
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

140

Data and Event Stream Mining

Kavya Naveen (PhD) Dr. M.V.Sathyanarayana N.C. Naveen
Asst. Prof, Dept of CSE Prof and Head E&C Engg Dept Asst. Prof, Dept of ISE
RNSIT, Bangalore. MCE, Hassan RVCE Bangalore

Summary

Management and analysis of streaming data has become crucial
with its applications on web and for transactions data . Data
streams consist of mostly numeric data but what is more
interesting are the events derived from the numerical data that
need to be monitored. The events obtained from streaming data
form event streams. Event streams have similar properties to data
streams, i.e., they are seen only once in order as a continuous
stream. Events appearing in the event stream have time stamps
associated with them at a certain time granularity, such as second,
minute, or hour. One type of frequently asked queries over event
streams are count queries, i.e., the frequency of an event
occurrence over time. Count queries can be answered over event
streams easily; however, users may ask queries over deferent time
granularities as well. For example, a banking consultant may ask
how many times a certain type of transaction is increased in the
same time frame, where the time frames specified could be an
hour, day, or both. Such types of queries are challenging
especially in the case of event streams where only a window of an
event stream is available at a certain time instead of the whole
stream. In this paper, we propose a technique for predicting the
frequencies of event occurrences in event streams at multiple time
granularities.

Key Words: Mining, event streams, constraint –based mining,
data streams, knowledge

1. Introduction
 A transaction T supports an item set I if I is contained in T . The
support for an item set I is defined as the ratio of the number of
transactions that supports the item set I to the total number of
transactions. If the support for an item set I satisfies the user-
specified minimum support threshold, then I is called frequent
item set, and a frequent item set of length k a frequent k-item set.
The confidence of a rule X=>Y is defined as the ratio of the
support for the item sets X union Y to the support for the item set
X. If item set Z=X union Y is a frequent item set and the
confidence of X=>Y is no less than the user-specified minimum
confidence, then the rule X=>Y is an association rule.
Traditionally, data are collected and stored in a repository and
queried or mined for useful information upon request .However, in
the case of applications like sensor networks and stock market,
data continuously .known as a stream and thus need to be queried
or analyzed . Streaming data (or data streams) brought another
dimension to data querying and data mining research[1]. This is
due to the fact that, in data streams, as the data continuously
generated only a window of the data is available at a certain time.
The events occurring in a stream of data constitute an event stream,
and an event stream has the same characteristics as a data stream,

i.e., it is continuous and only a window of the stream can be seen
at a time. Basically, an event stream is a collection of events that
are collected from a data stream over a period of time. Experts
would like to extract information from an event stream, such as
the value of an event at a specific time-tick; frequency of certain
events, correlations between different events, regularities within a
single event; or future behavior of an event. Relationships among
the events can be captured from event streams via online data
mining tools.

Many constraint-based mining[2] methods have been proposed.
Hipp and Guntzer (2002) presented that data mining process
should be an initial unconstrained and costly mining run. The
mining queries are answered from the initial mining result such
that response time can be minimized. However, the discovered
association rules may become invalid or inappropriate since the
transactions are increasing any time. It is very costly to re-run the
unconstrained mining algorithm[5] to obtain the up-to-date initial
mining result. An
item constraint specifies what is the particular individual or group
of items that should or should not be presented in the pattern, that
is, the items in the discovered patterns have to be contained in the
specified item set[3].

In this paper, we successfully integrate two kinds of patterns and
use the similar style of the data mining language proposed in (Yen
and Chen, 1997). Besides, we also propose efficient data mining
methodology to find associations among certain items for stream
data .
In this paper the constraint is event stream mining over time
granularity.

2. Data mining for streams in a customer
transaction

The data mining language is defined as follows. Users can query
association rules or sequential patterns by
specifying the related parameters in the data mining language.
Mining <Data Mining Transaction>
From <ES>
With <(D1),(D2), .,(Dm)>
Support <S%>
Confidence <C%>

In the Mining clause, <Data Mining Transaction> can be
association rules[10] or sequential patterns. The former is to
discover association rules and the later is to discover sequential
patterns.
In the From clause, <ES> is used to specify the database name to
which users query the association rules or sequential patterns
where ES represents Event Stream. In the With clause, if the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

141

<Data Mining Transaction> is sequential patterns,
<(D1),(D2), .,(Dm)> are user specified item sets which ordered by
increasing purchasing time, and (Di) can be the notation ‘*’
which represents any sequences. If the <Data Mining
Transaction> is association rules then m is equal to 2, and D1
and D2 are the item sets in the antecedent and consequent,
respectively, of the discovered rules. Besides, (Di) and the items in
Di can be the notation ‘*’ which represents any items. Support
clause is followed by the user-specified minimum support s%.
Confidence clause is followed by the user-specified minimum
confidence c% if the Data Mining Transaction is association rules.
If the Data Mining Transaction is sequential patterns, this clause
is ignored.

