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   Summary 
 

Many real problems such as stock market 
prediction, weather forecasting etc has inherent 
randomness associated with them. Adopting a 
probabilistic framework for prediction can accommodate 
this uncertain relationship between past and future. 
Typically the interest is in the conditional probability 
density of the random variable involved. One approach 
for prediction is with time series and auto regression 
models. In this work, liner prediction method and 
approach for calculation of prediction coefficient are 
given and probability of error for different estimators is 
calculated. The existing techniques all require in some 
respect estimating a parameter of some assumed solution. 
So, an alternative approach is proposed. The alternative 
approach is to estimate the conditional density of the 
random variable involved. The approach proposed in 
this thesis involves estimating the (descretized) 
conditional density using a Markovian formulation when 
two random variables are statistically dependent, 
knowing the value of one of them lets us get a better 
estimate of the value of the other one. The conditional 
density is estimated as the ratio of the two dimensional 
joint density to the one-dimensional density of random 
variable whenever the later is positive. Markov models 
are used in the problems of making a sequence of 
decisions and problem that have an inherent temporality 
that is consisting of a process that unfolds in time in time. 
In the continuous time Markov chain models the time 
intervals between two consecutive transitions may also 
be a continuous random variable. The Markovian 
approach is particularly simple and fast for almost all 
classes of classes of problems requiring the estimation of 
conditional densities. 
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Chapter 1:  
Introduction 
 
     1.1Statistics: Statistics are measurements, 
enumerations or estimates of natural phenomenon, 
usually systematically arranged, analyzed and presented 
as to exhibit important inter-relationships  
among them. Modern statistics (6) refers to a body of 
methods and principles that have been developed to 
handle the collection, description, summarization and 
analysis of numerical data. In statistical theory, a 
"statistic" is a well-behaved function of the data. A 
statistic is sufficient (4) if it is just as informative as the 
full data. In many applications it is not unusual to have 
dozens or hundreds of parameters and thousands of 
training samples. A sufficient statistic is a function ‘ s ’ 
of the samples ‘ D ’ that contains all the information 
relevant to estimating some parameter ‘ θ ’. A 
fundamental theorem concerning sufficient statistics is 
the Factorization theorem (8) which states that‘s’ is 
sufficient for ‘ θ ’ if and only if ( )θ/Dp  can be 
factored into the product of two functions: one 
depending only on ‘ s ‘and ‘θ ’, the other depending 
only on training samples.In applying statistics to a 
scientific, industrial, or societal problem, one begins with 
a process to be studied. This might be a population of 
people in a country, of crystal grains in a rock, or of 
goods manufactured by a particular factory during a 
given period. It may instead be a process observed at 
various times what is called a time series. For practical 
reasons, rather than compiling data about an entire 
process, one usually instead studies a chosen subset of 
the process, called a sample (5). Data are collected about 
the sample in an observational or experimental setting. 
The data are then subjected to statistical analysis, which 
serves two related purposes (6): description and 
inference. Descriptive statistics can be used to 
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summarize the data, either numerically or graphically, to 
describe the sample. Basic examples of numerical 
descriptors include the mean and standard deviation. 
Graphical summarizations include various kinds of 
charts and graphs. Inferential statistics is used to model 
patterns in the data, accounting for randomness and 
drawing inferences. These inferences may take the form 
of answers to yes/no questions (hypothesis testing), 
estimates of numerical characteristics (estimation), 
prediction of future observations, descriptions of 
association (correlation), or modeling of relationships 
(regression). Other modeling techniques include 
ANOVA, time series, and data mining.  A major problem 
lies in determining the extent to which the chosen sample 
is representative. Statistics offers methods to estimate 
and correct for randomness in the sample and in the data 
collection procedure, as well as methods for designing 
robust experiments in the first place. 
1.2 Statistical prediction: A prediction or forecast is a 
statement or claim that a particular event will occur in 
the future. Usually, it depends on one of two 
prerequisites whether tests for quantitative trends are 
applied or not. First, the independent variable is 
quantitative, and second, the independent variable is 
quantitative and a particular quantitative trend hypothesis 
is to be tested. In the first case, the experimenter does not 
proceed from certain expectations; the experimenter just 
looks for the best functional description of the data. In 
the second case, however, the data are examined as to 
their compatibility with predictions derived from a 
certain theory. A null hypothesis (H0) is any statistical 
hypothesis (6) which comprises one of the signs '=', '≤', 
or '≥' and which is testable by a given statistical test. Its 
opposite is an alternative hypothesis (H1), which usually 
is complementary to the H0 and against which the test is 
performed. If the statistical prediction is not equivalent to 
a single testable H0 or H1, there are basically two options: 
either to perform a less well suited test and interpret the 
'apparent' empirical relations among the sample statistics, 
or to apply more than one test.  The problem of 
parameter estimation is a classical one in statistics and it 
can be approached in several ways. The common 
approaches are maximum likelihood estimation (8) and 
Bayesian estimation.  
 1.3 Parameter estimation: Considering a random 
sample nxxx ,....,, 21  of size ‘ n ’ with probability 

function ( )kxf θθθ ,....,,: 21  where kθθθ ,.....,, 21  
are the unknown parameters. Then, there will always be 
an infinite number of functions of sample values called 
statistics, which may be proposed as estimates of one or 
more of the parameters. Evidently, the best estimate 
would be the one that falls nearest to the true value of the 
parameter to be estimated i.e.; the statistic whose 
distribution concentrates as closely as possible near the 

true value of parameter is regarded the best estimate. The 
basic problem is to determine the functions of sample 
observations. The estimating functions are called 
estimators (7). A good estimator needs to satisfy some 
characteristics: 
Unbiased ness: An estimator ( )nn xxxTT ,....,, 21=  is 

said to be unbiased estimator of ( )θy ) if          

( ) ( )θyTE n = , for all Θ∈θ , parameter space 

Consistency: estimator ( )nn xxxTT ,....,, 21= , based 
on random sample of size n , is said to be consistent 
estimator of ( ) Θ∈θθ ,y , the parameter space, if nT  

converges to ( )θy  in probability, i.e.                            If  

( )θyT p
n ⎯→⎯  as ∞→n  

Efficiency: If in a class of consistent estimators for a 
parameter, there exists one whose sampling variance is 
less than that of any such estimator, it is called the most 
efficient estimator. Whenever such an estimator exists.  

Sufficiency: An estimator is said to be sufficient for a 
parameter, if it contains all the information in the sample 
regarding the parameter. 

1.4 Non-parametric estimation: In the parametric tests, 
the functional forms from which the samples are drawn is 
assumed to be known and are concerned with testing 
statistical hypothesis about the parameters of the function 
or estimating its parameters. On the other hand, a non-
parametric estimation (8) does not depend on the particular 
functional form from which the samples are drawn i.e., no 
assumptions are made regarding the functional form.   

