solve their
maintenance problem.

However, despite having a lot of available tools in the market
that can assist the maintenance activity, not many are being used
by practitioners namely in a non-software development
organizations. Very few are considered essential for a particular
development or maintenance task. The chosen tools must
support program understanding and reverse engineering, testing,
configuration management, and documentation (Takang and
Grubb [1996]).

2. AIMS
The purpose of this study is to identify the functionalities of a
software maintenance tool that can be of assistance to
maintainers of a University application system. In order to
achieve this, the following objectives are to be satisfied:

• To establish what software maintenance tool is
and why a software maintenance tool can be
increasingly helpful for daily maintenance
activity.

• To identify and assess the functionalities of a
software maintenance tool.

• To suggest appropriate functionalities of software
maintenance tool that could be used within the
university on a specific application system.

University environment is different as compared to a real
software development organization. The structure of the
resources handling the system or application may not be as well-
defined and designated to a specific group of people.

Although Information Communication Technology (ICT)
department is well established in the Universities, person
involved in maintenance of the application could also be the
developer of the application. In conjunction to that, some of the
applications are also outsourced to software vendors; therefore
one designated person is enough to be assigned to monitor the
application.

3. METHOD
The focus is given to 9 public and private Universities located in
the Klang Valley of Malaysia. Each of these Universities has a
common core business application that each is maintained by
one or two developers/maintainers. This project focuses on three
main application actively maintained by the ICT department.
The core business application focused may differ from one
University to another depending on which application is being
highly maintained. The common applications are Student
Management System, Human Resource Management System,
Billing and Finance.

Since the 3 core applications are being focused on each
university, the sample study of 40 application maintainers is
targeted. A preliminary round of information collection was
conducted to 2 universities in order to observe the daily routine
of an application maintainer. Questions were asked regarding the
application and job activity of a software maintainer.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 286

Further study was done through literature of related work via
journals and conference paper as well as an observation to a
support management system of a multi-national organization.
All the information are gathered and compiled to be
transformed into a set of questionnaires to be distributed
to the software maintainers of the universities. Respondents
filled out the questionnaire at their designated office. Each
respondent receive a booklet consisting of:

1) A cover sheet explaining the purpose of the study,
brief explanation of each section and the name of the
person conducting the study.

2) The demographic questions
3) Functionality of existing software maintenance tool.

The purpose of this section is to identify the level of
relevance of the current available functionality of
software maintenance tool proposed and published by
researchers and practitioners.

4) Proposed Functionality of a Suggested Software
Maintenance Tool. The purpose of this section is to
propose a model of a software maintenance tool
through its functionality. The functionalities are
derived from the study carried out on various previous
works done as well as interviews and observation to a
higher education institution and corporate organization.

Respondents were also guaranteed anonymity and
confidentiality of their responses and they were told that the
session will take about 30 – 40 minutes.

4. RESULTS AND DISCUSSION

4.1 Description Of The Sample
The chart in Figure 4.1 below denotes the result from the sample
on the current position that best describes the respondents. The
developers make the highest job category, 54.05%, followed by
the Project/Team Leader, 40.54% and manager, 13.51%. Both
support engineer and other positions such as System Analyst
contributed 8 % and 4% respectively.

Position Percentage
Project/Team Leader 40.54
Manager 13.51
Developer 54.05
Support Engineer 8
Others 4

Figure 4.1: Current Position

These figures are relevant as all of the universities do not have a
specific person assigned to a specific job position; developers,
support engineers and sometimes the team leaders are actually
the same set of people involved in the maintenance activity.
The maintainers are currently involved in software activities
such as software requirements, software quality assurance,
software design, configuration management, code and unit
testing, maintenance, test and integration and others such as
software upgrade.
The next question was to ask on the tasks that they carry out
daily and the highest category of job activity falls under

maintenance, 81.08%, followed by test and integration, 70.27%,
software design, 64.86%, software requirements and code and
unit testing, 59.46%, change management, 43.24% and others
such as upgrades, 10.81%. The results yield a very strong
influence towards answering the rest of the sections in the
questionnaire as people in the maintenance area are highly
needed in providing answers to questions related to the
maintenance tool functionality.
For the current and overall software experience category, the
highest range of current software experience comes from people
with 3 to 8 years of experience. This is acceptable as people with
3 to 8 years of experience are considered those who are already
comfortable at maintaining the current application and have the
in depth knowledge on the application that they are maintaining.
Therefore, it would be easy for them to understand and provide
relevant answers.