In order to find the interesting association rules and sequential
patterns efficiently, we need to transform the original transaction
data into another type and capture streams in the form of event
streams[12]. Each event in each customer sequence is
transformed into a bit string. The length of a bit string is the
number of the transactions in the customer sequence. If the ith
transaction of the customer sequence contains an item, then the ith
bit in the bit string for this item is set to 1. Otherwise, the ith bit is
set to 0. For example, in Table 1, the bit string for item A in CID 1
is 011. Hence, we can transform the customer sequence data base
(Table 1) into the bit-string database (Table 2). From the bit-string
database, we can easily compute the number of the transactions in
a customer sequence, which contain an item set. For example, in
Table 1, if we want to know how many transactions in CID 1
support the item set (A,C,E). We can perform logical AND
operations on the bit strings for items A, C and E in CID 1. The
number of 1’s in the resultant bit string is the number of the
transactions which contain the item set (A,C,E) in CID 1.
Suppose a transaction of customer contains the two events S1 and
S2 We can do operation called event bit string operation to check
if the events S1S2 is also contained in this transaction of customer
sequence. The process of the event bit-string operation is
described as follows: Let the bit string for sequence S1 in
customer sequence c is B1, and for sequence S2 is B2. Bit string
B1 is scanned from left to right until a bit value 1 is visited. We
set this bit and all bits on the left hand side of this bit to 0 and set
all bits on the
right hand side of this bit to 1, and assign the resultant bit string to
a template Tb. Then, the bit string for sequence S1S2 in c can be
obtained by performing logical AND operation on bit strings Tb
and B2. If the number of 1’s in the bit string for sequence S1S2 is
not zero, then S1S2 is contained in customer sequence c.
Otherwise, the customer sequence c does not contain S1S2.
For example, consider Table 1. We want to check if sequence
<(A)(C)> is contained in customer sequence in CID 1. From Table
2, we can see that the bit string for items A and C in CID 1 are
BAZ011 and BCZ111, respectively, and the template bit string
TbZ001. By performing logical AND operation on Tb and BC, we
can obtain that the bit string for sequence h(A)(C)i in customer
sequence CID 1 is 001.
Event stream database (ESD)
CID Customer sequence
1 h(C)(A,C)(A,C,E)i
2 h(A,E)(A)(A,C,E)(C,E)i
3 h(C)(E)(E)(C,E)i
4 h(B,D)(A,E)(B,C)(A,E)(A,B,E)(F)i
5 h(D)(D,E,F)(C,E,F)(A,D)(B,D)(D,F)i

Table 1

Bit-string database
CID Transaction items Bit string for each item
1 A, C, E 011,111,001
2 A, C, E 1110,0011,1011
3 C, E 1001,0111
4 A, B, C, D, E, F
010110,101010,001000,100000,010110,000001
5 A, B, C, D, E, F
000100,000010,001000,110111,011000,011001
Table 2

3. Mining events association rules
In this section, we focus on mining event streams association
rules[6] according to proposed data mining language. We divide
the query into two cases.
Case 1: there are items in the antecedent of the discovered rules
specified.
Case 2: there are items in the consequent of the discovered rules
specified, but the item in the antecedent is not specified, which can
be any items. Suppose that the event set specified in the
antecedent of the discovered rules in
Case 1 is X, and the event set specified in the consequent of the
discovered rules is Y. We propose an efficient algorithm called
MEAR (Mining Events Association Rules) to find all the
interesting association rules according to the user requirements,
which is described as follows:

Step 1. Scan the bit-string database once to compute the support
for the specified event set, and then find all the frequent 1-event
sets.
Step 2. Generate candidate (k+1)-event sets (k is the length of
event set X (or X union Y) for Case 1, and k is the length of event
set Y for Cases 2), scan the bit-string database to find the frequent
(k+1)- event sets, which contain the event set X (or X union Y) for
Case 1, the event set Y for Case 2, and generate the (k+1)-event
set database.
Step 3. The frequent event sets are generated for each iteration. In
the (h–k)th iteration (h>=k+1), generate candidate (h+1)-event sets,
scan the h-event database to generate (h+1)-event set database
and find all the frequent (h+1)-event sets).

