
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

101

Manuscript received April 5, 2008

Manuscript revised April 20, 2008

 Performance Study of Improved Heap Sort Algorithm and
Other Sorting Algorithms on Different Platforms

Vandana Sharma†, Satwinder Singh†† and Dr. K. S. Kahlon †††

Department of Computer science & Engineering Chitkara Institute of Engg. & Technology, Rajpur a, Punjab , India

Department of Computer science & Engineering, Baba banda Singh Bahadur engineering College, Fatehgarh Sahib, Punjab, India

Department of Computer science & Engineering ,GNDU Amritsar , Punjab, India

Summary

Today there are several efficient algorithms that cope with the
popular task of sorting. This paper titled Comparative
Performance Study of Improved Heap Sort Algorithm and other
sorting Algorithms presents a comparison between classical
sorting algorithms and improved heap sort algorithm. To have
some experimental data to sustain these comparisons three
representative algorithms were chosen (classical Heap sort,
quick sort and merge sort). The improved Heap
sort algorithm was compared with some experimental data of
classical algorithms on two different platforms that lead to final
conclusions.
Key words: Complexity, Performance of algorithms,
Asymptotic notation

1. Introduction

In computer science and mathematics, a sorting
algorithm is an algorithm that puts elements of a list in a
certain order. The most used orders are numerical order
and lexicographical order. Efficient sorting is important
to optimizing the use of other algorithms (such as search
and merge algorithms) that require sorted lists to work
correctly; it is also often useful for producing human-
readable output. Sorting algorithms are classified by
several other criteria such as Computational complexity
(worst, average and best number of comparisons for
several typical test cases) in terms of the size of the list,
Stability (Memory usage and use of other computer
resources), The difference between worst case and
average behavior, behaviors on practically important data
sets (completely sorted, inversely sorted and almost
sorted. In this paper, a comparative performance
evaluation of improved heap sort with three different
sorting algorithms: heap sort, quick sort, and merge sort
is presented. In order to study the interaction between the
algorithms and the platform, all the algorithms were
implemented on two different platforms.

2. Comparison based sorting algorithms

A comparison sort is a type of sorting algorithm that
only reads the list elements through a single abstract
comparison operation (often a "less than or equal to"

operator) that determines which of two elements should
occur first in the final sorted list. The only requirement is
that the operator obey the three defining properties of a
total order:

if a ≤ b and b ≤ a then a = b (antisymmetry)

if a ≤ b and b ≤ c then a ≤ c (transitivity)

a ≤ b or b ≤ a (totalness or trichotomy)

Example: Quick sort, Heap sort, Merge sort, Insertion
sort, Selection sort Bubble sort

In this paper algorithms based on comparisons are
studied. Theoretical lower bound [1] for general sorting
algorithms is

log(n!) = nlogn-nloge+θ(log n)

 ≈ n logn – 1.442695n,

for the worst case numbers of comparisons. This lower
Bound makes sorting by merging, sorting by insertion
and binary search very efficient. Merge Sort performs at
most nlogn – n+1 key comparisons and requires O(n)
extra space Quick sort consumes Θ(n2) comparisons in
worst case. Hoare proposed CLEVER-QUICKSORT in
worst case still it has Θ(n2) comparisons and in average
case number of comparisons are reduced to 1.188nlogn-
2.255n[2]. Heap sort needs 2nlogn comparisons and upper
bound for comparisons in Bottom-up-heap sort of
1.5nlogn [3]. Carlson's variant of Heap sort [4] needs nlogn
+ (nlog logn) comparisons. Wegner showed that it
McDiarmid and Reed's variant of Bottom-up-heap sort
needs nlogn+1.1 n comparisons [5]. An improved HEAP
SORT algorithm is proposed by XiaoDong Wang and
Ying -Jie wu with nlogn-0.788928n comparisons in
Worst case [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

102

2.1. Heap sort

Heapsort is a comparison-based sorting algorithm
Heapsort is an in-place algorithm, but is not a stable sort.
a worst-case O(n log n) runtimeHeapsort inserts the
input list elements into a heap data structure. The largest
value (in a max-heap) or the smallest value (in a min-
heap) are extracted until none remain, the values having
been extracted in sorted order. The heap's invariant is
preserved after each extraction, so the only cost is that of
extraction.During extraction, the only space required is
that needed to store the heap. In order to achieve constant
space overhead, the heap is stored in the part of the input
array that has not yet been sorted Heapsort uses two heap
operations: insertion and root deletion. Each extraction
places an element in the last empty location of the array.
The remaining prefix of the array stores the unsorted
elements

2.2. Quick sort

The quick sort is an in-place, divide-and-conquer,
massively recursive sort. The quick sort is by far the
fastest of the common sorting algorithms Quicksort runs
in O(n log(n)) on the average and worst case behavior
of Θ(n2).