Respondents were asked if they had any experiences
of doing maintenance with assistance of a tool, and only 67.6%
of them responded that they had that sort of experience. Then
again, this complies with the definition by Lethbridge & Singer
(1998), tools is defined as everything from large scale integrated
CASE products to simple one-function command or features.
Some of the tools mentioned are SILA for database management,
my-Genie for request ticket problem, remote desktop, LEKO,
testing script and simple modules for amendments, testing, and
performance monitoring. There is no specific integrated tool
mentioned by the respondents that is designated to assist them in
doing support or maintenance activity to the application system.

4.2 FUNCTIONALITY OF EXISTING

SOFTWARE MAINTENANCE TOOL.
The functionality is gathered from different industrial
environment and it is hoped that the answers provided will show
relevance of these functionalities towards maintaining a
University application in the higher education environment. All
the questions compiled for this section are obtained from the
literature review done on the topic of software maintenance tool.
There are nine questions in this category and some has its sub-
category pertaining to maintenance tool and activity.
The first question asked was whether they are using object
oriented approach to maintain their application and will these
features be relevant to their job:

a. Abstract control flow of the application.
b. Produce Object maps
c. Produce Inheritence Map

The responds to this question shows that not all of the
universities are using the object oriented approach in doing
maintenance to their application. Question 2 asks the
maintainers on their opinion, should they have a tool that caters
for change management and support request; will these features
assist them in the software maintenance tool:

a. Issue date and arrival time of the request
b. Owner of the request and their department
c. Description of the problem
d. Request priority
e. Sample answer codes to solve the request

from the tool
f. Status of request
g. Response time in handling the request
h. Closed date for request

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 287

All of the respondents agreed that the issue date and arrival time
of the request is very important to a tool that caters for change
management and support request. This is also followed by the
feature of having the description of the problem. These two
features are seen as crucial and important to be implemented in a
software maintenance tool. Status of request is seen as the
following top feature, followed by having the owner of the
request and their department as well as request priority. Some
maintainers feel that information on the department or the
person is not of high priority for them. As long as the description
of problem is there and it is valid, that should be sufficient.
However, as 78.4% agreed that this information is essential as
they would need to get back to the owner in order to have a
clearer picture on the problem. This is true as based on their
experience some non-technical user might not provide the
correct description of the problem or might not even know
where the problem lies. As for the request priority, not all voted
“yes” as some maintainers feel that request priority should be
decided by the maintainer themselves as they know how much
time and effort should be done on the problem. They feel that
some impatient users might put a high priority on all problems
even though it is of a minor one. Then again 78.4% of them have
voted “yes” as they feel that it is important to categorize the
problems on its criticality in order for them to plan and prioritize
their job. The next two features which are considerably
important is the closed date for request and response time in
handling request.
The functionality on having sample answer codes to solve the
request from the tool is seen as having the lowest priority in
which 45.9% answered “yes”. They require this feature to assist
them in expediting their maintenance activity. As this may not
be of a practice to the other 43.2% of as they feel that it is not
needed due to knowing inside out of the application being
maintained. Question 3 of this section asks the respondents’ on
should a software maintenance tool be sub-categorized into:

a. User-support module: contains helpdesk
module and able to generate report for the
support activities.

b. Repair: a module to do correction of the
application

c. Enhancement: make changes to the
application according to new data
requirement and enhancement of the
application performance

Two out of the three sub categories obtained more than 80% of
“yes” votes. Therefore it is agreed that a standard software
maintenance tool should consist of repair and enhancement. As
for the user-support module, 75.7% has answered yes to this
feature which is considerably acceptable and strong for this
feature to be included in a software maintenance tool.
For the response on should a software maintenance tool be
equipped with a knowledge base system that consists of a bug
tracking database to find similar existing problems and able to
communicate across different groups, 83.8% of the respondents
voted “yes”. This feature is seen as very helpful in assisting their
maintenance activity especially in expediting the problem
solving area. Next is to obtain response on the general features
that has been requested by some of the software practitioners in
other industries. The features are:

a. Module to do modeling and manipulating of
source code

b. Designing module
c. Debugging tool
d. Finding memory leaks
e. Source code exploration tool
f. Analyze coding and naming conventions
g. Web front End/ Interface
h. Automated testing tool
i. Tool to ease installation or upgrade.

