
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

318

Manuscript received March 5, 2008

Manuscript revised March 20, 2008

Animation of Scientific Data Using VTK Designer

G.M.Lingaraju & Dr. C S Bagewadi.
Head R&D , Reva ITM, Kattegenahalli , Yelahanka

Bangalore, Karnataka, India 560064

Abstact

Visualization is the science of giving visual appearance to
raw data for humans to understand the content of the raw
data. This broad definition of visualization encompasses
Information visualization, Data Visualization (Databases)
and scientific 3D Visualization (VTK, OpenDX, AVS etc).
VTK is an open-source IDE for creating and editing VTK
visualization networks for Rapid Application
Development. In this paper we introduce the design
concepts behind the Visualization Toolkit Designer (VTK
Designer), the objective of which was to write a reliable
and comprehensive application that will make the task of
designing any type of VTK based visualization pipeline
easy by making use of graphical means for constructing
and configuring the pipeline, also generate the source
code for the constructed pipeline in any of the languages
supported by VTK. This paper targets researchers of any
discipline who have 2D or 3D data and want more control
over the visualization process than a twist-input system
can provide. It also assists developers who would like to
incorporate VTK into an application as a visualization or
data processing engine. Even though this paper can only
provide an introduction to this feature-rich visualization
pipeline designer, we’ve also provided references to
additional material. This paper also shows the
demonstration of the fluid animation as an application.

1. Introduction
Major apprehension in Computer Graphics is with the
realistic rendering of scenes, improving the efficiency of
algorithms and advanced modeling techniques.
Visualization is related to but diverse from the subject of
computer graphics. Visualization uses computer graphics
to make pictures that give us insight into abstract data and
signs. The related techniques of Graphical Simulation use
graphics to simulate and animate the behaviors or
phenomena, which we encounter in real existence. In
distinction, visualization is frequently concerned with
visualizing things we could not otherwise see, such as
scalar fields, vector fields and tensor fields or the
relationships among pieces of data in a random folder (1).
Volumetric data Visualization extracts meaningful
information in 3D Visualization. For instance, a

succession of 2D- segment images obtained from MFU or
a CT scan of a human body can be reconstructed into 3D
Human model and visualized for medical diagnosis or the
planning of surgery. Volume rendering attempts to
represent full 3D data sets as 2D images, passing on more
information than surface rendering.
Visualization has become a key enabler for pattern
recognition also. It allows the large quantities of data
generated either by direct observation or by simulation to
be analyzed visually, providing insight and understanding
the complex data, which would be difficult in the
conventional recognition methods. Thus we can recognize
some of the complex pattern, where as in case of
Computational Steering, Simulation and Visualization are
strongly tied (2).
In computer graphics, efforts to develop a concept of
rendering have proceeded on two fronts. One concentrates
on the physics of light transport, leading to equations that
explain how light passes through a medium and reflects
from an object. The other concentrates on the human
visual system and the brain’s interpretation of an image
that is received. The first approach lends itself to well
known and to novel algorithms for solving complex
equations. Its basic primitives are light sources, geometry,
and reflectance functions. The second effort requires
anticipating how a human will respond to a rendered
image, which is a much more insubstantial venture (4). In
the same way, a theory of visualization could be
comprised of two different aspects: one depends only on
the underlying data, while the other concentrates on the
human response to imagery. A data-driven theory of
visualization serves as a preparatory step for rendering.
An abstract data set is someway changed into lights,
geometry, and reflectance. After that point, rendering is
performed as a post process. Another theoretical item that
deserves attention is the need for techniques that handle
complex and dynamic geometry. While there are many
techniques for performing operations on regular
volumetric grids, the development of techniques for
unstructured data has lagged behind. Visualization
techniques for handling large, dynamic, unstructured grids
are essentially missing (3). Here is an attempt to practice
the theory which we have learnt, and document the
innovation we made in the process of research.
There are numerous simulation tools designed for explicit

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

319

applications. Users need to plug in application specific
parameters or models, after which the simulation tool will
carry out simulation, graphics rendering, and animation(4).
Various valued visualization products and packages exist,
including visualization toolkits such as VTK, AVS, IRIS-
Explorer, and Khoros, and user interface development
toolkits such as Tcl/Tk and Motif. These simplify the
implementation of a visualization system, like developers
can assemble components instead of constructing every
thing from scratch . Some of these packages are also
relatively expensive. To some extent for these reasons,
many interactive Visualization and Computational
Steering systems are implemented for specific
applications like in-house, drawing on the skills of
specialists from engineering, computer graphics, and other
areas. Recent software systems are on a tendency towards
integrating Scientific Computation, Interactive
Visualization, Computational Steering, and multimedia.
Hardware systems appear more and more to be
integrations of distributed supercomputers, visualization
workstations, virtual reality tools, and other hardware
devices, connected by high-speed networks (5).