1.5 Applications of Prediction: In mathematical finance, 
deterministic mathematical models of stock market 
behavior are unreliable in predicting future behavior, 
because of various unknown factors that can affect the 
market trends. As an alternative, a statistical prediction 
problem can be formulated for the pertinent and 
classified commodities in the stock, and the required 
parameters involved in the functions of the prediction 
model or any non-parametric objects in the prediction 
model can be estimated from the data collected over long 
periods of time. In the least case, the trends can be 
predicted with reasonable confidence. Quantum physics 
is an unusual field of science because it enables scientists 
to make predictions on the basis of probability In 
microprocessors, branch prediction permits to avoid 
pipeline emptying at microcode branching. Engineering 
is a field that involves predicting failure and avoiding it 
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through component or system redundancy. Some fields 
of science are notorious for the difficulty of accurate 
prediction and forecasting, such as software reliability, 
natural disasters, pandemics, demography, population 
dynamics and meteorology. 
Other Fields Statistical prediction is a major concern in 
areas such as machine learning, pattern recognition, 
neural networks, signal processing, computer vision and 
feature extraction. It offers a flexible way to investigate 
the properties of a given data set and provides a solid 
basis for efficient data mining tools. It is crucial in 
unsupervised learning tasks and Bayesian inference and 
classification .It is often used in clustering of data in 
large databases. 
1.6 Paper Organization:   The rest of the paper is 
organized as: Chapter 2 gives details about some of the 
available time series models and auto regression models 
for statistical prediction .Chapter 3 gives brief 
introduction about Markov chains, their properties, 
Markov chains in discrete state space and continuous-
time Markov chains. Hidden Markov models are also 
briefly discussed. Chapter 4 deals with linear prediction: 
Predictions of future sample, calculation of prediction 
coefficients in such a way to minimize prediction error 
are given. Chapter 5 mainly focuses on the Markov chain 
method for the estimation of conditional density. Chapter 
6 shows the results: Actual samples and predicted 
samples are compared in linear prediction. Chapter 7 
gives the conclusion of the paper and future work that 
can be done. 

Chapter 2 
Time series and autoregressive models                                         
2.1 Time series prediction:  Most statistical forecasting 
methods are based on using historical data from a time 
series. A time series is a series of observations over time 
of some quantity of interest (a random variable).Thus, if 

tX  is the random variable of interest at time i , and if 

observations are taken at times ti ,...,2,1= , then the 

observed values { }tt xXxXxX === ,......,, 2211  
are a time series. The time series prediction (TSP) is a 
challenge in many fields. In finance, experts forecast 
stock exchange courses or stock market indices; data 
processing specialists forecast the flow of information on 
their networks; producers of electricity forecast the load 
of the following day. A new challenge in the field of 
time series prediction is the Long-Term Prediction: 
several steps ahead have to be predicted. Long-Term 
Prediction has to face growing uncertainties arising from 
various sources, for instance, accumulation of errors and 
the lack of information. The time series prediction 
problem is the prediction of future values based on the 

previous values and the current value of the time series                         
( )111 ,......,,ˆ +−−+ = Mtttt yyyfy   

     The previous values and the current value of the time 
series are used as inputs for the prediction model. One-
step ahead prediction is needed in general and is referred 
as Short-Term Prediction. But when multi-step ahead 
predictions are needed, it is called Long-Term Prediction 
problem. Unlike the Short-Term time series prediction, 
the Long-Term Prediction is typically faced with 
growing uncertainties arising from various sources. For 
instance, the accumulation of errors and the lack of 
information make the prediction more difficult. 
2.2 Input selection strategies 
     Input selection is an essential pre-processing stage to 
guarantee high accuracy, efficiency and scalability in 
problems such as machine learning, especially when the 
number of observations is relatively small compared to 
the number of inputs. It has been the subject in many 
application domains like pattern recognition, process 
identification, time series modeling and econometrics. 
Problems that occur due to poor selection of input 
variables are: 
If the input dimensionality is too large, the ‘curse of 
dimensionality’ problem may happen. Moreover, the 
computational complexity and memory requirements of 
the learning model increase. Additional unrelated inputs 
lead to poor models (lack of 
generalization).Understanding complex models (too 
many inputs) is more difficult than simple models (less 
inputs), which can provide comparable good 
performances.    
2.3 Forecasting methods for a constant level model 
2.3.1 Last- value forecasting method: The last–value 
forecasting method sometimes is called the naïve method, 
because statisticians consider it naïve to use just a sample 
size of one when additional relevant data are available. 
By interpreting ‘ t ‘as the current time, the last-value 
forecasting procedure uses the value of the time series 
observed at time t  ( )tx  as the forecast at 

time 1+t .Therefore,         tt xF =+1  This forecasting 
procedure has the disadvantage of being precise i.e., its 
variance is large because it is based upon a sample of 
size one. 
2.3.2 Averaging Forecasting method: Instead of using 
just a sample size of one, this method uses all the data 
points in the time series and simply averages these points. 
Thus, the forecast of what the next data point will turn 

out to be is                                      txF
t

i
it /

1
1 ∑

=
+ =    

this estimate is an excellent one if the process is entirely 
stable  
2.3.3 Moving average forecasting method:     Rather 
than using very old data that may no longer be relevant, 
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this method averages the data for only the last ‘ n ’ 
periods as the forecast for the next period i.e. 

    nxF
t

nti
it /

1
1 ∑

+−=
+ =   This forecast is easily updated 

from period to period.  
2.3.4 Exponential smoothing forecasting method: 
     This method overcomes the draw back of moving 
average method. This method uses the formula, 
        ( ) ttt FxF αα −+=+ 11   

Where ‘ α ’ ( )10 << α is called the smoothing 
constant. Thus, the forecast is just a weighted sum of the 
last observation tx  and the preceding forecast tF  for the 
period just ended. Because of this recursive relationship 
between 1+tF  and tF , alternatively 1+tF  can be 
expressed as 

           1+tF ( ) ( ) ........11 2
2

1 +−+−+= −− ttt xxx ααααα  
2.4 Common approach to univarity Time series:    
There are a number of approaches to modeling time 
series. One approach is to decompose the time series into 
a trend, seasonal, and residual component. Triple 
exponential smoothing is an example of this approach. 
When the data show trend and seasonality (sometimes 
called periodicity) then triple exponential smoothing is 
used.  
The basic equations for the method are given by, 
Overall smoothing: 
         ( )( )111/ −−− +−+= ttLttt bSIYS αα  
Trend smoothing: 
          ( ) ( ) 11 1 −− −+−= tttt bSSb γγ  
Seasonal smoothing: 
          ( ) Ltttt ISYI −−+= ββ 1/   
Forecast: 
           ( ) mLtttmt ImbSF +−+ +=  
Where,    y  is the observation,        Sis the smoothed 
observation   , B is the trend factor          I  is the 
seasonal index,          F  is the forecast at m  periods 
ahead ,   T  is an index denoting a time period , and 

