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Summary  
 
Management and analysis of streaming data has become crucial 
with its applications on web and for transactions data . Data 
streams consist of mostly numeric data but what is more 
interesting are the events derived from the numerical data that 
need to be monitored. The events obtained from streaming data 
form event streams. Event streams have similar properties to data 
streams, i.e., they are seen only once in order as a continuous 
stream. Events appearing in the event stream have time stamps 
associated with them at a certain time granularity, such as second, 
minute, or hour. One type of frequently asked queries over event 
streams are count queries, i.e., the frequency of an event 
occurrence over time. Count queries can be answered over event 
streams easily; however, users may ask queries over deferent time 
granularities as well. For example, a banking consultant may ask 
how many times a certain type of transaction is increased in the 
same time frame, where the time frames specified could be an 
hour, day, or both. Such types of queries are challenging 
especially in the case of event streams where only a window of an 
event stream is available at a certain time instead of the whole 
stream. In this paper, we propose a technique for predicting the 
frequencies of event occurrences in event streams at multiple time 
granularities. 
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1. Introduction  
 A transaction T supports an item set I  if I  is contained in  T . The 
support for an item set I is defined as the ratio of the number of 
transactions that supports the item set I to the total number of 
transactions. If the support for an item set I  satisfies the user-
specified minimum support threshold, then I  is called frequent 
item set, and a frequent item set of length k a frequent k-item set. 
The confidence of a rule X=>Y is defined as the ratio of the 
support for the item sets X union Y to the support for the item set 
X. If item set   Z=X union Y is a frequent item set and the 
confidence of  X=>Y is no less than the user-specified minimum 
confidence, then the rule X=>Y is an association rule.  
Traditionally, data are collected and stored in a repository and 
queried or mined for useful information upon request .However, in 
the case of applications like sensor networks and stock market, 
data continuously .known as a stream and thus need to be queried 
or analyzed . Streaming data (or data streams) brought another 
dimension to data querying and data mining research[1]. This is 
due to the fact that, in data streams, as the data continuously 
generated  only a window of the data is available at a certain time. 
The events occurring in a stream of data constitute an event stream, 
and an event stream has the same characteristics as a data stream, 

i.e., it is continuous and only a window of the stream can be seen 
at a time. Basically, an event stream is a collection of events  that 
are collected from a data stream over a period of time. Experts 
would like to extract information from an event stream, such as 
the value of an event at a specific time-tick; frequency of certain 
events, correlations between different events, regularities within a 
single event; or future behavior of an event. Relationships among 
the events can be captured from event streams via online data 
mining tools. 
 
Many constraint-based mining[2] methods have been proposed. 
Hipp and Guntzer (2002) presented that data mining process 
should be an initial unconstrained and costly mining run. The 
mining queries are answered from the initial mining result such 
that response time can be minimized. However, the discovered  
association rules may become invalid or inappropriate since the 
transactions are increasing any time. It is very costly to re-run the 
unconstrained mining algorithm[5] to obtain the up-to-date initial 
mining result. An 
item constraint specifies what is the particular individual or group 
of items that should or should not be presented in the pattern, that 
is, the items in the discovered patterns have to be contained in the 
specified  item set[3].   
 
In this paper, we successfully integrate two kinds of patterns and 
use the similar style of the data mining language proposed in (Yen 
and Chen, 1997). Besides, we also propose efficient data mining 
methodology to find  associations among certain items for stream 
data . 
In this paper the constraint is event stream  mining over time 
granularity. 
 