2. Related Work
The landmark report (2) on Visualization in Scientific
Computing by McCormick et al (1987) sparked the
development of a number of interactive visualization
systems, based on the dataflow paradigm. Harber and
McNabb in 1990a elegantly described the reference model
for this type of system. Raw visualization data is fed into
a pipeline of processes, progressively filtering the data,
converting it to an abstract geometric representation and
finally rendering the geometry. This model is the basis for
a number of visualization systems, including the system
IRIS Explorer from NAG (IRIS Explorer, 2003). Here
modules from a library are loaded into a visual workspace
and connected into a network reflecting the Haber-
McNabb model. An important aspect of Simple
visualization pipeline in IRIS Explorer is their openness
and extensibility. While many standard modules are
delivered with this system, a user can encapsulate their
own code as a module, add this to the library, and load
into the workspace like any standard module. This
extensibility has allowed these systems to evolve with
advances in computing technology, and IRIS Explorer.
Example: It remains widely used even today, though its
more than a decade old. One particular extension is
important in the context of e-science: we are able to create
special collaborative modules that link separate pipelines
being executed by users at different geographical
locations. This was first achieved in the EPSRC COVISA
project for IRIS Explorer (Wood et al, 1997) and is now
an integral part of the system.
Accurate visualizations and user interfaces are essential in

computational steering applications. By allowing the
researcher to construct his own visualization and interface
with the simulation, they will be according to the
researcher’s wishes and demands, and can easily be
adapted if the researcher’s focus of interest changes. In
addition, the visualization and user interface satellite can
be kept general applicable and therefore be used for
different kinds of steering applications. Building one’s
own custom 3D visualization and/or interface from
geometric primitives is a topic of interest in both the
visualization and user interface community. In (6) a tool
called Glyph maker is described which is developed for
data visualization and analysis. It allows users to build
customized representations of multivariate data and
provides interactive tools to explore the patterns and
relations between the data. With the provided primitives
points, lines, spheres, cuboids, cylinders, cones, and
arrows, the user can draw glyphs using the 3D Glyph
Editor. Properties of the glyphs can be bound to data
using the Glyph Binder. Raw (simulation) data is
transcribed by the Read Module into Explorer data
structures that are used by the Glyph Binder. These
bindings however, are only unidirectional from the data to
the glyphs. Therefore, Glyph maker does not allow the
user to steer the simulation by manipulating the geometric
objects. In (7) architecture for an extensible 3D interface
toolkit is presented. The toolkit can be used for
construction and rapid prototyping of 3D interfaces,
interactive illustrations, and 3D widgets. By direct
manipulation of 3D primitives through a visual language
we can construct widgets, interface objects, and
application objects whose geometry is affine constrained.
The four basic primitives of the toolkit are: the point
primitive, the vector primitive, the plane primitive, and
the graphical object primitive. Although the system does
allow a high degree of direct manipulation to construct an
interface, there remains several operations that have to be
performed in an indirect manner, such as the definition of
constraints between objects in a separate window with no
visual feedback from the objects themselves.