γβα ,,  are constants that must be estimated in such a 
way that the MSE of the error is minimized. Initial 
values for the trend factor: The general formula to 
estimate the initial trend is given by 
                 

( )( ) ( )( ) ( )( )( )LYYLYYLYYLb LLLLL /.....///1 2211 −++−+−= +++  
2.5 Autoregressive models for linear prediction: 

     The autoregressive model is one of a group of linear 
prediction formulas that attempt to predict an output 

[ ]ny  of a system based on the previous outputs 

[ ] [ ]( ),.....2,1 −− nyny  and 

inputs [ ] [ ] [ ]( ),......2,1, −− nxnxnx .Deriving the linear 
prediction model involves determining the coefficients 

,......, 21 aa  and ,......, 21 bb  in the equation:      

[ ]( )estimatednye

[ ] [ ] [ ] [ ] .......1......21 1021 +−∗+∗++−∗+−∗= nxbnxbnyanya    

2.5.1 Autoregressive model:The notation AR ( )p refers 
to the autoregressive model of order p . The 

AR ( )p model is written as       

tit

p

i
it XcX εθ ++= −

=
∑

1

Where  pθθθ ,....,, 21  are the 

parameters of the model, ‘ c ’ a constant and tε  is an 
error term. 

2.5.2 Moving average model: The notation MA ( )q  
refers to the moving average model of order q : 

       
it

q

i
ittX −

=
∑+= εθε

1

 

Where the 1θ , qθθ ,......,2  are the parameters of the 

model and the  ,....., 1−tt εε   are the error terms. The 
moving average model is essentially a finite impulse 
response filter with some additional interpretation placed 
on it. 

2.5.3 Autoregressive moving average model: The 
notation ARMA ( )qp,  refers to the model with p  
autoregressive terms and q  moving average terms. This 

model contains the AR ( )p  and MA ( )q models,       

it

p

i
itt XX −

=
∑+=

1
θε + it

q

i
i X −

=
∑

1
θ  

2.5.4 Calculation of the AR parameters: 

The AR ( )p model is given by the equation    

tit

p

i
it XX εθ += −

=
∑

1

It is based on parameters iθ  

where pi ,....,2,1= . Those parameters may be 
calculated using Yule-Walker equations:     
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mkm

p

k
km δσγθγ ε

2

1
+= −

=
∑ Where, yielding 1+p  

equations. mγ  is the autocorrelation function of X , εσ  

is the standard deviation of the input noise process, and 

mδ  is the Kronecker delta function. Because the last part 

of the equation is non-zero only if 0=m , the equation is 

usually solved by   
0 -1 -21 1

1 0 -12 2

3 2 1 0 3

   . . .
   . . . 

  =   . . .  
. ... ...  ...  .... .
. ... ...  ...  .... .

γ γ γγ θ
γ γ γγ θ

γ γ γ γ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Representing it as a matrix for 0>m , thus getting 
equation solving all θ .For 0=m , 

2

1
0 εσγθγ += −

=
∑ k

p

k
k  allows us to solve 2

εσ . 

2.5.5 Approaches for modeling univariate time series:    
A common approach for modeling univariate time series 
is the autoregressive (AR) model. An autoregressive 
model is simply a linear regression of the current value 
of the series against one or more prior values of the 
series. The value of p  is called the order of the AR 
model. AR models can be analyzed with one of various 
methods, including standard linear least squares 
techniques. They also have a straightforward 
interpretation 

tptpttt AXXXX +++++= −−− θθθδ .......2211

Where tX  is the time series, tA  is white noise, and             

δ μθ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

p

i
i

1

1 with μ  denoting the process mean. 

Another common approach for modeling univariate time 
series models is the moving average (MA) model:  

qtqtttt AAAAX −−− −−−−+= θθθμ ........2211 W

here tX  is the time series, μ  is the mean of the series, 

itA −  are white noise, and qθθθ ,..., 21  are the 
parameters of the model. The value of q  is called the 
order of the MA model.  
2.5.6 Box Jenkins method: The first step in developing 
a Box-Jenkins model is to determine if the series is 
stationary and if there is any significant seasonality that 
needs to be modeled. Seasonality (or periodicity) can 
usually be assessed from an autocorrelation plot, a 
seasonal sub series plot, or a spectral plot (9). Box and 
Jenkins recommend the differencing approach to achieve 
stationary. However, fitting a curve and subtracting the 

fitted values from the original data can also be used in 
the context of Box-Jenkins models. 
Chapter 3 
Markov chain Models                                        
3.1 Markov chains: In mathematics, a Markov chain is a 
discrete-time stochastic process with the Markov 
property named after Andrey Markov. In such a process, 
the previous states are irrelevant for predicting the 
subsequent states, given knowledge of the current state. 
A Markov chain describes at successive times the states 
of a system. At these times the system may have changed 
from the state it was in the moment before to another or 
stayed in the same state. The changes of state are called 
transitions. The Markov property means the system is 
memoryless, i.e. it does not "remember" the states it was 
in before, just "knows" its present state, and hence bases 
its "decision" to which future state it will transit purely 
on the present, not considering the past.Nth order Markov 
chain: A Markov process moves from state to state 
depending only on the previous observations. In an nth 
order Markov model, the probability of observation 
depends on the previous n observations.           

