
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

16

An Efficient Approach for Increasing Security to Symmetric
Data Encryption

¹Muhammad Nazrul Islam, ¹Md. Monir Hossain Mia, ¹Md. Foizul Islam, ²M.A. Matin 1

Dept. of Computer Science & Engineering
¹Khulna University of Engineering & Technology (KUET)

²BRAC University

Summary

The selective application of technological and related procedural
safeguards is an important responsibility of every organization in
providing adequate security to its electronic data systems.
Protection of data during transmission or while in storage may
be necessary to maintain the confidentiality and integrity of the
information represented by the data. The algorithm uniquely
defines the mathematical steps required to transform data into a
cryptographic cipher and also to transform the cipher back to the
original form. Data encryptions standard (DES) use64 bits block
size as well as 64 bits key size that are vulnerable to brute-force,
attack. But for both efficiency and security a larger block size is
desirable. The Advanced Encryption Standard (AES), which use
128 block size as well as 128 bits key size, is using as an
encryption standard now. In this paper, we propose an algorithm
which is higher secure than Rijndael algorithm but less efficient
than that. The difference of efficiency between Rijndael and our
propose algorithm is very negligible. We explain all this term in
this paper.

KEY WORDS: Computer Security, Block cipher, plain text,
cipher text, Differential cryptanalysis, Linear cryptanalysis,
Symmetric Encryption.

1. Introduction

In this document we describe about symmetric cipher. Our
proposed algorithm is much more similar to that of Rijndael.
The difference is that, Rijndael algorithm start with 128 bits
block size, and then increase the block size by appending
columns[Rijn99], whereas our algorithm start with 200 bits.
Our paper is organized as follows.

Section 2 describes the algorithm properly and section 3
gives a way of thinking in security measure. We gave the
time comparison between the original Rijndael
implementation on 128 bits block size (with 128 bit key)
and our proposed algorithm which operate on 200 bits in
section 4. Some advantages and disadvantages are given in
section 5 and we conclude in section 6. We did not gave
the mathematical preliminaries as it is same as the
mathematical computation of Rijndael.

2. Proposed Algorithm

For simplicity, we refer the different transformation;
operate on the intermediate result as State.

2.1 The General Definitions

The intermediate cipher result is called the State. The State
can be pictured as a rectangular array of bytes. This array
has five rows; the number of columns is denoted by Nb
and is equal to the block length divided by 40.

As the security is the function of block length and the size
of key length we increase the block length as well as the
key length. Our basic block length is 200 bits which can be
shown as a 5 by 5 matrix of byte. This is illustrated in
figure 1.We can increase our block by appending a column
at a time. But we like to emphasize on 200 bit and then
compare the security & efficiency between our 200 bits
block cipher and Rijndael 128 bits cipher. The input and
output used by our proposed algorithm at its external
interface are considered to be one dimensional arrays of 8-
bit bytes numbered upwards from 0 to the 5*Nb-1.The
Cipher Key is considered to be a one-dimensional arrays of
8-bit bytes numbered upwards from 0 to the 5*Nk-1.The
cipher input bytes (the “plaintext” if the mode of use is
ECB encryption) are mapped onto the state bytes in order

a0,0, a1,0, a2,0, a3,0, a4,0, a0,1, a1,1, a2,1, a3,1, a4,1 ... , and the
bytes of the Cipher Key are mapped onto the array in the
order k0,0, k1,0, k2,0, k3,0, k4,0, k0,1, k1,1, k2,1, k3,1, k4,1 ... At the
end of the cipher operation, the cipher output is extracted
from the state by taking the state bytes in the same order.

Hence if the one-dimensional index of a byte within a
block is n and the two dimensional index is (i ,j), we
have:

i = n mod 5 ; j=⎣n/5⎦ ; n=i+5* j

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

17

2.2 The Round Transformation

The round transformation is composed of four different
transformations. It is similar to that of Rijndael. In pseudo
C notation we can represent this as below-

Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);}

2.2.2 The ShiftRow Transformations

For encryption, the 1st row remain unchanged, 2nd row is
shifted 1 byte to the left, 3rd is 2 byte to the left, 4th is 3
byte to the left and 5th row is shifted 4 byte to the left. For
decryption the operation is similar to that for encryption
but in reverse direction.

2.2.2 The MixColumn Transformations

In MixColumn, the columns of the State are considered as
polynomials over GF(28) and

Fig 1. Matrix representation of data block and key

The final round of the cipher is slightly different. It is
defined by-

FinalRound(State,RoundKey)
{
ByteSub(State) ;
ShiftRow(State) ;
AddRoundKey(State,RoundKey);
}

In this notation, the “functions” (Round, ByteSub,
ShiftRow, …) operate on arrays to which pointers (State,
RoundKey) are provided. It can be seen that the final
round is equal to the round with the MixColumn step
removed. The component transformations are specified
in the following subsections.