3. Preamble about VTK
VTK(8) is an open-source , portable (WinTel/Unix),
object-oriented software system for 3D computer graphics,
visualization, and image processing. Implemented in C,
VTK also supports Tcl, Python, and Java language
bindings, permitting difficult applications, quick
application prototyping, and straightforward scripts. Even
though VTK doesn’t provide any user interface
mechanism, it can be included with obtainable widget sets
such as Tk or X/Motif. VTK provides a diversity of data
representations together with unorganized point sets,
polygonal data, images, volumes, and structured,
rectilinear, and unstructured grids. VTK comes with
readers/importers and writers/ exporters to swap data with

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 320

other applications. Hundreds of data processing filters are
available to work on these data, ranging from image
convolution to Delaunay triangulation. VTK’s rendering
model supports 2D, polygonal, volumetric, and texture-
based approaches that can be used in any combination.
VTK is one of several visualization systems available
today. AVS (9) was one of the first commercial systems
available. IBM’s Data Explorer (10) originally a
commercial product, is now an open source and also
known as OpenDX. NAG Explorer(11) and Template
Graphics Amira (see
http://www.tgs.com/Amira/index.html) are other well-
known commercial systems. VTK is a general-purpose
system used in a variety of applications. Because VTK is
open source, faculty at many universities like, Rensselaer
Polytechnic Institute, State University of New York at
Stony Brook, the Ohio State University, Stanford, and
Brigham and Women’s Hospital use VTK to teach
courses and also use it as a research tool. National labs
such as Los Alamos are adapting VTK to large-scale
parallel processing. Commercial firms are building
proprietary applications on top of the open-source
foundation, including medical visualization, volume
visualization, oil exploration, acoustics, fluid mechanics,
finite element analysis, and surface reconstruction from
laser-digitized, unorganized point-clouds. VTK began in
December 1993 as companion software to the text. VTK:
An Object-Oriented Approach to 3D Graphics by Will
Schroeder, Ken Martin, and Bill Lorensen (Prentice Hall).
In 1998 the second edition of the text appeared with
additional authors Lisa Avila, Rick Avila, and Charles
Law. Since that time a sizable community has grown up
around the software including dozens of others as
developers, often submitting bug fixes or full-blown class
implementations. These community efforts have helped
the software evolve. For example, David Gobbi in the
Imaging Research Laboratories at the John P. Robarts
Research Institute, University of Western Ontario, has
reworked VTK’s transformation classes and is now an
active developer.
Architecture of VTK consists of two major sections: a
compiled core (implemented in C++) and an
automatically generated and interpreted layer. The
interpreted layer currently supports Tcl, Java, and Python.
VTK currently supports three types of volume rendering
ray tracing, 2D texture mapping, and a method that uses
the VolumePro graphics board (12).

4. VTK: Visualization Toolkit
VTK, as the name suggests, is a toolkit for performing
data visualization. VTK is implemented in C++, and is
hence an object-oriented system. It makes use of MesaGL
or OpenGL to render graphic primitives. More
information on VTK can be obtained from (8).

In VTK, data visualization is done with the help of
something called pipeline. Simply put a pipeline is a
collection of VTK objects connected in a specific way to
render data. A pipeline consists of the following elements

1. Data Source: The source forms the starting point
of visualization. As the name suggests the source
provides data that needs to be visualized. The
data source can provide this data by reading a file,
socket or any input device or by mathematically
evaluating an equation. The function of the
source it to simply provide raw data.

2. Data Filter: Data sources may provide unwanted
data at times. A data filter takes the data
provided by the source, and filters out the
unwanted data in it. The filtered data can then be
passed on to the next stages in the pipeline.

3. Mapper: A mapper is the geometric
representation of an actor.

4. Actor: An actor represents an object rendered in
the scene, along with its properties and position.
It can be treated as logical entity in the scene.

5. Renderer: A renderer coordinates the rendering
process involving lights, cameras and actors.

6. Render Window: Manages a window on the
display device, where the rendered graphics will
be drawn. The above elements when connected
in sequence form a pipeline.

The class hierarchy of VTK classes is organized into class
trees. Here each tree is heading a host of classes, which
fall into one of the above categories.

1. vtkSource heads the family of classes that
produce data for visualization

2. Filters take some input from sources and produce
a filtered output to its consumers. Hence filters
can be thought of as sources, ones that produce
filtered data. That is why we do not have a
vtkFilter in VTK. Different kinds of filters are
headed by classes like
vtkDataSetToPolyDataFilter,
vtkDataSetToDataSetFilter etc.