Out of the 9 features, the debugging tool and Web front
end/interface yields “yes” votes of more than 90%. This can be
seen as an essential feature that must be included in a tool.
Besides that, features like designing module, automated testing
tool and tool to ease installation and upgrade holds more than
75% of “yes” votes. This is seen as needed but not as crucial as
the one before. The rest of the features such as source code
exploration tool, finding memory leaks and module to do
modeling and manipulating of source code is voted yes by
70.3%, 51.4% and 45.9% respectively.
With respect to the usage of a CASE tool, respondents were
asked if the following features are required in their daily job
routine:

a. Documentation
b. Designing of system
c. Create requirement analysis
d. Draw diagram
e. Planning of system
f. Code generation
g. Prototype development
h. Project management and tracking
i. Change management

It seems not many universities are actually using CASE tools.
However, the highest usage of CASE tool fall into the designing
of system and drawing diagram, code generation, and change
management.
On the subject of documentation, respondents were asked on
whether they have a well-written documentation that can
adequately support the changing needs and strategies when
modifying their application. For this, the results showed 56.8%
of them responded “No”. Subsequent to that they also agreed
that it will be a great assistance to have a tool that incorporates
documentation on the application system being maintained. In
conjunction to that they were asked a final question regarding
documentation that should these be part of the module
incorporated in the tool, would they find it useful:

a. A window that contains graphical
representation of the application call
structure (functions of the application
depicted in a hierarchical manner).

b. Window that contains the source code for
different subroutines

c. Window that contains variable information
such as name, description, size.

d. When a variable is clicked, the item is
highlighted in all windows that have relation
to the variable and you can see the
occurrences of the chosen identifier.

e. There is an edit window for you to edit your
source code.

From the overwhelming respond, these are seen as most
important in a documentation module.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 288

4.3 Functionality of a Suggested Software
Maintenance Tool.

Through the literature done for section 2 of the questionnaire,
section 3 was created in order to propose a model of a software
maintenance tool through its functionality. It is hoped that the
functionality suggested in this section for the software
maintenance tool is able to assist the maintainers’ daily
maintenance activities and bring about usefulness in their work.
The functionalities are sub divided into two major maintenance
activities:

• Support, Change Management and Knowledge Base
• Documentation

From the analysis, these are the functions of the suggested
maintenance tool:

1. Request creation for existing user
2. Request creation for new user
3. Problem assignment
4. Request-solution timer
5. Knowledge Base update
6. Create formal answer to user
7. Request status determination
8. Request escalation to SLS
9. View problem/request statistics
10. View graphical functional flow of application

maintained
11. View source code
12. Search variable

4.3.1 First Level Support (FLS)
FLS will be the main communicator between the user of the
system maintained and the ICT department. FLS will be the first
point of contact for the support call as they will take down the
problems via phone, email, fax or SMS. They are also
responsible to understand the problems raised by the users as
they need to determine the severity of the problem and who
should solve the problem. The FLS will also need technical
knowledge to solve some of the problems raised and able to
access the knowledge base to find similar problem solution to
solve the problems raised by the users. The FLS does the remedy
and update the knowledge base with the solution and is
responsible in providing solution to the user and making sure
that the answer is accepted or rejected.

However, there are pros and cons of this scenario as the first
level support might have to key in problems as their daily
routine instead of solving the problems but nevertheless the
problems entered by users might not portray the clear picture of
the problem and cause confusion to the maintainers.

4.3.2 Second Level Support (SLS)
The SLS is involved in the maintenance activity should the FLS
is not capable of solving the problem or the severity of the
problem raised by the user is at a very high status. The SLS does
the remedy and restoration as well as updating the knowledge
base and close the case by providing the answer to the team
leader.