2.2.1 The ByteSub Transformations

The bytesub transformation is similar as that of Rijndael
bytesub transformation.The details is given at [Rijn99].
For increasing the efficiency we used Rijndael S-box.

multiplied modulo x5 + 1 with a fixed polynomial c(x),
given by

c(x) = ‘04’ x4 + ‘03’ x3 + ‘01’ x2 + ‘01’ x +’02’

This polynomial is co-prime to x5 + 1 and therefore
invertible. This can be written as a matrix
multiplication. Let b(x) = c(x)⊗a(x),

The application of this operation on all columns of the
State is denoted by MixColumn(State).

The inverse of MixColumn is similar to MixColumn.
Every column is transformed by multiplying it with a
specific multiplication polynomial d(x), defined by

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

18

(‘04’ x4 + ‘03’ x3 + ‘01’ x2 + ‘01’ x +’02’) ⊗d(x) =
‘01’.

It is given by:

d(x) = ‘7D’ x4 + ‘09’ x3 + ‘8A’ x2 + ‘4C’ x +’E0’.

2.2.4 The Round Key Addition

In this operation, a Round Key is applied to the State by
a simple bitwise EXOR. The Round Key is derived
from the Cipher Key by means of the key schedule. The
transformation that consists of EXORing a Round Key
to the State is denoted by:
AddRoundKey(State,RoundKey).

2.3 Key Schedule

The Round Keys are derived from the Cipher Key by
means of the key schedule. This consists of two
components: the Key Expansion and the Round Key
Selection. The basic principle is the following:

●The total number of Round Key bits is equal to
the block length multiplied by the number of
rounds plus 1.

●The Cipher Key is expanded into an Expanded
Key.

●Round Keys are taken from this Expanded Key in
the following way: the first Round

2.3.1 Key Expansion

The Expanded Key is a linear array of 5-byte. In c code
this can be written as

keyexpansion(unsigned short int *key,unsigned short

int *expandkey)

{

 unsigned short int temp[5],*temp1;

 int i,j;

 for(i=0;i<5;i++){

 for(j=0;j<5;j++){

 expandkey [i*5+j]=key[i*5+j];

 }

 }

 for(i=5;i<55;i++){

 for(j=0;j<5;j++)

 temp[j]= expandkey [(i-1)*5+j];

 if(i%5==0){

temp1=subword(rotbyte(temp));

 for(j=0;j<5;j++)

 temp[j]=temp1[j];

 temp[0]=temp[0] ^ Rcon[i/5-1];

 }

 for(j=0;j<5;j++)

expandkey [i*5+j]= expandkey [(i-

5)*5+j]^temp[j];

 }

}

One important this is here we expand key for 10
round. And the rotbyte and subbyte is stand for
rotation of byte in a single vector and substitute a byte
using S-box. The detail about Rcon is given in
[Rijn99].

3. Security

As we increase the key size as well as the block size
the security has enhanced. And the linear
cryptanalysis and differential cryptanalysis require
more time then Rijndael to break our proposed cipher.

4. Comparison

The amount of time required to encrypt a packet is
proportional to the number of bytes (as well as the
number of bits) in the packet. If the packet size is
200bits long, then our proposed algorithm has to
execute once to encrypt the whole data but Rijndael
algorithm has to run 2 times to encrypt the whole data.
In a common sense, it seems that our proposed
algorithm is more efficient. But actually it is less
efficient. The difference of the efficiency is very
negligible. But our proposed cipher is much efficient
than saffer+, RC5. A comparison of various types of
Encryption and Decryption algorithm is given in
[PCAS99]. The simulated result is given below
through the figure 3 and 4 .

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

19

Time required to encrypt whole
packet by Rijndael 128 bit block

ciper

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

N umbe r of bi t s. (1 uni t = 2 0 0 bi t)

Time required to encrypt whole packet by
our 200 bit proposed algorithm

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Number of bits (1 unit = 200 bis)

R
eq

ui
re

d
tim

e

Fig. 3 Timing comparison to encrypt between Rijindael and our proposed algorithm

Time required to decrypt whole packet
by Rijndael 128 bit block

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Number of bits(1 unit = 200 bits)

R
eq

ui
re

d
tim

e

Time required to decrypt whole
packet by our 200 bit proposed

algorithm

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

N umbe r of bi t s (1 uni t = 2 0 0 bi t s)

Fig. 4 Timing comparison to decrypt between Rijindael and our proposed algorithm

5. Advantages and Limitations

Implementation aspects:

• Our proposed algorithm can be implemented to run

at speeds unusually fast for a block cipher on a
Pentium (Pro). There is a trade-off between table
size / performance.