( )
( )
( )
( )

i

i 1

i 1 2

i 1 2

0  order      P x

1   order      P x /

2  order      P x /

  order      P x / ...

th

st
i

nd
i i

th
i i i n

x

x x

n x x x

−

− −

− − −

 

More generally, the Markov assumption for a nth order 
model is that Xi depends only on Xi-1Xi-2Xi-3….Xi-nA 
Markov chain is a sequence ,....,, 321 XXX  of random 
variables with the property (Markov property): the 
conditional probability distribution (8) of the next future 
state 1+nX  given the present and past states is a function 

of the present state nX  alone, i.e.: 

         
( ){ } ( ){ }nnnnnn xXxXxXxXxXxX ======= ++ 111001 Pr,.....,,Pr

The range of the variables i.e., the set of their possible 
values, is called the state space, the value of nX  being 
the state of the process at time n. There are also 
continuous-time Markov processes.             
3.2 Properties of Markov chains: The probability of 
going from state i  to state j  in n  time steps is defined 
as  

 ( ) ( )iXjXp n
n

ij === 0Pr and the single-step 
transition as 
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            ( )iXjXpij === 01Pr  The n-step transition 
satisfies the Chapman-Kolmogorov equation, that for any 

nk <<0 , 

         ( ) ( ) ( )kn
rj

Sr

k
ir

n
ij ppp −

∈
∑=         A Markov chain is 

characterized by the conditional distribution, 

           ( ) yXxX nn ==+1Pr which is called the 
transition probability of the process. This is sometimes 
called the "one-step" transition probability. The 
probability of a transition in two, three, or more steps is 
derived from the one-step transition probability and the 
Markov property: 

( )( ) ( )dyXyXxXXxX nnnnn ∫ ==== +++ 122 ,PrPr                                

( ) ( )dyXyXyXxX nnnn ==== +++∫ 112 Pr.Pr                       

These formulas generalize to arbitrary future times 
kn +  by multiplying the transition probabilities and 

integrating 1−k   times. 

Marginal distribution: The marginal distribution 
( )xX n =Pr  is the distribution over states at time n . 

The initial distribution is ( )xX =0Pr . The evolution of 
the process through one time step is described by             

( ) ( ) ( ) ( )rXprXpjX
Sr

n
rjn

Sr
rjn ===== ∑∑

∈∈
+ 01 PrPrPr the 

superscript ( )n  is intended to be an integer-valued label 
only; however, if the Markov chain is time-stationary, 
then this superscript can also be interpreted as a "raising 
to the power of". 

Reducibility: A state j  is said to be accessible from 
state i  (written as ji → ) if, given that we are in state i , 
there is a non-zero probability that at some time in the 
future, we will be in state j . That is, that there exists an 
n  such that 

         ( ) 0Pr 0 >== iXjX n        A state i  is said to 

communicate (9) with state j  (written ji → ) if it is 
true that both i  is accessible from j  and that j  is 
accessible from i . A set of states C  is a communicating 
class if every pair of states in C  communicates with 
each other.  

Periodicity: A state i  has period k  if any return to state 
i  must occur in some multiple of k  time steps. For 
example, if it is only possible to return to state i  in an 
even number of steps, then i  is periodic with period 2 . 
Formally, the period of a state is defined as 

    ( ){ }0Pr:gcd 0 >=== iXiXnk n   

If 1=k , then the state is said to be aperiodic; 
otherwise ( )1>k , the state is said to be periodic with 
period k . An irreducible Markov chain is said to be 
aperiodic, if its states are aperiodic. 

Recurrence: A state i  is said to be transient if, given 
that we start in state i , there is a non-zero probability that 
we will never return back to i . Formally, let the random 
variable iT  be the next return time to state i  (the 
"hitting time"): 

      iT { }iXiXn n === 0:min  

    Then, state i is transient if iT  is not finite with some 

probability:   ( ) 1Pr <∞<iT  If a state i  is not 
transient then it is said to be recurrent or persistent. 
Although the hitting time is finite, it need not have a 
finite average. Let iM  be the expected (average) return 

time,   [ ]ii TEM = then, state i  is positive recurrent if 

iM  is finite; otherwise, state i  is null recurrent. It can 
be shown that [cite reference] a state is recurrent if and 
only if 

          ( ) ∞=∑
∞

=0n

n
iip  

Ergodicity:A state i  is said to be ergodic if it is 
aperiodic and positive recurrent. If all states in a Markov 
are ergodic, the chain is said to be ergodic. 
3.3 Steady state analysis and limiting distributions: If 
the Markov chain is a stationary Markov chain, so that 
the process is described by a single, time-independent 
matrix ijp , then the vector ∏  is a stationary distribution 

if its entries j∏  sum to 1 and satisfy  



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008 
 
204 

        ij
Si

ij p∑
∈

∏=∏ An irreducible chain has a 

stationary distribution if and only if all of its states are 
not null-recurrent. In that case, ∏  is unique and is 
related to the expected return time: 

              jj M/1=∏ Further, if the chain is both 

irreducible and aperiodic, then for any i and j , 

              
∞→n

lim
  ( )

j
n

ij Mp /1= There is no 

assumption on the starting distribution;  

3.4 Markov chains in discrete state spaces 

If the state space is finite, the transition probability 
distribution can be represented as a matrix, called the 
transition matrix, with the ( )ji, 'th element equal 

to ( )iXjXpp nnij === +1  For a discrete state space, 

the integrations in the k -step transition probability are 
summations, and can be computed as the k 'th power of 
the transition matrix. That is, if P  is the one-step 
transition matrix, then kP  is the transition matrix for the 
k -step transition. A Markov chain is reversible if there 
exists an initial distribution ∏  such that 

jijiji pp ∗∏=∗∏ ..If the state space is finite, the 
transition probability distribution can be represented by a 
matrix, called the transition matrix, with the ( )ji, 'th 
element of P  equal to             

( )iXjXp nnij === +1Pr P  is a stochastic matrix.  
3.5 Continuous-time Markov process 
In probability theory, a continuous-time Markov process 
is a stochastic process ( ){ }0: ≥ttX  that satisfies the 
Markov property and takes values from amongst the 
elements of a discrete set called the state space. The 
Markov property states that at any times 0>> ts , the 
conditional probability distribution of the process at time 
s given the whole history of the process up to and 
including time t , depends only on the state of the 
process at time t . In effect, the state of the process at 
time s  is conditionally independent of the history of the 
process before time t , given the state of the process at 
time t .   one can define a Markov process as follows. Let 
( )tX  be the random variable describing the state of the 

process at time t . Now prescribe that in some small 
increment of time from t  to ht + , the probability that 

the process makes a transition to some state j , given 
that it started in some state ji ≠  at time t  , is given by             

( ) ( )( ) ( ),Pr hohqitXjhtX ij +===+ where 

( )ho represents a quantity that goes to zero as h  goes to 
zero (see the article on order notation). Hence, over a 
sufficiently small interval of time, the probability of a 
particular transition is roughly proportional to the 
duration of that interval. Continuous-time Markov 
processes (8) are most easily defined by specifying the 
transition rates ijq , and these are typically given as the 

thij −  elements of the transition rate matrix, Q  
(sometimes called a Q -matrix by convention). Q  is a 
finite matrix according to whether or not the state space 
of the process is finite (it may be countable infinite, for 
example in a Poisson process where the state space is the 
non-negative integers). The most intuitive continuous-
time Markov processes have Q-matrices that are: 
conservative—the i -th diagonal element iiq  of Q  is 

given by           ∑
≠

−=−=
ij

ijiii qqq stable—for any 

given state i , all elements ijq  (and iiq ) are 

finite.(However, that a Q -matrix may be non-
conservative, unstable or both.) When the Q -matrix is 
both stable and conservative, the probability that no 
transition happens in some time r  is 

