
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008 221

An Efficient Algorithm for Determining the k-error Linear Complexity
of Binary Sequences with Periods 2pn

Shimin Wei

Huaibei Coal Normal University, College of Computer Science & Technique, Huaibei 235000, Anhui, China

Summary
An efficient algorithm is presented for computing the k-
error linear complexity of a binary sequence with period
2pn, where 2 is a primitive root modulo p2. The new
algorithm is a generalization of an algorithm for
computing the k-error linear complexity of a binary
sequence with period pn presented by Wei, Chen, and Xiao.
Key words:
Cryptography, binary sequence, linear complexity, k-error
linear complexity.

1. Introduction

Although linear complexity is a necessary index for
measuring the unpredictability of a sequence, it is not
sufficient. The linear complexity has a typical unstable
property as a fast change (increase or decrease) by only a
few bit change within one period of the original sequence,
hence it is cryptographically weak. Ding, Xiao and Shan
[2] introduced some measure indexes on the security of
stream ciphers. One of them is the sphere complexity of
periodic sequences. Stamp and Martin [6] proposed a
measure index analogous with the sphere complexity, the
k-error linear complexity, and gave an algorithm for
determining the k-error linear complexity of binary
sequences with period 2n. Kaida, Uehara and Imamura [4]
generalized the algorithm to an algorithm for determining
the k-error linear complexity of sequences over GF(pm)
with period pn. This algorithm is also a generalization of
the algorithm presented by Ding [2]. In this paper, we
present an efficient algorithm for determining the k-error
linear complexity of a binary sequence with period 2pn,
where 2 is a primitive root modulo p2. The new algorithm
is a generalization of an algorithm presented by Xiao, Wei,
Imamura and Lam [7].In this paper we will consider
binary sequences.
Let s=(s0, s1, s2, L) be a binary sequence. s is called an L-
order linear recusive sequence if there exists a positive
integer L and c1, c2, L, cL in GF(2) such that s satisfies
sj+c1sj−1+L+cLsj−L=0 for any j≥L; and the minimal order is
called the linear complexity of s, and denoted by c(s). If
there exists a positive number N such that si=si+N for i=1,

2, L, s is called a periodic sequence, and N is called a
period of s. The generating function of s is defined as

s(x)=s0+s1x+s2x2+L.
Let s be a binary sequence with the first period sN=(s0, s1,
L, sN−1). Then

)(
)(

)1),(gcd(/)1(
)1),(gcd(/)(

1
)()(

xf
xg

xxsx
xxsxs

x
xsxs

s
NNN

NNN

N

N

=
−−
−

=
−

= ,

Where
fs(x)=(1−xN)/gcd(sN (x), 1−xN),
 g(x)= sN (x)/gcd(sN (x), 1−xN).

Obviously, gcd(g(x), fs(x))=1, deg g(x)<deg fs(x), fs(x) is
the minimal polynomial of s, and degfs(x)=c(s) [3].

2. An Algorithm for Computing the Linear
Complexity

Let us recall some results in finite field theory and number
theory. Let p be a prime. Then φ(pn)=pn−pn−1, where n is a
positive integer, φ is the Euler φ-function. Let Φn(x) be the
n-th cyclotomic polynomial. Then Φn(x) is irreducible
over GF(2) if and only if 2 is a primitive root modulo n, i.e.
if 2 has order φ (n) modulo n.
From Theorem 3.1 in [8] we have the following theorem.

Theorem 1. Let s be a binary sequence with the first
period sN=(s0, s1, L, sN−1), and let 2 be a primitive root
(mod p2), and N=2pn. Denote l=pn−1, Ai=(a(i−1)l, a(i−1)l+1,L,
ail−1), i=1, 2, L, 2p. Then

gcd(sN (x), 1+xN)= gcd(sN (x), Φpl (x)2)⋅gcd(1+x2l,
(A1(x)+A3(x)+L+ A2p−1(x))+(A2(x)+A4(x)+L+A2p(x)) xl),
and
1) Φpl (x)2⎜sN(x) if and only if

 (A1, A2)=(A3, A4)=L=(A2p−1, A2p);
2) Φpl(x)⎜sN(x) if and only if

A1+Ap+1=A2+Ap+2=L=Ap+A2p.
Let s be a binary sequence with period N=2pn, 2 a
primitive root (mod p2), and sN=(s0, s1, L, sN−1) the first
period of s. From Algorithm 4.2 in [8] and Theorem 1 it
immediately follows Algorithm 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

222

Algorithm 1. Initial: a←sN , l←pn , c←0, f←1.