• Our proposed algorithm can be implemented on a
Smart Card in a small amount of code, using a
small amount of RAM and taking a small number
of cycles. There is some ROM/ performance trade-
off.

• Our proposed algorithm can be used in Geographic
Information System (GIS) and Satellite
Communication when huge data need to be
transferred securely.

• The round transformation is parallel by design, an
important advantage in future processors and
dedicated hardware.

• As the cipher does not make use of arithmetic
operations, it has no bias towards big or little
ending processor architectures.

Simplicity of Design:

• The cipher is fully “self-supporting”. It does not

make use of another cryptographic component, S-
boxes “lent” from well-reputed ciphers, bits
obtained from Rand tables, digits of p or any
other such jokes.

• The cipher does not base its security or part of it
on obscure and not well understood interactions
between arithmetic operations.

• The tight cipher design does not leave enough
room to hide a trapdoor.

Variable block length:

• Although the number of rounds of Rijndael is

fixed in the specification, it can be modified as a
parameter in case of security problems.

Limitations:

The limitations of the cipher have to do with its
inverse:
• The inverse cipher is less suited to be

implemented on a smart card than the cipher
itself: it takes more code and cycles. (Still,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

20

compared with other ciphers, even the inverse is
very fast).

• In software, the cipher and its inverse make use of
different code and/or tables.

• In hardware, the inverse cipher can only partially
re-use the circuitry that implements the cipher.

• This algorithm is less efficient then Rijndael

algorithm.

6. Conclusions

Though there is some difference in efficiency between
our proposed algorithm and Rijndael, it is negligible as
it varies in microsecond. If any user emphasis on
security then he can use our proposed algorithm. But if
the efficiency comes first then the user must use the
Rijndael algorithm. And we can claim that if the block
size is increase by increasing the matrix order then there
is degradation in efficiency.

References

[1] Joan Daemen and Vincent Rijmen,AES

submission document on Rijndael,June 1998.

[2] [Rijn99]Joan Daemen and Vincent Rijmen,

AES submission document on
Rijndael,Version 2, September 1999.

[3] Joan Daemen and Vincent Rijmen, The Design

of Rijndael, AES - The Advanced Encryption
Standard, Springer-Verlag 2002 (238 pp.)

[4] [DaKnRi97] J. Daemen, L.R. Knudsen and V.

Rijmen, "The block cipher Square," Fast
Software Encryption, LNCS 1267, E. Biham,
Ed., Springer-Verlag, 1997, pp. 149-165.

[5] [KeScWa96] J. Kelsey, B. Schneier and D.

Wagner, "Key-schedule cryptanalysis of IDEA,
GDES, GOST, SAFER, and Triple-DES,"
Advances in Cryptology, Proceedings Crypto
'96,LNCS 1109, N. Koblitz, Ed., Springer-
Verlag, 1996, pp. 237-252.

[6] [PCAS99]Bruce Schneier, John Kelsey, Doug
Wagner, Chris hall, Niels Ferguson
“Performance Comparison of the AES
Submission”

[7] [CNSPP03]Willam Staling “Cryptography and

network security-principle and practice”

Muhammad Nazrul Islam received
the B.Sc. degree in Computer
Science and Information technology
(CIT) from Islamic University of
Technology (IUT), Bangladesh and
M.Sc. degrees in Computer
Engineering from Politecnico di
Milano, Italy in 2002 and 2007,

respectively. He has been servicing as a faculty member of
the department of Computer Science & Engineering (CSE)
of Khulna University of Engineering & technology (KUET),
Bangladesh since July, 2003. He is currently working as an
Assistant Professor of CSE department of KUET, Khulna
9203, Bangladesh.

Muhammad Foizul Islam received the B.Sc. degree in
Computer Science and Engineering (CSE) from Khulna
University of Engineering and Technology (KUE),
Bangladesh. in 2004. He has been servicing as a faculty
member to the department of Computer Science &
Engineering (CSE) of Leading University, Sylhet,
Bangladesh since January, 2005. He is currently working as
a Research Assistant in Ontario Research Center for
Computer Algebra (ORCCA) lab, Canada. Besides, he is
doing his M.Sc. in Computer science at department of
Computer Science, University of Western Ontario, Canada.

Md Monir Hossain Mia received
the B.Sc. Engr. degree in Computer
Science and Engineering (CSE)
from Khulna University of
Engineering and Technology
(KUE), Bangladesh. in 2004. He
has been servicing as a faculty
member to the department of
Computer Science & Engineering

(CSE) of University of Information Technology & Sciences
(UITS), Dhaka, Bangladesh since June, 2005 (Study Leave).
He is currently working as an ICT Technician in St Charles
College, UK. Besides, he has recently finished his M.Sc. in
Mobile Computing & Communications from University of
Greenwich London, UK.