2..3. Merge sort

Mergesort is an O(n log n) comparison-based sorting
algorithm. It is stable, meaning that it preserves the input
order of equal elements in the sorted output. It is an
example of the divide and conquer algorithmic paradigm.
Conceptually, merge sort works as follows:

i) Divide the unsorted list into two sublists of about half
the size

ii) Divide each of the two sublists recursively until we
have list sizes of length 1, in which case the list itself is
returned

iii) Merge the two sublists back into one sorted list.

2.4. Modified Heap Sort

A new variant of Heap Sort is modified heap sort [6]
Basic idea of new algorithm is similar to classical Heap
sort algorithm but it builds heap in another way. This
new algorithm requires nlogn-0.788928n
comparisons for worst case and nlogn-n comparisons in
average case. This algorithm uses only one comparison
at each node. With one comparison we can decide which
child of node contains larger element. This child is

directly promoted to its parent position In this way
algorithm walks down the path until a leaf is reached

Algorithm

Procedure Rank Heap Sort ()

Step I: Building : Call to Build Heap (H)

Step II: Loop for shifting

 For i← length(H) down to 2

 Call to Shift(i)

Step III: Call to Rearrange()

 Fig. 1.1 Rank Heap sort

The above Procedure in fig 1.1 sorts the element of a
given array using modified heap sort technique . The
procedure makes a call to build heap , shift and rearrange.

Procedure Shift(index)

Step I: Set k←0

Step II: Call to internal(K)

Step III: If K is an internal node

 Call to maxchild(k)

 Set k ←maxchild(k)

 Swap a[k/2] and a[k]

Step IV Repeat step III till K is internal node

Step V Set Rank[k] ← index

Fig 1.2. Shift Procedure

Shift procedure in fig.1.2 shift the root element
downward till it becomes leaf node . The procedure
makes a call to internal and maxchild procedures

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

103

Function boolean internal(i)

Step I: Set k ← 2*I

Step II: Return k<=n and !rank[k] or (k<n)
and(!rank[k+1])

Fig 1.3 . Internal Procedure

Internal function in fig 1.3 return whether a node is
internal node or not.

Function integer maxchild(i)

Step I: Set k ← 2 * i

Step II: Set left ← (k<=n) AND (!rank[k])

 Set right = (k<n) AND(!rank[k+1])

Step III: If(!left OR left AND right AND
a[k]<a[k+1])

 Set k ← k+1

Step IV: return k

Fig. 1.4 Maxchild Procedure

maxchild function in fig 1.4 returns index of child of
node i having maximum value.

Procedure Rearrange()

Step I: For I=2 to n

Step II: Repeat step III /& IV while rank[I] ← I

Step III Swap a[i] and a[rank[I]

Step IV Swap rank[i]and rank[rank[i]

Fig 1.5. Rearrange Procedure

Rearrange procedure in fig 1.5 rearranges elements of
array in such way that order becomes sorted.

3. Performance study

In the previous section, heap sort, quick sort, merge
sort and improved heap sort algorithms were described.
A detailed study to assess the performance of improved
heap sort algorithm with respect to the heap, quick and
merge sort algorithms was conducted . The performance
metric in all the experiments is the total execution time
taken by the sorting operation.

The experiments were conducted in two categories

Category I:
 AMD 1.8 GHz workstation running Windows XP
Professional Service Pack2 operating system configured
with 512MB main memory and one 80 GB hard disk
using Microsoft Visual C++ compiler.

Category II:
Celeron 2.5 GHz running Windows 2000 Professional
Service Pack 2 operating system configured with 512
MB main memory and one 40 GB hard disk using Dev
C++ compiler.
For the experiments integer numbers have been used,
which were generated randomly. To obtain results data
files were used. To study the performance of the
algorithms generated data sets with 1000 to 100000
items were used and code was executed 50 times and
average execution time in clock ticks was recorded and
converted in ms.