3.1. Applying Time constraint for events
Data analysis at multiple time granularities was already explored
in the context of sequential pattern mining by Bettini et al. [5].
Our target, however, is to .find frequencies of event occurrences at
multiple time granularities without any time restriction. Temporal
aggregation queries were well studied and several approaches
have been proposed recently [10,13]. However, all these works
consider only a single time granularity, where this granularity is
usually the same as the granularity used to store the time attributes.
To the best of our knowledge, the only work exploring the
aggregate queries of streaming data in the time dimension at
multiple time granularities appeared Zhang et al. present
specialized indexing schemes for maintaining aggregates using
multiple levels of temporal granularities: older data is aggregated
using coarser granularities while more recent data is aggregated
with .near detail. If the dividing time between different
granularities should be advanced, the values at the near granularity
are traversed and the aggregation at coarser granularity[8] is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

142

computed. However, we scan the stream only once and estimate
the frequency of the event at any arbitrary time granularity without
storing any information at intermediate time granularities.
Definition 1: Let G and H be two granularities. Then, G is said to
be finer than H, denoted as G _ H, if for each time-tick i in G,
there exists a time-tick j in H such that G(i) _ H(j). If G _ H, then
H is said to be coarser than G. For example, day is .near than week,
and coarser than hour, because every day is a subset of a week and
every hour is a subset of a day.
Definition 2. A 0/1 event stream is an event stream where each
time-tick records the state of the event at that time-tick, which is
equal to 1 if the event occurs, and 0 otherwise.
When we transform an event stream at time granularity to
another event stream Sg1 at granularity , we obtain a deferent set
of time-ticks and different sets of events associated with these
time-ticks. Before we give the formal definition on of
transformation of a stream, the following two concepts need to be
introduced.
Definition 3: A Transformation Operation is a mapping P:Ec ->
E that takes event states at c successive time-ticks where c is the
transformation coefficient, and returns a single event state
according to the particular operation in use. Some common
transformation operations are Min Merge, Max Merge, Avg-
Merge, Sum Merge, Union, and Intersection. For example, Min
Merge operation returns the minimum event value from the set of
c events, where c is the transformation coefficient. The other
operations are defined similarly. In this paper, we are interested in
0/1 (Boolean) event stream where the universal set of event states
is {0, 1}, and we use merge OR operation that logically ORs the
event values at corresponding time-ticks. Besides merge OR, some
other transformation operations can also be used as long as their
output is also a Boolean event
stream.

For example , Stream Query 1 means that the user would like to
find all the association rules whose antecedent and consequent
contain items A and C, respectively, from the customer sequence
database ESD (Table 1). The minimum support and the minimum
confidence are set to 5 and 20%, respectively.
Stream event Query 1:
Mining <Association Rules>
From <ESD>
With <(A,*),(C,*)>
support <5%>
confidence <20%>
After performing step 1, we can find all the frequent 1-eventsets
and their supports. The set of the frequent 1-eventsets are {A, B, C,
D, E, F}. Because (A, C) is a frequent event set, we go on Step 2.
According to step 2, we can obtain the candidate 3-itemsets (A, B,
C), (A, C, D), (A, C, E) and (A, C, F). After scanning bit-string
database, the
generated 3-eventset database are shown in Table 3, and the
frequent 3-eventset is (A, C, E). Finally, the frequent event sets
that contain the event set (A, C) are (A, C) and (A, C, E).
According to step 4, because there is the specified event set (A) in
the antecedent and event set (C) in the consequent of the
discovered rules in Query 1, we can find three association rules:
(A)=>(C, E), (A, E)=>(C) and (A)=>(C).