1) If l=1, go to 2); otherwise l←l/p,
Ai=(a(i−1)l, a(i−1)l+1,L, ail−1), i=1, 2, L, 2p,

 go to 4).
2) If a=(0,0), stop; otherwise , go to 3).
3) If a0=a1 ， c←c+1, f←(1+x)f, otherwise c←c+2,
f←(1+x2)f, stop.
4) If (A1, A2)= (A3, A4)= L=(A2p−1, A2p), a←(A1,A2) , go to
1); otherwise go to 5).
5) If A1+Ap+1=A2+Ap+2=L=Ap+A2p, then

 a←(A1+A2+L+Ap, A2+A3+L+Ap+1),
c←c+(p−1)l, f←fΦpl(x),

go to 1); otherwise
a←(A1+A3+L+ A2p−1, A2+A4+L+A2p),
c← c+2(p−1)l, f←fΦpl(x)2,

go to 1).
Finally, we have that the linear complexity c(s)=c and the
minimal polynomial fs(x)=f of s.

3. The New Algorithm

Let s=(s0, s1, s2, L) be a binary sequence with period N.
The smallest linear complexity that can be obtained when
any k (0≤k≤N) or fewer of the si's are altered in every
period of s is called the k-error linear complexity of s [6],
and denoted by ck(s), i.e. ck(s)=minw(t)≤k{c(s+t)}, where t
is a binary sequence with period N, w(t) is the number of
non-zero elements of the first period of t, c(s) is the linear
complexity of s. The k-error linear complexity of any
sequence could be found by repeated application of the
Berlekamp-Massey [5] Algorithm. But, to compute the k-
error linear complexity of a binary sequence with period N

would require ∑
=

k

j

N
j

1
)(applications of the Berlekamp-

Massey Algorithm. In the case of N=2pm, 2 is a primitive
root modulo p2, to compute the k-error linear complexity

of s would require ∑
=

k

j

N
j

1
)(applications of Algorithm 1. The

number ∑
=

k

j

N
j

1
)(becomes very large even for moderate N

and k.
In this section, we propose and prove an efficient
algorithm for determining the k-error linear complexity of
binary sequences with period N=2pn, where 2 is a
primitive root modulo p2. The new algorithm is a
generalization of Algorithm 1. Let s=(s0, s1, s2, L) be a
binary sequence with period N=2pn, and let 2 be a
primitive root modulo p2, and sN=(s0, s1, L, sN−1) the first
period of s. An efficient algorithm for computing the k-
error linear complexity of s is as follows.

Algorithm 2 Initial: a←sN, l←pn, c←0, cost[i] ←1, i=0,
1, 2, L, 2l−1, K←k.

1) If l=1, then T←a0cost[0]+ a1cost[1], go to 2); otherwise,
l←l/p, Ai←(a(i−1)l, a(i−1)l+1,L, ail−1), i=1, 2, L, 2p,
Ti1←aicost[i]+ai+lcost[i+l]+L+ai+(p−1)lcost[i+(p−1)l],
Ti0←cost[i]+ cost[i+l]+L+cost[i+(p−1)l] −Ti1,
Ti←min{Ti1, Ti0}, T←T1+T2+L+Tl−1,

go to 4).
2) If T≤ K, stop; otherwise T= (1+a0)cost[0]+(1+a1)cost[1],
go to 3).
3) If T≤ K, c←c+1, stop; otherwise c←c+2, stop.
4) If T≤ K, K←K−T, cost[i]←max{Ti1, Ti0}−Ti , i=0, 1, L,
2l−1, go to 5); otherwise,

B←(A1+Ap+1, A2+Ap+2, L, Ap+A2p),
cost′[i]←min{cost[i], cost[i+pl]}, i=0, 1, 2, L, pl−1,
Ti1′=bicost′[i]+bi+lcost′[i+l]+L+bi+(p−1)lcost′[i+(p−1)

l]
Ti0′=cost′[i]+ cost′[i+l]+L+cost′[i+(p−1)l]−Ti1′,
Ti′=min{Ti1′, Ti0′}, T′=T1′+T2′+L+Tl−1′,

go to 6).
5) For i=0, 1, 2, L, 2l−1, if Ti = Tih, then ai←h, h=0, 1,
a←(A1, A2), go to 1).
6) If T′ ≤ K, K←K−T′, c←c+(p−1)l; for i=0, 1, L, pl−1,
do