2. Data mining  for streams in a customer 
transaction 
 
The data mining language is defined as follows. Users can query 
association rules or sequential patterns by 
specifying the related parameters in the data mining language. 
Mining <Data Mining Transaction> 
From <ES>  
With <(D1),(D2), .,(Dm)> 
Support <S%> 
Confidence  <C%> 
 
In the Mining clause, <Data Mining Transaction> can be 
association rules[10] or sequential patterns. The former is to 
discover association rules and the later is to discover sequential 
patterns. 
In the From clause, <ES> is used to specify the database name to 
which users query the association rules or  sequential patterns 
where ES represents Event Stream. In the With clause, if the   
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<Data Mining Transaction>  is sequential patterns,  
<(D1),(D2), .,(Dm)> are user specified item sets which ordered by 
increasing  purchasing time, and (Di) can be the notation ‘*’ 
which represents any sequences. If the  <Data Mining 
Transaction> is  association  rules  then m is equal to 2, and D1 
and D2 are the item sets in the antecedent and consequent, 
respectively, of the discovered rules. Besides, (Di) and the items in 
Di can be the notation ‘*’ which represents any items. Support 
clause is followed by the user-specified minimum support s%. 
Confidence clause is followed by the user-specified minimum 
confidence c% if the  Data Mining Transaction is association rules. 
If the  Data Mining Transaction is  sequential patterns, this clause 
is ignored.  
 
In order to find the interesting association rules and  sequential 
patterns efficiently, we need to transform the original transaction 
data into another type  and capture streams in the form of event 
streams[12].  Each event in each customer sequence is 
transformed into a bit string. The length of a bit string is the 
number of the transactions in the customer sequence. If the ith 
transaction of the customer sequence contains an item, then the ith 
bit in the bit string for this item is set to 1. Otherwise, the ith bit is 
set to 0. For example, in Table 1, the bit string for item A in CID 1 
is 011. Hence, we can transform the customer sequence data base  
(Table 1) into the bit-string database (Table 2). From the bit-string 
database, we can easily compute the number of the transactions in 
a customer sequence, which contain an item set. For example, in 
Table 1, if we want to know how many transactions in CID 1 
support the item set (A,C,E). We can perform logical AND 
operations on the bit strings for items A, C and E in CID 1. The 
number of 1’s in the resultant bit string is the number of the 
transactions which contain the item set (A,C,E) in CID 1. 
Suppose a transaction of customer contains the two events S1 and 
S2 We can  do operation called event  bit string operation to check 
if the events S1S2 is also contained in this transaction of customer 
sequence. The process of the event  bit-string operation is 
described as follows: Let the bit string for sequence S1 in 
customer sequence c is B1, and for sequence S2 is B2. Bit string 
B1 is scanned from left to right until a bit value 1 is visited. We 
set this bit and all bits on the left hand side of this bit to 0 and set 
all bits on the 
right hand side of this bit to 1, and assign the resultant bit string to 
a template Tb. Then, the bit string for sequence S1S2 in c can be 
obtained by performing logical AND operation on bit strings Tb 
and B2. If the number of 1’s in the bit string for sequence S1S2 is 
not zero, then S1S2 is contained in customer sequence c. 
Otherwise, the customer sequence c does not contain S1S2.  
For example, consider Table 1. We want to check if sequence 
<(A)(C)> is contained in customer sequence in CID 1. From Table 
2, we can see that the bit string for items A and C in CID 1 are 
BAZ011 and BCZ111, respectively, and the template bit string 
TbZ001. By performing logical AND operation on Tb and BC, we 
can obtain that the bit string for  sequence h(A)(C)i in customer 
sequence CID 1 is 001.  
Event stream database (ESD) 
CID  Customer sequence 
1  h(C)(A,C)(A,C,E)i 
2  h(A,E)(A)(A,C,E)(C,E)i 
3  h(C)(E)(E)(C,E)i 
4  h(B,D)(A,E)(B,C)(A,E)(A,B,E)(F)i 
5   h(D)(D,E,F)(C,E,F)(A,D)(B,D)(D,F)i 

Table 1 
 
Bit-string database  
CID Transaction items Bit string for each item 
1      A, C, E    011,111,001 
2      A, C, E    1110,0011,1011 
3      C, E     1001,0111 
4      A, B, C, D, E, F 
010110,101010,001000,100000,010110,000001 
5      A, B, C, D, E, F 
000100,000010,001000,110111,011000,011001 
Table 2  
 