4. Mining event sequential patterns
In this section, we describe the proposed algorithm MESP (Mining
Event Sequential Patterns) for finding all the interesting sequential
patterns according to the user requirements. For example, in Query
2, the user would like to find all the sequential patterns which
contain the sequence <(E)(A)(B)>from the customer sequence
database
(Table 1) and the minimum support threshold is set to 40%.
Sream event Query 2:
Mining <Sequential Patterns>
From <ESD>
With <*,(E),*,(A),*,(B),*> support <40%> Suppose the user
specifies a sequence which contains m event sets D1, D2, .and Dm
in the With clause and S=<(D1) (D2).(Dm)>. We divide the
algorithm MESP for this type of queries into two steps: the first
step is to find (m+1)- frequent sequences which contains sequence
S, and the second step is to find all the q-frequent sequences
(q>=m+ 2) which contains sequence S. In the following, we
describe the two steps:
Step 1. Find all the frequent (m+1)-sequences Step 1.1. Scan the
bit-string database, if all events in S are contained in a record, then
output the events in this record and the bit string for each item into
1-eventset database. If S is a frequent sequence, then find all
frequent 1-eventsets. The frequent event sets are found in each
iteration. For the kth iteration (k>=1), the candidate (k+1)-event
sets are generated, and scan the (k+1)-event set database to find
(k+1)- frequent event sets .Finally, we output the frequent k-event
sets and its bit string in each record into the frequent event set
database.
Step 1.2. Each frequent event set (i.e. frequent 1-sequence) is
given a unique number, and replace the frequent event sets in the
frequent event set database with their numbers to form a 1-
sequence database.
For example, in Table 2, the records which contain the sequence
h(E)(A)(B)i in the With clause in Query 2 are CID 4 and CID 5,
Hence, we can generate the frequent event sets
(A), (B), (C), (D), (E), (F) and (B, D), and the numbers for the
frequent event sets are 1, 2, 3, 4, 5, 6, and 7, respectively.

3-eventset database for Query 1
CID 3-eventsets Bit string for each 3-eventset
1 (A, C, E) 001
2 (A, C, E) 0010
Table 3

The 1-sequence database is shown in Table 4.

1-sequence database for Query 2
CID 1-sequence Bit string for each 1-

Sequence
4 1, 2, 3, 4, 5, 6, 7 010110, 101010, 001000,
 100000, 010110, 000001, 100000
5 1, 2, 3, 4, 5, 6, 7 000100, 000010, 001000,
 110111, 010000,010001,000010
Table 4

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

143

FIGURE 1

Relative execution times for different event sets over time
granularity

Conclusion

In this paper , we propose how to mine stream data by slicing
streams as events and then applying Mining events with
association rule method and Mining events with sequential pattern
methods. The concept for bit –string database and items within
even sets are considered even though they cost extra memory
space, the event mining query response time can be reduced more
efficiently.

References

[1] .Agrawal, R. & Srikant, R. (1995). Mining sequential patterns.

In Proceedings of international conference on data engineering
(ICDE). pp. 3–14.

[2] Han, J.&Pei, J. (2000).Mining frequent patternsby pattern-
growth:Methodology and implications. In Proceedings of
ACM SIGKDD international conference on knowledge
discovery and data mining. pp. 30–36.

[3] Hipp, J., & Guntzer, U. (2002). Is pushing constraints deeply
into the mining algorithms really what we want?—an
alternative approach for association rule mining. In SIGKDD
Explorations, 4(1), 50–55.

[4] Meo, R., Psaila, G., & Ceri, S. (1996). A new SQL-like
operator for mining association rules. In Proceedings of
international conference on very large data base. pp. 122–133.

[5] Ng, R., Lakshmanan, L.S., Han, J., & Mah, T. (1999).
Exploratory mining via constrained frequent set queries. In
Proceedings of ACM SIGMOD. pp. 556–558.

[6] Pei, J. & Han, J., (2000). Can we push more constraints into
frequent pattern mining? In Proceedings of ACM SIGKDD
international conference on knowledge discovery and data
mining. pp. 350–354.

[7] Pei, J, & Han, J., (2002). Constrained frequent pattern mining:
A patterngrowth Vi ew. In SIGKDD Explorations, 4(1), 31–39.

[8] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal,
U., & Hsu, M.C. (2001). PrefixSpan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In
Proceedings of international conference on data engineering.
pp. 215–224.

[9] Pei, J., Han, J., & Wang, W. (2002). Mining sequential
patterns with constraints in large databases. In Proceedings of
ACM conference on information and knowledge management
(CIKM). pp. 18–25.

[10] Yen, S.J., & Chen, A.L.P. (1997). An efficient data mining
technique for discovering interesting association rules. In
Proceedings of international conference on database and expert
systems applications (DEXA). pp. 664–669.

[11] R. Agrawal, T. Imielinski, A. Swami, Mining association
rules between sets of items in large databases, in: Proceedings
of the ACM SIGMOD Conference on Management of Data,
1993, pp. 207–216.

[12] M. Atallah, R. Gwadera, W. Szpankowski, Detection of
signi.cant sets of episodes in event sequences: algorithms,
analysis and experiments, in: roceedings of the 4th IEEE
International Conference Data Mining, 2004, pp. 3–10.

[13] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,
Models and issues in data streams, in: Proceedings of the
ACM PODS Symposium on Principles of Database Systems,
2002..