δ(i)←1 if Ti1′≤Ti0′ and ai +ai+pl=1, or Ti1′>Ti0′ and ai
+ai+pl=0;

δ(i)←0 if if Ti1′≤Ti0′ and ai +ai+pl=0, or Ti1′>Ti0′ and
ai +ai+pl=1;
go to 7); otherwise, c←c+2(p−1)l,

]}2[{cosmin][cos
10

jlitit
pj

+←
−≤≤

,i=0,1, L, 2l−1,

a←(A1+A3+L+A2p−1,A2+A4+L+A2p),
go to 1).
7) Do

ai←ai +1 if δ(i)=1 and cost[i] ≤ cost[i+pl],
ai+pl←ai+pl +1 if δ(i)=1 and cost[i+pl] ≤ cost[i],

}][cos)1(][cos{min][cos)(

10
pljlitjlitit jli

pj
++−++← +

−≤≤

δ ,

for i=0, 1,L, 2l−1,
a←(A1+A2+L+ Ap, A2+A3+L+Ap+1),

go to 1).
Finally, the k-error linear complexity ck(s) of s is equal to c.
In Algorithm 2, cost[i] (cost′[i]) is the minimal number of
changes in the initial sequence sN necessary and sufficient
for changing the current element ai (bi) without disturbing
the results

 (A1, A2)= (A3, A4)= L=(A2p−1, A2p) and
 A1+Ap+1=A2+Ap+2=L= Ap+A2p

of any previous step.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.3, March 2008

223

Theorem 2 Let s=(s0, s1, s2, L) be a binary sequence with
period N=2pn, ２ a primitive root modulo p2, and 0≤ k≤
2pn. Then Algorithm 2 computes c, the k-error linear
complexity of s, in n steps.

Proof: Obviously, when k=0, Algorithm 2 reduces to
Algorithm 1. If k>0 then we are allowed to make k (or
fewer) bit changes in sN in order to reduce the complexity
c as much as possible. As with Algorithm 1, c only
increases when (A1, A2) = (A3, A4) = L = (A2p−1, A2p)
doesn't hold. Therefore, if we can force
(A1,A2)=(A3,A4)=L=(A2p−1,A2p) at the mth step of
Algorithm 2 we should do so, since this prevent
2(p−1)pn−m from being added to c, and the total of all
remaining possible additions is only 2pn−m.
Now, suppose that at some step m, the value of cost[i]
correctly gives the cost of changing ai. If
ai=ai+2l=L=ai+2(p−1)l doesn't hold, changing all 1 or all 0 in
{ai+2(j−1)l, j=1, 2, L, p} will force ai=ai+2l=L=ai+2(p−1)l,
and hence the cost of forcing ai=ai+2l=L=ai+2(p−1)l is the
minimum Ti=min{Ti1, Ti0} of the cost

Ti1=aicost[i]+ai+2lcost[i+2l]+L+ai+2(p−1)lcost[i+2(p−1)l]
of changing all 1 and the cost

Ti0=cost[i]+ cost[i+2l]+L+cost[i+2(p−1)l] −Ti1
of changing all 0. Therefore, the variable

T=T1+T2+L+Tl−1
in Algorithm 2 correctly gives the total cost of forcing

 (A1, A2)= (A3, A4)= L=(A2p−1, A2p).
Suppose that T≤ K. (1) If ai=ai+2l=L=ai+2(p−1)l doesn't hold
and Ti1≥Ti0, then we change all 0 in {ai+2(j−1)l, j=1,2,L,p}
since it has the lower cost, thus forcing ai=ai+2l=L
=ai+2(p−1)l. Notice that at the end of this step we will let
a←(A1, A2). If we change ai in step m+1 we have
effectively restored 1 (in step m) to its previous value. In
order to maintain ai=ai+2l=L=ai+2(p−1)l in step m, we must
change all 1 in {ai+2(j−1)l, j=1, 2, L, p} in step m, which
has a net cost of Ti1−Ti0=max{Ti1,Ti0}−Ti,, and hence
cost[i] is computed correctly in this case. (2) If ai=ai+2l=L
=ai+2(p−1)l doesn't hold and Ti1<Ti0, the discussion similar to
(1) will show that cost[i] is computed correctly in this case.
(3) If ai=ai+2l=L=ai+2 (p−1)l holds, then Ti=0. Notice that at
the end of this step we will let a←(A1, A2). If we change ai
in step m+1, in order to maintain ai=ai+2l=L=ai+2 (p−1)l in
step m, we must change every ai+2(j−1)l, (j=1,2,L,p) in step
m, which has a net cost of,

cost[i]+cost[i+l]+L+cost[i+(p−1)l]
=Ti1+Ti0=max{Ti1, Ti0}−Ti,

and hence cost[i] is computed correctly in this case.
It remains to consider the case T>K. In this case we cannot
force (A1, A2)= (A3, A4)= L=(A2p−1, A2p). But if we can
force A1+Ap+1=A2+Ap+2=L=Ap+A2p at the mth step of