3. vtkMapper heads the family of mappers
4. vtkProp heads the family of actors. (Though we

will be working with vtkActor and vtkAssembly
most of the time)

5. vtkRenderer heads the family of renderers
6. vtkRenderWindow heads the family of render

windows

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

321

5. VTK Designer
VTK Designer is an object oriented, plug-in based
software written using VTK and Qt to make the task of
designing VTK visualization pipelines easy. VTK
Designer does make the life of VTK programmers and
VTK users very easy.
VTK Designer is made of the following components.

1. Wrapper Class Library
2. Designer front-end
3. Code Generator
4. Plug-ins
5. XML IO Module

This paper briefly describes the function of each of the
above components and also explains the relation between
them. The paper also explains why and how Qt is made
use of in VTK Designer.

In VTK Designer each connector has a data type
associated with it. The data type of an input and output
connector should match for a connection to be successful.
Output connectors have relation type in addition to data
type associated with them. Most connections are
input/output and hard connector types, but some
connections communicate association rather than
input/output. Such connection lines are drawn using as
dotted lines. Selected connections lines are drawn in red
color. Only one connection can be selected in a canvas at
any given point of time.
Some input connectors allow multiple links while most
don’t allow multiple links. If a connection already exists
on an input connector of a pipeline element, another
connection to the same connector will be discarded unless
multiple links are allowed.
Given below is a simple pipeline and its corresponding
output.

Qt: C++ GUI Toolkit
Qt is a cross platform C++ GUI toolkit developed and
maintained by Trolltech A. S. Qt is used in VTK Designer
for the following reasons:

1. GUI components for use across different
windowing platforms.

2. Robust Meta Object System: Qt has a well-
designed Meta object system for QObject
subclasses. The Meta object system provides a
transparent way for accessing Meta information
of QObject subclasses. VTK Designer uses Qt's
Meta Object system mainly for providing
transparent access to configurable properties in
the wrappers.

3. Signal Slot Mechanism: Qt has the best inter-
object communication mechanism. It is very easy
to use and extremely robust.

4. XML: Qt's XML module provides a fast and
easy way for managing DOM trees. Qt's DOM
classes are used by VTK Designer to store and
retrieve VTK Designer Pipeline Files.

Wrapper Class Library
The key motivation behind writing VTK Designer was to
have a system that makes pipeline construction easy. One
of the primary goals of VTK Designer was to create a
framework via which properties of VTK classes could be
queried and modified transparently and connections
between different elements in the pipeline could be made
visibly.
The Wrapper Class Library (referred to as WCL here
afterwards) does just that. The WCL provides a
framework for writing wrappers that provide transparent

Illustration 2: VTK Designer FrontEnd (cone example)

Illustration 1: Pipeline Element and Connectors

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 322

access to properties and connections of a VTK class.
The WCL is written in Qt/C++. This is because Qt
provides a robust meta-object system using which
properties and features can be accessed transparently.

Designer Front-end
The designer front-end provides a workspace for a
pipeline designer to pull Wrappers off the WCL and
arrange them on a canvas and connect elements to form a
pipeline.

The designer front end consists of the following key
components

1. Wrapper List: This is a list of wrappers
presented as a tree list on the left hand side of the
main window. Querying the plugin importer
module populates the contents of this window. It
provides a means for displaying wrappers in an
organized way and creating wrappers on demand.

2. Pipeline Editor: This is a canvas like widget.
Pipeline elements are placed on the wrapper and
connections are made. The pipeline editor
provides support for pipeline parts. A group of
elements within a pipeline can be put into a
pipeline part. This part can be used as a single
component in another pipeline.

3. Pipeline Executor: This module checks whether
the constructed pipeline is correctly made. If so,
it will execute the pipeline and display the result.

The interface between the WCL and the Front-end
comprises of a limited set of classes in the WCL. This
interface is described in detail in the document on WCL

Code Generator
VTK has been systematically designed and implemented.
The function names for property methods and pipeline
connections are predicable and form a pattern. The WCL

captures this pattern and stores them as Meta data. The
Code Generator module to generate the code for the
designed pipeline queries this Meta data.
The WCL internally stores the pipeline structure. It stores
information about the elements used to make the pipeline,
their properties and also how they are connected. If
elements are organized into parts/modules information
about that is also stored. The code generator interface
provides means to access this data in a programmer
friendly way for concrete implementations to generate the
code.
The Code Generator interface is sufficiently extensible to
fit code generators for any language as long as VTK
provides wrappers for that language. Currently the C++
code generator has been implemented.