          ( ) ( ) ( )( ) irqeisXirtX −=+∈∀==+ rtt,s    Pr      

3.5.1 Related processes: Given that a process that 
started in state i  has experienced a transition out of 
state i , the conditional probability that the transition is 
into state j  is 

    iij
ik

ikij qqqq // =∑
≠

Using these probabilities, the 

sequence of states visited by the process (the so-called 
jump process) can be described by a (discrete-time) 
Markov chain. The transition matrix P  of the jump 
chain has elements 

.0,,/ =≠= iiiijij pjiqqp Another discrete-time 
process that may be derived from a continuous-time 
Markov chain is a δ -skeleton—the (discrete-time) 
Markov chain formed by observing ( )tX  at intervals of 
δ  units of time. The random variables 
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( ) ( ) ( ),......2,,0 δδ XXX ... give the sequence of states 
visited by the δ -skeleton. 
3.5.2 Embedded Markov chain: 
One method of finding the stationary probability 
distribution, ∏ , of an ergodic Continuous-time Markov 
process, Q , is by first finding its embedded Markov 
chain (EMC). Strictly speaking, the EMC is a regular 
discrete-time Markov chain. Each element of the one-
step transition probability matrix of the EMC, S  is 
denoted by ijs , such that    ,/∑

≠

=
ik

ikijij qqs if i  is not 

equal to j  and is 0  otherwise. From this, S  may be 
written as 

  QDS Q
11 −−=  Where { }QdiagDQ =  is the 

diagonal matrix of Q To find the stationary probability 
distribution vector, we must next find ϕ  such that   

( ) ,0=− SIϕ with ϕ  being a row vector, such that all 

elements in ϕ  are greater than 0  and 1
1
=ϕ  (the 

1 -norm, 1x , is explained in Norm_(mathematics)), 

and the 0  on the right side also being a row vector of 
s0′ . From this, ∏  may be found as            

,/ 11 −−−=∏ QQ DD ϕϕ  

3.6 Applications: Markovian systems appear extensively 
in physics, particularly statistical mechanics, Markov 
chains can also be used to model various processes in 
queuing theory and statistics. Even without describing 
the full structure of the system perfectly, the signal 
models can make possible very effective data 
compression through entropy coding techniques such as 
arithmetic coding. They also allow effective state 
estimation and pattern recognition. The world's mobile 
telephone systems depend on the Viterbi algorithm for 
error-correction, while Hidden Markov models (where 
the Markov transition probabilities are initially unknown 
and must also be estimated from the data) are extensively 
used in speech recognition and also in bioinformatics, for 
instance for coding region/gene prediction. The Page 
Rank of a webpage as used by Google is defined by a 
Markov chain. It is the probability to be at page i in the 
stationary distribution on the following Markov chain on 
all (known) web pages. If N  is the number of known 
web pages, and a page i  has ik  links then it has 

transition probability ( ) Nqkq i //1 +−  for all pages 

that are linked to and Nq /  for all pages that are not 

linked to. The parameter q  is taken to be about 
0.15.Markov chain methods have also become very 
important for generating sequences of random numbers 
to accurately reflect very complicated desired probability 
distributions - a process called Markov chain Monte 
Carlo or MCMC for short.. Markov chains also have 
many applications in biological modeling, particularly 
population processes, which are useful in modeling 
processes that are (at least) analogous to biological 
populations. A recent application of Markov chains is in 
geostatistics. That is, Markov chains are used in two to 
three dimensional stochastic simulations of discrete 
variables conditional on observed data. Such an 
application is called "Markov chain geostatistics", 
similar with kriging geostatistics. The Markov chain 
geostatistics method is still in development.Markov 
chains can be used to model many games of chance. The 
children's games  

3.7 Hidden Markov Models (HMM) 
      An HMM consists of a signal modeled as a finite 
state Markov chain and an observation model that relates 
an observed process to the underlying Markov chain. 
Typically, the observation model consists of observing 
the state of the Markov chain perturbed by additive white 
noise. Such models have become increasingly popular 
over the last decade: application areas including speech 
processing, target tracking, digital communications, 
biomedical engineering, and finance. A major reason for 
this is the enormous flexibility and generality of the 
model and the fact that efficient state and parameter 
estimation algorithms exist and are well understood. In 
particular, the finite-state property means that finite 
dimensional state filters result even when the model is 
nonlinear. This makes the HMM formulation very 
attractive for approximating continuous state space 
nonlinear models for which finite-dimensional filters 
rarely exist. 

3.7.1 Hidden Markov model 

 
 
 
State transitions in a hidden markov model (example)x - 
hidden states, y – observable outputs. 
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a – transition probabilities, b – output probabilities 

A hidden Markov model (HMM) is a statistical model 
where the system being modeled is assumed to be a 
Markov process with unknown parameters, and the 
challenge is to determine the hidden parameters from the 
observable parameters. The extracted model parameters 
can then be used to perform further analysis, for example 
for pattern recognition applications. A HMM can be 
considered as the simplest dynamic Bayesian network. In 
a regular Markov model, the state is directly visible to 
the observer, and therefore the state transition 
probabilities are the only parameters. In a hidden Markov 
model, the state is not directly visible, but variables 
influenced by the state are visible. Each state has a 
probability distribution over the possible output tokens. 
Therefore the sequence of tokens generated by an HMM 
gives some information about the sequence of states. 
Hidden Markov models are especially known for their 
application in speech recognition and bioinformatics (e.g. 
HMMer). 

Probability of an observed sequence; 
The probability of observing a sequence 

( ) ( ) ( )1,....,1,0 −= LyyyY  of length L  is given by: 

   ( ) ( ) ( )XPXYPYP
x
∑= /  

  Where the sum runs over all possible hidden node 
sequences ( ) ( ) ( )1,.....,1,0 −= LxxxX . A brute force 

calculation of ( )YP  is intractable for realistic problems, 
as the number of possible hidden node sequences 
typically is extremely high. The calculation can however 
be speeded up enormously using a dynamic 
programming algorithm, called the forward algorithm. 

Using Hidden Markov Models: There are 3 canonical 
problems associated with HMMs  

Given the parameters of the model, compute the 
probability of a particular output sequence. This problem 
is solved by the forward algorithm. Given the parameters 
of the model, find the most likely sequence of hidden 
states that could have generated a given output sequence. 
This problem is solved by the Viterbi algorithm. Given 
an output sequence or a set of such sequences, find the 
most likely set of state transition and output probabilities. 
In other words, train the parameters of the HMM given a 
dataset of sequences. This problem is solved by the 
Baum-Welch algorithm. 