4.3.3 Team Leader/Manager
The team leader is in charge of assigning the problems escalated
by the FLS to the SLS. They review the solution and provide an

official answer to the FLS who escalated the problem. The team
leader is able to view the time taken by each of his team
members to solve each support call. They are also able to view
the number of solved cases weekly, monthly or yearly in order to
maintain the department’s efficiency and competency.

4.3.4 Other functionalities
Severity will fall into categories such as:

 Emergency: Complete System Failure – the system
does not handle processes properly and a manual
intervention is needed to restore the system. Major
disturbance – disturbance in the system functionality,
that is the function does not work or is seriously
affected.

 High: Major fault or disturbance affecting a specific
area of functionality, but not the whole system. Major
problems or disturbances that require immediate action
such as restarts or reload. Failure affecting to the
connection to the database. System crashes or hangs
repeatedly. Critical function not available.

 Medium: Unable to perform non-critical functions,
unable to process certain requests, questions regarding
operations of the application

 Low: General questions regarding application
(example: How to use?). Configuration consultancy.

With regards to the severity, the FLS will solve problems
categorized under severity medium and low, should the problem
is still unable to be solved than it will be escalated to SLS. The
SLS will be assigned straight away to problems categorized as
High and Emergency.
Next was to suggest the categorization of the problem itself.
Problem description will be sub-divided into three categories:

 Problem: default value for the requests
 Consultation: Questions or new requests from the

users.
 Internal: Not requested by user but found in the

application internally by any of the group
members and need to be categorized as a
maintenance activity.

All in all, for the functionalities suggested above, they all yield
more than 70% of “Yes” votes.

4.3.5 User Interface
Each interface is briefly explained via Appendix A on how it
works and respondents were asked if they agreed to the
suggested interface. The interface begins with the FLS logging
in to the tool once there is a support call. The FLS creates a
request by inserting the user’s name in a text field with a search
button next to the text field. Once user’s name is typed and
search button is clicked, a pop up window will show the contact
details of the user should he/she has logged any problem before.
Click edit and the contact name and phone number of the user
will be filled in automatically in the new request form.

Next the respondents agree that if the user does not exist in the
system, the FLS call taker will create the new user’s details.
When creating the new customer’s request, it is mandatory to fill
in information such as: name, department name, office phone
number, mobile number, email, title of the request, severity and
problem description. For this suggestion, all developers agree to
have this feature in the tool. The non-developers also agree by

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 289

82.4%. The respondents also agreed that should the request
come via email, and there is an attachment, the FLS should
attach the file in the system as part of the problem description.
As common and viable this may seem to our assumption, all
developers do agree to this however there are 17.6% of non-
developers who disagree to this feature. This may be due to
assuming that the user’s attachment might not be useful or
irrelevant to the problem. Nevertheless, users may also be
knowledgeable in the sense that they do provide the correct
picture of the problem indicated and that can further assist the
maintainers in understanding the problem.

The FLS then selects an option button that says Analyze or
Escalate. If the FLS chooses to “analyze” and click register, the
problem is now registered in the system and assigned to him/her
as a support work. If the FLS chooses “Escalate” and click
register the problem is now assigned to the team leader of the
SLS team.

Once register is clicked, there is a timer attached to the request
to measure how long it takes for the specific person assigned to
the job takes to solve the problem. Each group member will have
their own job task list page in the tool to view their current
request as well as list of previously solved request. Once they
click on the new request, there is a status list box that allows the
person to choose either New, Analysis, Pending answer approval
or Closed. Once they choose analysis, then work is being done
ether by providing solution through his knowledge or experience
or search through a knowledge base on any related or previously
solved similar problems.

If the solution is available in the knowledge base then the FLS
will provide the remedy or carry out the restoration. After
completing the restoration or correction then the status has to be
changed to Pending answer approval. Once this status is chosen
the solution text box will be visible for the support handler to fill
in the solution to be updated to the knowledge base. It is
interesting to note that for all the functionality mentioned above,
all of the respondents agree to have the functionalities included
in the tool as the result portrays 100% agreeing to each of the
functionality.