Plug-ins
The WCL can be extended via plug-ins. One of the
components in VTK Designer is a plug-in importer. The
plug-in importer loads installed VTK Designer wrapper
plug-ins at load time.
The plug-in interface provides a means for VTK Designer
to import wrappers.

XML IO Module
The XML IO Module does the job of saving and
retrieving VTK Designer Files. Pipelines can be described
in terms of the elements that make it, their properties and
connection paths. XML provides a very good way for
representing such data. The XML IO Module makes use
of Qt's XML module to save and retrieve VTK Designer
pipeline information.
Given below is a block diagram of VTK Designer. It
shows the key components and the relations between them.

The arrows are meant to indicate whether a component

Illustration 3: Pipeline Execution for fluid animation.

Illustration 4: VTK Designer Modules

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

323

knows the existence of the other or not. For example, the
Designer Front-end knows the existence of the Code
Generator, but the reverse is not true and so on.

Other Modules

WCMaker
WCMaker is a comprehensive tool that allows you to
design wrappers and plug-ins for VTK Designer by
providing a simple, intuitive drag and drop interface to
point out aspects of a VTK class you wish to wrap.
WCMaker can generate code for designed wrapper classes.
The generated code in most cases can be compiled and
installed without any modifications.

vdf2cpp
vdf2cpp is a command line utility for converting vdf
(VTK Designer XML files) to C++ code.

Wrapper Class Library

This Section defines wrapper classes and describes how
the wrapper class library provides transparent control of
the VTK classes to the VTK Designer system
CVtkPlugin, CVtkPluginImporter : Plug-ins provide
a way by which one can extend the basic library;
dynamically without having to recompile the whole
library.
Plug-ins are accessed via the plug-in importer; which is an
object of the class CVtkPluginImporter.
CVtkPluginImporter looks for plug-ins in a directory
whose path relative to the path stored in the environment
variable VTKD_HOME. It initializes each plug-in in
that directory.
In WCL a single plug-in can provide many wrappers.

Wrappers are created from plug-ins via the create()
method. The create() method accepts the class name of the
wrapper as a string and based on that it will create the
wrapper.
Each plug-in maintains a plug-in table which it will refer
to when a new plug-in is to be created. So writing a plug-
in will now become as simple as declaring the plug-in
table. The language used here is a little confusing. The
plug-in table in the plug-in actually holds information
about wrappers, whereas the plug-in table in
CVtkPluginImporter holds information about the plug-ins.
The following diagram should help make things clear.

VTK Designer Front-end

This Section briefly describes the different components in
the VTK Designer front-end. The implementation of these
components is fairly straight forward.
The main window consists of the following key
components

1. Pipeline Objects: This component provides a
visual representation of the wrappers provided by
different plug-ins. It presents these wrappers
grouped by type name and also as a tree list
under each type. It also interfaces with
CVtkPluginImporter to create wrappers on
demand.

2. Pipeline Editor: This component stacks pipeline
views one behind the other on which the pipeline
can be created and edited.

3. Property Editor: This component displays
properties or the pipeline element currently
selected in a list view.

4. Pipeline Thumbnail View: This component
provides a snapshot of the pipeline and also a
window control to navigate within the canvas.

Illustration 5: WCMaker Tool

Illustration 6: VTK Designer Plugins

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008 324

5. Pipeline Display: This component shows the
output of a pipeline in a rectangular window.

Application
Considering the scientific data which has been generated
in our simulation of fluid flow, we have animated this
flow pattern using the VTK Designer as a part of our
research work. The snap shots of the Fluid Flow
Animation have been shown in illustration 7 & 8.

Illustration 7:Animation of Fluid Flow (Wireframe
model)

Illustration 8: Animation of Fluid Flow (after rendering).

6. Conclusion
Visualization is a complex science that involves a lot of
computational details. VTK is a well tested framework of
C++ classes that helps in abstracting a large part of these
details to perform accurate visualization of scientific data.
While VTK has a lot to offer in the visualization space, it
lacks a good GUI that can help users to assemble VTK
objects into a pipeline to visualize a specific kind of data
set. VTK Designer fills in this gap. VTK Designer helps
increase the speed at which VTK visualization networks
can be prototyped, tested and tweaked.