Chapter 4 
Linear Prediction                                        
4.1 Linear prediction in time series:     One of the 
central problems in time series analysis is that of 
prediction i.e. given a series of sample values of a 
stationary discrete-time process, the future samples are to 
be predicted. Specifically, given 
( ) ( ) ( ),,.......,2,1 Mnxnxnx −−−  it is needed to 

predict the value of ( )nx . The predicted value is 
expressed as a function of the given M  past samples. i.e.  
( ) ( ) ( ) ( )( )MnxnxnxMnnnnx −−−=−−− ,...,2,1,...,2,1 ˆ ψ Now, 
if the function, ψ  is a linear function of the variables 

( ) ( ) ( ),,.......,2,1 Mnxnxnx −−−  the prediction is 
linear. This is visualized in a M  - dimensional space 

spanned by ( ) ( ) ( ).,.......,2,1 Mnxnxnx −−−  
          

( ) ( )∑
=

−=−−−
M

k
k knxaMnnnnx

1
,...,2,1 ˆ  

Where, ka are constant coefficients? The prediction error 
is defined as 

( ) ( ) ( ).,n-M,,n-n|n-x- nxnf M ……= 21ˆ  

The subscript M  in ( )nf M   denotes the order of the 
prediction. i.e., the number of past samples that are used 
to predict the next sample. Hence, the problem of Linear 
Prediction (13) reduces to determining these coefficients 
subject to some condition. These coefficients are called 
linear prediction coefficients or predictor coefficients. 
The main challenge in linear prediction is estimation of 
predictor coefficients. Different algorithms and 

conditions on sak
′ have been proposed and are used 

such as autocorrelation method, auto covariance method, 
Burg’s method etc., (14) 
A commonly used measure for this in probability theory 
is the RMS Error, i.e., Root Mean Square Error. RMS 

error is defined as              ( )( )2nfEP MM =  The 
error can be minimized by finding the best, or optimal 
value of .ka The error is minimized by differentiating 

E  w.r.t  ka and setting the result equal to zero. 
 
4.2 Autocorrelation method 
Minimizing the prediction RMS error ( )MP , the Weiner-
Hopf equations are obtained. 
             bRa =   
       Where,  
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Mjiji xxER

,...,2,1, =
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             [ ][ ] MiMi xxEb ,..,2,11 =+=   

Here, ( )kR  denotes the autocorrelation function 

( ) ( )( )knxnxE −  of the sequence ( )nx  for a lag k . 

( ) ( )kRkR xxxx =− , since the process is assumed to be 
stationary.. 
In order to solve for the coefficient ka ,  
First, determine the autocorrelation function up to order 
M  for the input process ( )nx .Then, solve the equation,      

bRa =                                      bRa 1−=                                     
4.3 Calculation of the Autocorrelation coefficients 
The autocorrelation function of the input process may 
not be known apriori. Hence it is to estimate it based on 
the input process itself.     
         [ ][ ] ( )[ ]jiabsejiRxx −=   

            [ ] ( ) ( )knxnxke +∗=   

              [ ] [ ]iMeib −=  
This estimation of the autocorrelation function assumes 
the apriori knowledge of the entire process.  
     Let 

axf  be the true probability density of the random 

variable X . eX  is the estimated value. It is the function 

of previous samples Mxxx −−− ,.....,, 21 . Assuming all 

the samples Mxxx −−− ,.....,, 21  are all independent, 

     ( )Me xxxgX −−−= ,....,, 21  

    ( ) ( ) ( ) ( )MxxxMx xfxfxfxxxgf
aaae −−−−−−= ......,....,, 2121                                           

       ( ) ( )∏
=

−−−−=
M

i
ixMx xfxxxgf

ae
1

21 ,...,,   

       ( ) i

M

i
iM xaxxxg ∑

=
−−− =

1
21 ,....,,          for some 

1>M                                

       sa i
′

−  can be chosen to adapt to the particular 
dataset. But the functional form of the estimator is 
seriously restrictive. 

4.4 Algorithm 
Step 1: Generate the random values Mxxxx ,.....,,, 210  

where 1>M  is large. The random values are chosen by 
using the ‘rand’ function. The random values are chosen 
uniformly such that they fall in the interval[ ]1,0 .  

( )rxx ii ρρ −+=+ 11       Where, ρ  ∈ [ ]1,0  is a fixed 

constant.     r  is randomly chosen from [ ]1,0  uniformly. 
Step 2: After obtaining the random values, they are to be 
normalized. Given  ( ) ( ) ( ),1,....,1,0 −Mxxx  
normalizing of values is done by: 
 Let max = maximum of  ( )ix       for  

1,....,1,0 −= Mi  and min = minimum of ( )ix  
        for 1,.....,1,0 −= Mi  The normalized values are 
obtained by,                       
( ) ( )( ) ( )minmax/min −−= ixiy  Then ( )iy  is in 

the interval  [ ]1,0  

Step 3: Now compute  ( )1 2ˆ , ,....,e
i i i i kx x x x x− − −=  

using the previous k  actual samples. 
Step 4: Then compare ix  and e

ix  to get the probability 

of error by using the condition ε<− e
ii xx , where ε   

is a constant. 

Chapter 5 

Markov chain method for prediction:                        
In linear prediction, the functional form is to be 

chosen and the parameters for the data set are to be 
estimated. But it is very critical to choose the best 
estimator for prediction. So, an alternative approach is to 
be used for prediction.  In this paper work, an approach 
based on Markov chains is proposed. 

 
 
 
5.1 Approach via Markov chains 

In this approach, first the transformation is to be 
done i.e., discrediting the state space and digitizing the 
functional values. Discrimination concerns the process of 
transferring continuous models and equations into 
discrete counterparts. This process is usually carried out 
as a first step toward making them suitable for numerical 
evaluation and implementation on digital computers. In 
order to be processed on a digital computer another 
process named quantization is essential. Discrete values 
are intervals in a continuous system of values. While the 
number of continuous values for an attribute can be 
infinitely many, the number of discrete values is often 
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few or finite. There are many other advantages of using 
discrete values over continuous ones. Discrete features 
are closer to a knowledge-level representation than 
continuous ones. Data can also be reduced and simplified 
through discretization. For both users and experts, 
discrete features are easier to understand, use, and 
explain. The transformation is done by discretizing the 
state space 1+nR  to 1+nQ  where Q  is finite set. 