3. Mining  events association rules 
In this section, we focus on mining event streams association 
rules[6] according to proposed data mining language. We divide 
the query into two cases.   
Case 1:  there are items in the antecedent of the discovered rules 
specified. 
Case 2: there are items in the consequent of the discovered rules 
specified, but the item in the antecedent is not specified, which can 
be any items. Suppose that the event set specified in the 
antecedent of the discovered rules in 
Case 1 is X, and the event set specified in the consequent of the 
discovered rules is Y. We propose an efficient algorithm called 
MEAR (Mining  Events  Association Rules) to find all the 
interesting association rules according to the user requirements, 
which is described as follows: 
 
Step 1. Scan the bit-string database once to compute the support 
for the specified event set, and then find all the frequent 1-event 
sets. 
Step 2. Generate candidate (k+1)-event sets (k is the length of  
event set X (or X union Y) for Case 1, and k is the length of  event 
set Y for Cases 2), scan the bit-string database to find the frequent 
(k+1)- event sets, which contain the event set X (or X union Y) for 
Case 1, the event set Y for Case 2, and generate the (k+1)-event 
set database. 
Step 3. The frequent event sets are generated for each iteration. In 
the (h–k)th iteration (h>=k+1), generate candidate (h+1)-event sets, 
scan the h-event  database to generate (h+1)-event set database 
and find all the frequent (h+1)-event sets ). 
 
3.1. Applying Time constraint for events 
Data analysis at multiple time granularities was already explored 
in the context of sequential pattern mining by Bettini et al. [5]. 
Our target, however, is to .find frequencies of event occurrences at 
multiple time granularities without any time restriction. Temporal 
aggregation queries were well studied and several approaches 
have been proposed recently [10,13]. However, all these works 
consider only a single time granularity, where this granularity is 
usually the same as the granularity used to store the time attributes. 
To the best of our knowledge, the only work exploring the 
aggregate queries of streaming data in the time dimension at 
multiple time granularities appeared  Zhang et al. present 
specialized indexing schemes for maintaining aggregates using 
multiple levels of temporal granularities: older data is aggregated 
using coarser granularities while more recent data is aggregated 
with .near detail. If the dividing time between different 
granularities should be advanced, the values at the near granularity 
are traversed and the aggregation at coarser granularity[8] is 
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computed. However, we scan the stream only once and estimate 
the frequency of the event at any arbitrary time granularity without 
storing any information at intermediate time granularities. 
Definition 1:  Let G and H be two granularities. Then, G is said to 
be finer than H, denoted as G _ H, if for each time-tick i in G, 
there exists a time-tick j in H such that G(i) _ H(j). If G _ H, then 
H is said to be coarser than G. For example, day is .near than week, 
and coarser than hour, because every day is a subset of a week and 
every hour is a subset of a day. 
Definition 2. A 0/1 event stream is an event stream where each 
time-tick records the state of the event at that time-tick, which is 
equal to 1 if the event occurs, and 0 otherwise. 
When we transform an event stream   at time granularity  to 
another event stream Sg1 at granularity , we obtain a deferent set 
of time-ticks and different sets of events associated with these 
time-ticks. Before we give the formal definition on of 
transformation of a stream, the following two concepts need to be 
introduced. 
Definition 3:  A Transformation Operation is a mapping P:Ec -> 
E that takes event states at c successive time-ticks where c is the 
transformation coefficient, and returns a single event state 
according to the particular operation in use. Some common 
transformation operations are Min Merge, Max Merge, Avg- 
Merge, Sum Merge, Union, and Intersection. For example, Min 
Merge operation returns the minimum event value from the set of 
c events, where c is the transformation coefficient. The other 
operations are defined similarly. In this paper, we are interested in 
0/1 (Boolean) event stream where the universal set of event states 
is {0, 1}, and we use merge OR operation that logically ORs the 
event values at corresponding time-ticks. Besides merge OR, some 
other transformation operations can also be used as long as their 
output is also a Boolean event 
stream. 
 