VTK Designer was created to help rapidly prototype VTK
based pipelines by using visual means and have the code
for the pipeline generated. While the project set out to
achieve a lot of goals like design of visualization pipeline
modules, complete pipelines, parallelization of pipelines
and generation of code in several languages, it has
achieved a majority of the goals if not all. Parallelization,
Computational Steering and Haptic Display are some of
the areas that still needs to be worked on in VTK
Designer and they are the future goals for the software.

Acknowledgment
Special thanks to Vcreatelogic, Bangalore for the
contribution in creation of visualization pipeline .This is
of a great support for the scientist community in their
research work. [14].

References
[1] Jim X. Chen and David Rine Horst D. Simon

“Theme Editors’ Introduction: Advancing
interactive Visualization and Computational Steering
“ IEEE computational science & engineering
winter 1996

[2] Jason Wood, Ken Brodlie “gViz – Visualization and
Steering for the Grid “School of Computing,
University of Leeds Jeremy Walton, NAG Ltd

[3] J.X. Chen and O. Frieder, “The Applications of
Computer Graphics and Software Tools,” Computing
in Science & Engineering, vol. 1, no. 6, Nov./Dec.
1999, pp. 83–87

[4] Jim X. Chen, Yonggao Yang, and Xusheng Wang,”
physics-basedmodeling and real-time simulation”
computing in science & engineering may/june 2001

[5] V; Anupam et al., “Distributed and Collaborative
Vidzation,” Cmpltw, Vol. 27, No. 7, July 1994, pp.
37-43.

[6] W. ltibarsky, E. Ayers, J. Eble, and S . Mukherjea.
Glyph maker: “Creating customized visualizations of
complex data” IEEE Computer, 27(4):57-64, July
1994.

[7] M.P. Stevens, R.C. Zeleznik, and J.F. Hughes.” An
architecture for an extensible 3D interface toolkit.”
In Proceedings of the UIST '94 Conference, pages
59-67, November 1994.

[8] W. Schroeder, K. Martin, and W. Lorensen, The
Visualization Toolkit: An Object-Oriented Approach
to 3D Graphics, 2nd ed., Prentice-Hall, Old Tappan,
N.J., 1998.

[9] C. Upson et al., “The Application Visualization
System: A Computational Environment for

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

325

Scientific Visualization,” IEEE Computer Graphics
and Applications, Vol. 9, No. 40, July 1989, pp. 30-
42.

[10] Data Explorer Reference Manual, IBM, Armonk,
New York, 1991.

[11] IRIS Explorer User’s Guide, Numerical Algorithms
Group, Oxford, UK, 2000.

[12] H. P.ster et al., “The VolumePro Real-Time Ray-
Casting System,” Proc. Siggraph 99,
ACM Press, New York, Aug. 1999, pp. 251-260.

[13] William J. Schroeder, Lisa S. Avila, and William
Hoffman Kitware “ Visualizing with VTK: A
Tutorial “September/October 2000 IEEE Computer
Graphics and Applications

[14] http://www.vcreatelogic.com/

Dr.C.S.Bagewadi, received his
Master's degree in Mathematics with
Gold Medal and Ph.D. in Differential
Geometry from Karnatak University,
Dharwad, India, In 1982 he joined as a
Reader in the department of
Mathematics and became a professor
in 1993. He served as an Acting Vice
Chancellor Kuvempu University,
Dean, and faculty of Science &

Technology, Chairman Department of Mathematics & Computer
Science, Kuvempu University. His research interests include the
areas of Fluid Mechanics, Differential Geometry and Computer
simulation and Graphics. Presently he is working as a Chairman,
Department of Mathematics & Computer Science Kuvempu
University, Shimoga, India

Mr .G M Lingaraju received his
Bachelor of Engineering and Master of
Technology (CADS) from University
of Mysore, Karnataka. He has worked
in the department of Computer Science
& Engineering as Lecturer/assistant
Professor, from 1995, at present He is a
Research Scholar at Kuvempu
University in the Department of
Computer Science, Karnataka. His
areas of interest include Computer

Graphics, Real time Scientific Visualization, Haptics and
Computational Steering.