  Let  ( ) ( ) ( )nn bababaA ,........,, 2211 ×××=  →   

( )1321 ,,.....,,, +nn qqqqq  ∈  Q , a finite set               

                         ∀  ( )121 ,,.....,, +nn xxxx  ∈  A  →  

q ∈  Q  
   Digitize the functional values 
  ( )021

,....,, xxxxf nnn −−
→  

( )02,10 ,.....,qqqqg nn −−  

   ( ) ( )qPAP QRn =+1   

( )
( ){ ( ) ( ) ( ) ( )}nnnnnn

nnQ

bababaxxxbaxP

qqqqP

,......,,,.....,,,

,....,,

221121111

211

×××∈∈

=

+++

+
 

5.2 Markov Chain Method: 
     The time series analysis is developed to model a set of 
observations developing in time i.e., the fundamental 
starting point for time series and for more general 
Markov models is virtually identical. A Markov model 
immediately assumes a short-term dependence structure 
on the variables at each time point, time series theory 
concentrates rather on the parametric form of 
dependence between the variables. 
     A Markov chain is a sequence of random 
variables { }TnxS n ∈= : , where T is a countable 

time-set. T  is written as }{ .,....1,0:=+Z . The critical 
aspect of a Markov model is that it is forgetful of all but 
its most immediate past  i.e., the future of the process is 
independent of the past given only its present value. For 
a process Φ , evolving on a state space X and governed 
by an overall probability law P , to be a time-
homogenous Markov chain, there must be a set of 
transition probabilities ( ) }{ XAXxAxP n ⊂∈ ,,, , 

for appropriate states A  such that for times mn,  in +Z  

 }{ ( )AxPxmiAP n
mimn ,;, ==Φ≤Φ∈Φ +  

that is, ( )AxP n ,  denotes the probability that a chain at 
x  will be in the state A  after n  steps or transitions. 
The independence of nP  on the value of mii ≤Φ , , is 

the Monrovian property, and the independence of nP  
and m  is the time-homogeneity property.     A Markov 

chain }{ ,....1,0 ΦΦ=Φ  is a particular type of 

stochastic process, at times +∈ Zn , taking values nΦ  

in a state space X . A discrete time stochastic process Φ  
on a state space is, a collection }{ ,....1,0 ΦΦ=Φ  of 

random variables, with each iΦ  taking values in X      
the defining characteristic of a Markov chain is that its 
future trajectories depend on its present and its past only 
through the current value. The random variables 

}{ nΦΦΦ ,....,, 10 , as a sequence take on values in the 

space n
n XXXX ×××=+ ......10

1 , the 

( )1+n copies iX  of the countable space X , equipped 

with the product field ( )1+nXB  which consists again of 

all subsets of 1+nX .The conditional 
Probability n

xP
0

( ) ( )nnxnn xxPxx =Φ=Φ==Φ=Φ ,.......,:,....., 1111 0
, 

defined for any sequence { }nxx ,........,0  ∈  1+nX  and 

0x ∈ X , and the initial probability distribution μ  on 

( )XB  completely determine the distributions of 

{ }nΦΦ ,........,0 . 
Countable space Markov chain:          The process 

{ },........., 10 ΦΦ=Φ  taking values in the state space 
is a Markov chain if for every n , and any sequence of 
states { }nxx ,........,0  , 

( ) ( ) ( ) ( ) ( )........,.......,, 121110110 110 nxxxnno xPxPxPxxxxP
n

=Φ=Φ=Φ==Φ=Φ=Φ
−

μμ  

The probability μ  is called the initial distribution of the 
chain. The process Φ  is a time-homogenous Markov 
chain if the probabilities ( )11 +=Φ jx xP

j
 depend only 

on the values of 1, +jj xx  and are independent of the 

time points j .By extending this in the obvious way from 

events in nX  to events in ∞X  the initial distribution, 
followed by the probabilities of transitions from one step 
to the next are obtained to completely define the 
probabilistic motion of the chain. 
 If ø is a time-homogenous Markov chain, 

         
( ) ( );:, 1 yPyxP x =Φ=

Then the definition 

can be written as          
( ) ( ) ( ) ( ) ( ),,.......,,,.......,, 121100110 nnnno xxPxxPxxPxxxxP −==Φ=Φ=Φ μμ    

or equivalently, in terms of the conditional probabilities 
of the process Φ ,           
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( ) ( )10011 ,..,,......... +++ ==Φ=Φ=Φ nnnnnn xxPxxxPμ   
This equation incorporates both the ‘loss of memory’ of 
Markov chains and the ‘time-homogeneity     For a given 
model, probability 

0xP   for a fixed 0x  is defined by 
defining the one-step transition probabilities for the 
process, and building the overall distribution using 
Markov transition matrix. 
Transition Probability Matrix:      The matrix 

( ){ }XyxyxPP ∈= ,,,  is called a Monrovian 
transition matrix if 
             
( ) ( ) ( )∑ ∑

∈

∈=≥≥
XZ XZ

XyxzxPyxPyxP
ε

,,1,,0,,0,  

The usual matrix iterates ( ){ }XyxyxPP nn ∈= ,,,  

by setting IP =0 , the identity matrix and then taking 
inductively   ( ) ( ) ( )∑

∈

−=
Xy

nn zyPyxPzxP ,,, 1 . nP  is 

called the n -step transition matrix. For ,XA ⊂  

     ( ) ( )∑
∈

=
Ay

nn yxPAxP ,:,              To define a 

Markov chain from a transition function the laws 
governing a trajectory of fixed length 1≥n . The random 
variables { }nΦΦΦ ....,,........., 10 , thought of as 
sequence, take values in the space  

,........0
1

n
n XXX ××=+  equipped with ( )1+nXB  

which consists of all subsets of 1+nX  
For a general time series,  
{ } { }n11n1  x| x| +−+ ≠ nnn xPxxP                        

{ } { } ( )∑ ++ =
Z

nn ZPZxPxP , x| x| n1n1  

In general,    { } { }ZxPZxP nn ′≠ ++ , x|, x| n1n1    for 

ZZ ′≠ But for Markov chain of order one,  
{ } { }ZxPZxP nn ′= ++ , x|, x| n1n1 ∀ Z and Z ′                      
{ } { }NNiNiiNi xxxPxxxP ,....,, x|... x| 21121i1 +++++++ ≈     for 

sufficiently large N  ( )10≤  

{ } { } { }zXyXPzXyXxXPzXyxXP nnnnnnn ========= +++++ ,/,,,X | 1121n2

{ } { } { }yXPyXxXPyxXP nnnn ====== +++++ 1121n2 /,X |
{ } { } { } { }zXPzyXPzXPzyXxXP n