Results of Category I are shown in Table 1. It shows
the execution times of all the four algorithms for no. of
data items ranging from 1K to 100K. It is observed that
that modified heap sort algorithm takes less time than
other sorting algorithms for data items 100K . In case of
100K data items it beats quick sort also as shown in Fig
2. For other data sizes the execution time is greater than
other sorts. While for larger no. of data items the
execution time difference increases.

TABLE 1

AVERAGE SORTING TIME (IN MSEC) OF ALGORITHMS ON RANDOM DATA
AVERAGED 50 RUNS(CATEGORY I)

No.of data
item-----> 1000 5000 10000 50000 100000

Heap sort 0.0003 0.0045 0.0054 0.04962 0.08486

Merge sort 0.0009 0.0045 0.0054 0.94564 0.08426

Quick sort 0.0009 0.0021 0.0027 0.02116 0.04734
Modified
heap sort 0.0015 0.0066 0.0154 0.07428 0.0162

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

104

0
0.02
0.04
0.06
0.08
0.1

10
00

50
00

10
00

0

50
00

0

10
00

00

No. of Data items

Ti
m

e
in

 m
se

c

Heap sort

Merge sort

Quick sort

Modif ied
heap

 sort

Fig 2 .Comparison of sorting algorithms performance

Results of category II are shown in Table 2. It
represents the execution times of all the four algorithms
for no. of data items ranging from10 to 100K similar as
in category I. It shows poor performance of modified
heap sort algorithms as compared to other algorithms
for larger data items of 50K and 100K.Fig 3. Represents
performance of algorithms in Category II.

TABLE 2

AVERAGE SORTING TIME(IN MS) OF ALGORITHMS ON RANDOM DATA
AVERAGED 50 RUNS(CATEGORY II)

No.of data
item------> 1000 5000 10000 50000 100000

Heap sort 0.00122 0.0036 0.0083 0.04994 0.1229

Merge sort 0.00061 0.0012 0.0153 0.05287 0.12308

Quick sort 0.0009 0.0003 0.0027 0.01469 0.0298

Modified
heap sort 0.00030 0.0067 0.0092 0.11718 0.29665

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

No. of da t a i t e ms

Heap sort

Merge sort

Quick sort

Modif ied heap

 sort

Fig32 : Sorting Algorithms Performance (category II)

4. Conclusions

This paper presented the comparative performance
study of four sorting algorithms on different platform.
For each machine, It is found that the choice of
algorithm depends upon the number of elements to be
sorted. In addition, as expected, results show that the
relative performance of the algorithms differed on the
various machines. In category I for large number of
data items performance of improved heap sort is better.
But for small number of data items performance of
modified heap sort is poor than other algorithms. But in
Category II platform for each data size except
1K ,modified heap sort algorithm takes more execution
time than any other algorithm in question.

5. Future work

Considering the performance of algorithms based on
hardware and operating system better analysis can lead
to more efficient algorithm. In future purposed work is to
improve algorithm considering these factors.

References

[1] Knuth D.E The art of programming-sorting and

searching.2nd edition addison wesley.
[2] Hoare C A R Quicksort.Computer journal 5(1):10~15.
[3] I.Wegner:BOTTOM-UP-HEAPSORT beating on average

QUICKSORT(if n is not very small). Proceedings of the
MFCS90,LNCS 452,516-522,1990

[4] S.Carlsson:Avariant of HEAPSORT with almost optimal
number of comparisons.Information Processing Letters
24:247-250,1987.

[5] I.Wegner:The worst case complexity of Mc diarmid and
Reed's variant of BOTTOM-UP-HEAP SORT is less than
nlogn+1.1n. Proceedings of the STACS91,LNCS 480:137-
147,1991.

[6] Xio dong wang,ying jie wu An improved heap sort
algorithm with nlogn –0.788928n comparisons in worst
case. journal of computer science and
technology22(6):898~903

Vandana Sharma is a Senior Lecturer
in Department of Computer Science &
Engineering at Chitkara Institute of
Engineering and Technology, Jansla ,
Punjab, India. Her research interests
are in design and analysis of algorithms,
dataming and applications of IT. Ms.
Vandana is member of ISTE.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

105

Satwinder Singh is Lecturer in
Department of Computer Science &
Engineering and IT at Baba Banda
Singh Bahadur Engineering College,
Fatehgarh Sahib,Punjab, India. .His
research interests are design and
analysis of algorithms, object oriented
analysis & design.

Dr. K.S. Kahlon is Professor &Head of Department of Computer
Science and Engineering, Guru Nanak dev University, Amritsar (India)