For example , Stream Query 1 means that the user would like to 
find all the association rules whose antecedent and consequent 
contain items A and C, respectively, from the customer sequence 
database ESD (Table 1). The minimum support and the minimum 
confidence are set to 5 and 20%, respectively. 
Stream event Query 1: 
Mining <Association Rules> 
From <ESD> 
With <(A,*),(C,*)> 
support <5%> 
confidence <20%> 
After performing step 1, we can find all the frequent 1-eventsets 
and their supports. The set of the frequent 1-eventsets are {A, B, C, 
D, E, F}. Because (A, C) is a frequent event set, we go on Step 2. 
According to step 2, we can obtain the candidate 3-itemsets (A, B, 
C), (A, C, D), (A, C, E) and (A, C, F). After scanning bit-string 
database, the 
generated 3-eventset database are shown in Table 3, and the 
frequent 3-eventset is (A, C, E). Finally, the frequent event sets 
that contain the event set (A, C) are (A, C) and (A, C, E). 
According to step 4, because there is the specified event set (A) in 
the antecedent and event set (C) in the consequent of the 
discovered rules in Query 1, we can find three association rules: 
(A)=>(C, E), (A, E)=>(C) and (A)=>(C). 
 
 
 

4. Mining event sequential patterns 
In this section, we describe the proposed algorithm MESP (Mining 
Event Sequential Patterns) for finding all the interesting sequential 
patterns according to the user requirements. For example, in Query 
2, the user would like to find all the sequential patterns which 
contain the sequence <(E)(A)(B)>from the customer sequence 
database 
(Table 1) and the minimum support threshold is set to 40%. 
Sream event Query 2: 
Mining <Sequential Patterns>  
From <ESD>  
With <*,(E),*,(A),*,(B),*> support <40%> Suppose the user 
specifies a sequence which contains m event sets D1, D2, .and Dm 
in the With clause and S=<(D1) (D2).(Dm)>. We divide the 
algorithm MESP for this type of queries into two steps: the first 
step is to find (m+1)- frequent sequences which contains sequence 
S, and the second step is to find all the q-frequent sequences 
(q>=m+ 2) which contains sequence S. In the following, we 
describe the two steps: 
Step 1. Find all the frequent (m+1)-sequences Step 1.1. Scan the 
bit-string database, if all events in S are contained in a record, then 
output the events in this record and the bit string for each item into 
1-eventset database. If S is a frequent sequence, then find all 
frequent 1-eventsets. The frequent event sets are found in each 
iteration. For the kth iteration (k>=1), the candidate (k+1)-event 
sets are generated,  and scan the (k+1)-event set database to find 
(k+1)- frequent event sets .Finally, we output the frequent k-event 
sets and its bit string in each record into the frequent event set 
database. 
Step 1.2. Each frequent event set (i.e. frequent 1-sequence) is 
given a unique number, and replace the frequent event sets in the 
frequent event set database with their numbers to form a 1-
sequence database.  
For example, in Table 2, the records which contain the sequence 
h(E)(A)(B)i in the With clause in Query 2 are CID 4 and CID 5, 
Hence, we can generate the frequent event sets 
(A), (B), (C), (D), (E), (F) and (B, D), and the numbers for the 
frequent event sets are 1, 2, 3, 4, 5, 6, and 7, respectively. 
 
3-eventset database for Query 1 
CID 3-eventsets  Bit string for each 3-eventset 
1  (A, C, E)   001 
2  (A, C, E)                 0010 
Table 3 
 
The 1-sequence database is shown in Table 4. 
 
1-sequence database for Query 2 
CID        1-sequence              Bit string for each 1- 

Sequence                                                       
4      1, 2, 3, 4, 5, 6, 7       010110, 101010,  001000,  
                                       100000, 010110, 000001, 100000 
5      1, 2, 3, 4, 5, 6, 7       000100, 000010, 001000,  
                                          110111, 010000,010001,000010  
Table 4 
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FIGURE  1 
 
Relative execution times for different event sets over time 
granularity 
 
Conclusion 
 
In this paper , we propose how to mine stream data by slicing 
streams as events and then applying Mining events with 
association rule method and Mining  events with sequential pattern 
methods. The concept for bit –string database and items within 
even sets are considered even though they cost extra memory 
space, the event mining query response time can be reduced more 
efficiently. 
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