Z
nn

Z
nn ======= ∑∑ +++ n1n12 X |/X |, 5.3 

Alternative method to estimate conditional density:   
When two random variables are statistically dependent, 
knowing the value of one of them lets experimenter get a 
better estimate of the value of the other one. Given the 
set of random variables ( ){ }yx,  in which x  is 

statistically related to the other random variable y whose 
value can be observed. Now the objective is to estimate 
the conditional density of x  given y .  To estimate the 

conditional density ( )yxf /ˆ , the two dimensional joint 

density  ( )yxf ,ˆ  for each pair of random variables 
formed in a cyclic fashion of estimated values i.e., 

Nyyy ,....,, 21  and the one dimensional density ( )yf y
ˆ  

are to be known. Then the conditional density is 
estimated as the ratio of the two dimensional joint 
density to the one dimensional density of random 
variable multiplied by constant correction factor.   
Suppose xf  and yf  are the densities of the random 

variables x  and y respectively and yxf ,  be the two 
dimensional joint density of yx, .  For some 

fixed 0>ε , when ( ) ε≥yf y
ˆ then,                        

( ) ( ) ( )yfHyxfyxf yyxyx
ˆ/,ˆ/ˆ

,/ ∗= ε                                  

( ) ,0/ˆ
/ =yxf yx  Otherwise. 

 Chapter 6 
Results 
  The probability of error is calculated for different 
estimators by considering the past samples. The 
threshold value that is taken into account for calculating 
the probability of error is also critical. In this work, the 
threshold values that are considered for calculating the 
probability of error are T=0.05 and T=0.005. The 
probability of error is calculated considering the past 100 
samples.  
 

 
 
 
 
 
 
 
 
 
 
 

Estimator Pe for 
T=0.005      

Pe for T=0.05    

F(xn)=xn-1   0.50        0.30 

   

  0.48      0.30 

   

  0.16          0.06 
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In the third case where the moving average method is 
considered, K refers to the number of past samples that 
are considered to predict the future one. K is taken as 10 
i.e., the history of only 10 samples is considered. 
 

 
 
Where ai are the coefficients that are to be calculated 
using the autocorrelation method? It is very critical to 
choose the functional form (estimator) for linear 
prediction. Also it is not easy to choose the parameters 
that best fit the linear predictor, minimizing the error in 
the process. Increasing the number of parameters will not 
always lead to better results. Thus, Linear Prediction 
method has several restrictions. So, an alternative 
method based on Markov chains is proposed in which the 
conditional density is estimated.  
 
Conclusion: 
 
       In signal processing applications, the estimation of 
the predictor is a common problem. There are two 
different types of estimating the predictor. One way is 
considering the total history of the predictor and the 
other way is considering the length of the predictor. It is 
always critical how the predictor is valid to about what 
region. In non-deterministic methods, the range of values 
that the predictor can have is very large. For these the 
nature of the predictor is obtained by using fuzzy 
systems. With linear prediction, the future values can be 
predicted using the past values. In order to get the best 
prediction results, the linear prediction coefficients are to 
be calculated in order to best fit for the predictor. But the 
time series models and autoregressive models for linear 
prediction need a functional form to be chosen in 
advance based on data set which is very critical. In 
addition the parameters are to be chosen in such a way to 
minimize the RMS error. To avoid such problems, an 
alternative approach based on Markov chains is proposed 
in which the conditional density is estimated. 
 
 
 
 
Chapter 7 
Bibliography: 
 
[1] P.M.T.Broersen and S.de Waele, Selection of order 

and type of time series models estimated from 
reduced statistics, , IEEE , Instrumentation and 
measurement, May 2002. 

[2] Michalis K.Titsias and Aristidis C.Likas, Shared 
kernel models for class conditional density 

estimation, IEEE Transactions on neural networks, 
vol-12, September 2001. 

[3] Jan S.Erkelens and Piet M.T.Broersen, Bias 
propagation in the autocorrelation method of linear 
prediction, IEEE Transactions on speech and audio 
processing, vol 5, March 1997. 

[4] Robert V. Hogg, Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Edition, Fifth 
Edition, 2004. 

[5] Athanasios Papoulis, S. Unnikrishna pillai, 
Probability, Random variables and Stochastic 
Processes, Tata McGraw-Hill Edition, Fourth Edition, 
2004. 

[6] S.C.Gupta and V.K.Kapoor, Fundamentals of 
Mathematical Statistics, Sultan chand and sons, 
Eleventh Edition, 2002. 

[7] Richard A.Johnson, Miller & Freund’s Probability 
and Statistics for Engineers, Prentice V Hall, Sixth 
Edition, 2003. 

[8] Richard O.Duda, Peter E.Harl, David G.Stork, 
Pattern Classification, Wiley Interscience 
Publications, Second Edition, 2004. 

[9] Hillier & Lieberman, Introduction to Operations 
Research, Tata McGraw Hill, Seventh Edition,      
2005. 

 
Mr.K.Koteswara Rao received 
the B.Tech dregree in CSE from 
Acharya Nagarjuna University in 
2004. He received M.Tech 
dregree in CSE from Jawaharlal 
Nehru Technological University 
in 2006. From 2006 onwards 
working as Assistant Professor in 
the Dept. of CSE in Gayatri Vidya 

Parishad College of Engineering, Visakhapatnam. His 
research interest includes Software Engineering, Object 
Oriented Systems Development, Project Management, 
Data Mining. 

   
Mr.P. Veerabhadra Rao received 
the B.Tech dregree in CSE from 
Berhampur University in 2006. He 
is presently pursing M.Tech 
dregree in CSE from Jawaharlal 
Nehru Technological University in 
QIP Scheme. From 2006 onwards 
working as Software programmer 
in the Dept. of CSE in Gayatri 

Vidya Parishad College of Engineering, Visakhapatnam. 
His research interest includes Software Engineering, 
Data Mining and Computer Networks. 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008 
 

211

 
Mr. Vaka Venkat received the 
B.Tech dregree in CSE from 
Jawaharlal Nehru Technological 
University in 2006. He is 
presently pursing M.Tech dregree 
in CSE from Jawaharlal Nehru 
Technological University. His 
research interest includes 
Software Engineering, Data 
Mining and Software Project 

Management. 
 

 
Dr.G. Samuel Vara Prasada 
Raju received the M.Tech 
dregree in CSE from Andhra 
University in 1993. He received 
PhD dregree from Andhra 
University in 1996. From 1994 to 
2003 worked as Asst. Professor in 
the Dept. of CS&SE in Andhra 
University College of 

Engineering. From 2003 onwards worked as Associate 
Professor and Director of the CS&SE Department for 
School of Distance Education of Andhra University 
College of Engineering His research interest includes e-
commerce, Network Security, Cryptography and Data 
Mining. 
   
 