Once an official answer is written via email to the user, the
support handler will have to wait for the user to accept or reject
the solution. If the solution is accepted then the support handler
will change the status of the request to “closed”. This will
automatically stop the timer and logs the time end of the support
process. If the solution is rejected then the cycle goes back to the
user adding additional information regarding the problem and
status changes back to analysis. For the functionality of writing a
formal answer to the user via email, not all developers and non-
developers agree to the functionality. Some fear that the answers
could be too technical that the users may not appreciate or
understand.

The next portion is to discuss the interface for the team leader
and SLS. This will take place when there is an escalation from
the FLS. The request first comes to the team leader of the
development team, and according to team leader’s experience
the problem will be assigned to any of the team members. The
team leader shall click on the list of problems escalated, reads

the problem and click on an assigned list box which consists of
the SLS team member’s names. For this function, 95% of
developers agree to implement this in the tool. This is further
supported by 76.5% of non-developers agreeing to the same
functionality. Once the SLS team member logs in, a new request
is found in the inbox. The process is similar to the FLS activity
that is the SLS will change the status to analysis and start
analyzing. However, in the developer’s status list box there is an
extra item, which is “escalation to 3rd party”. 3rd party would be
problems escalated pertaining to hardware or device failure. The
team member will start by searching the knowledge base if the
similar solution is available; if it is not then the solution will be
based on their knowledge and experience. The SLS does the
remedy and restoration as well as updating the knowledge base.
With respect to the functionality mentioned above, all
respondents agreed to incorporate the functionality in the tool.

Once done, the SLS member will provide the answers and
change the status to close. The SLS submits the solution which
will then also update the status in the team leader’s inbox. It is
now the team leader’s responsibility to check the status and once
the status is at pending for user’s approval, the team leader
submits the request back to the originating FLS. The FLS then
communicates with the user via email on the solution and waits
for approval. The functionality on providing answers and change
the status yields 100% “yes” by the respondents. However, the
functionality on having the team leader to check the status ,
approve and respond back to the originating FLS who escalated
the problem yields 50% of developers to agree and 50% to
disagree.

This is probably due to some comments from the developers,
that the team leader might ignore the status and causes late
approval hence making the developers look bad from the user’s
perspective. Some developers feel that they should be made able
to communicate directly to the user.

Moving on to the next feature, the team leader and manager is
also able to view how many requests has been solved by the
team members, weekly and monthly as well as the time taken to
solve each request. Finally, the next module in the tool would be
the documentation module in which the maintainer is prompted
with two options:

 View the graphical functional flow of the
supported application

 Search for the variable description
When the maintainer chooses to view the graphical functional
flow of the supported application, the maintainer is able to see
the functionality of the application and how it relates to one
another. Upon clicking on the functions, a description on what
the function does will be explained at the bottom of the window.

There is also a button should the maintainer would like to view
the source code of the selected function. If the maintainer
chooses to search for the variable description, he/she may type
in the variable name or chooses the variable from a list that
displays all the available variables used in the application. Once
the variable is selected then a description on the variable is
provided such as: usage in which function, data type, length and
some description on the effects that will take place on the
application should the variable is changed / modified.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 290

5. CONCLUSION AND FUTURE WORK
Based on the findings the tool is seen as helpful and useful for
the developers or maintainers of a university environment to
assist them in their daily job activity. In addition to that, the
suggested tool is also found to be especially useful for the
managers to view and ensure quality within his team, through
the time taken to solve each request. This can be supported by
the functionality of having the timer measurement and viewing
the solution solved. From the results it is also noted that the
respondents agree to a proper process and line drawn between
the job activity of a support engineer and developer.

From the survey conducted, there were a few relevant and strong
comments that can be taken into consideration for future work in
developing the tool. The respondents feel that it will be good if
the tool incorporates a fixed service level agreement on what is
the ideal time to fix each category of the problem according to
its severity. For example, for the Emergency level, the
maintainer is notified that it should be solved within 12 hours to
1 day, high within 2 days, medium within 5 days, and low within
7 days. This will draw the importance of the problem and allow
the user to also know that they should get a solution within
certain stated amount of time.

Next comment is on the pros and cons of having user agreeing to
the solution, the respondents feel that some users are kind
enough to close the case, and some are not. Therefore,
suggestion is made so that the request is closed as soon as the
FLS or SLS are finished with providing the solution. Another
important comment is on having the Change Management on
new requests to have a module by itself and not included in the
problem sub-category.

All in all, the tool is needed as it could expedite the
understanding of the application system, solving
problems/troubleshooting and allow users to be part of the
maintenance activity especially with important functionalities
like request status, team leader and user’s approval of the
solution, documentation module and knowledge base.

6. References
[1] Abran, Nguyenkin. 1991. Perspectives on Legacy

SystemReengineering.
www.sei.cmu.edu/reengineering/lsysree.pdf

[2] Bennet P. Lientz. 1983. Issues in Software Maintenance.
Computing Survey, Vol 15.

[3] Dean Jin, 2005. Design Issues for Software Analysis and
Maintenance Tools, 13th IEEE International Workshop on
Software Technology and Engineering Practice (STEP'05).

[4] Ernst Lutz. 1993. The Knowledge Base Maintenance
Assistant. IEEE

[5] Frank Niessink. 2000. Perspectives on Improving Software
Maintenance. Software Engineering Research Center,
Netherlands

[6] Harry M. Sneed, Peter Brossler. 2003. Critical Success
Factor in Software Maintenance A Case Study. Proceedings
of the International Conference on Software Maintenance.

[7] Hsiang-Jui Kung. 1998. Software Maintenance Life Cycle
Model. IEEE

[8] Jane E. Huffman, Clifford G. Burgess. 1988. Partially
Automated In-Line Documentation (PAID) Design and
Implementation of a Software Maintenance Tool. IEEE

[9] Janice Singer. 1998. Practices of Software Maintenance.
Proceedings of the International Conference on Software
Maintenance, IEEE Computer Society

[10] Kagan Erdil,Emily Finn, Kevin Keating, Jay Meattle,
Sunyoung Park, Deborah Yoon. 2003. Software
Maintenance As Part of the Software Life Cycle. Comp180:
Software Engineering Project.

[11] Kairulanuar Abdul Kadir. Analyst, Network Engineering
Support Group. Ericsson Malaysia.

[12] Kathleen Brade, Mark Guzdial, Mark Steckel, Elliot
Soloway. 1992. Whorf: A Visualization Tool for Software
Maintenance. IEEE

[13] Keith Jones, Stephen Collis. 1995. Computerized
Maintenance Management Systems. Property Management
Journal.

[14] Kleiber D. de Sousa, Nicholas Anquetil, Kathia M. de
Oliveira. 2004. Learning Software Maintenance
Organization. Springer-Verlag Berlin Heidelberg.

[15] Massimo Felici.1997. Software Maintenance and
Evaluation. Lecture Notes of SEOC1.

[16] Oscar M.Rodrfguez, Ana I. Martinez, Favela. 2004.
Understanding and Supporting Knowledge Flows in a
Community of Software Developers. Springer-Verlag
Berlin Heidelberg.

[17] Robert L. Glass.1999. The “maintenance-first” software era.
Journal of Systems and Software.

[18] Stephen W.L Yip. 1995. Software Maintenance in Hong
Kong. IEEE

[19] Takang & Grubb. 1996. Software Maintenance: Concepts
and Practice. hepguru.com/maintenance/draft.php

[20] Timothy C. Lethbridge, Janice Singer, 1998. Understanding
Software Maintenance Tools: Some Empirical Research.
IEEE Workshop on Empirical Studies of Software
Maintenance

[21] Zelijka Car and Branko Mikac. 2002. A Method for
Modeling and Evaluating Software Maintenance Process
Performance. Sixth European Conference on Software
Maintenance and Reengineering.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 291

7. Appendix A: Process Flow of the Suggested Maintenance Tool

USER FLS SLS

User interaction
process Can

solve?

AnalysisModify
Request

Re-Submit
request

Answer
Accepted?

Provide Answer,
Remedy/Restoration

Write Formal
Answer

Close Request

Escalated
Request/Problem

Analysis

Remedy/
Restoration

Provide Answer

NO

YES

NO

YES

KNOWLEDGE BASE

User reports
Problem