Algorithm 2 we should do so, since this prevent (p-1)pn−m
from being added to c, and the total of all remaining
possible additions is only 2pn−m. Denote Bj=Aj+Ap+j, j=1, 2,
L, p. (1) If bi=bi+l=L=bi+(p−1) l doesn't hold, changing all
1 or all 0 in {bi+(j-1) l , j=1, 2, L, p} will force
bi=bi+l=L=bi+(p−1)l, and hence the cost of forcing
bi=bi+l=L=bi+(p−1)l is the minimum Ti′=min{Ti1′, Ti0′} of
the cost

Ti1′=bicost′[i]+bi+lcost′[i+l]+L+bi+(p−1)lcost′[i+(p−1)
l]
of changing all 1 and the cost

Ti0′=cost′[i]+ cost′[i+l]+L+cost′[i+(p−1)l] −Ti1′
of changing all 0, where bi=ai+ai+pl, hence the cost of
changing bi is as follows

cost′[i]=min{cost[i], cost[i+pl]}, i=0, 1, 2, L, pl−1.
 Therefore, the variable T′=T1′+ T2′+L+Tl−1′ in Algorithm
2 correctly gives the total cost of forcing

A1+Ap+1=A2+ Ap+2=L=Ap+A2p.
Define δ(i+jl)=1 if bi+jl is changed in forcing
bi=bi+l=L=bi+(p−1)l, otherwise δ(i+jl)=0, for j=0, 1, 2, L,
p−1, i=0, 1, 2, L, pl−1.
Now, suppose that T′≤ K. If bi=bi+l=L=bi+(p−1)l doesn't
hold, then we change all 0 in {bi+(j−1)l, j=1, 2, L, p} if
Ti1′≥Ti0′, or all 1 in {bi+(j−1)l, j=1, 2, L, p} if Ti1′<Ti0′,
since it has the lower cost, thus forcing bi=bi+l=L=bi+(p−1)l.
Notice that at the end of this step we will let

 a←(A1+A2+L+ Ap, A2+A3+L+Ap+1).
If we change ai in step m+1 we must change one of ai, ai+l,
L, ai+(p-1)l in step m. In order to maintain bi=bi+l=L
=bi+(p−1)l, i.e. ai+ai+pl=ai+l+ai+l+pl=L=ai+(p−1)l+ai+(2p−1)l in
step m, changing ai+(j−1)l and ai+(j-1)l+pl must happen at the
same time, j=1, 2, L, p.
Suppose that Ti1′≥Ti0′, we change all 0 in {bi+(j−1)l=
ai+(j−1)l+ai+(j−1)l+pl, j=1, 2, L, p} in step m. If bi+(j−1)l=
ai+(j−1)l+ai+(j−1)l+pl=1, then bi+(j−1)l isn’t change in forcing
bi=bi+l=L=bi+(p−1)l, hence δ(i+jl)=0. The cost of changing
ai+(j−1)l and ai+(j−1)l+pl at the same time is

cost[i+jl]+cost[i+jl+pl]
=⎟ cost[i+jl]+(−1)δ(i+jl)cost[i+jl+pl]⎜.

If bi+(j−1)l= ai+(j−1)l+ai+(j−1)l+pl=0, then bi+(j−1)l is changed in
forcing bi=bi+l=L=bi+(p−1)l, δ(i+jl)=1, and the cost of
changing bi is as follows cost′[i]=min{cost[i], cost[i+pl]}.
The net cost of changing ai+(j−1)l and ai+(j−1)l+pl at the same
time is

max{cost[i+jl], cost[i+jl+pl]} −min{cost[i+jl],
cost[i+jl+pl]}=⎟ cost[i+jl]+(−1)δ(i+jl)cost[i+jl+pl]⎜.

Therefore, the cost of changing ai in step m+1 is the
minimum

}][cos)1(][cos{min)(

10
pljlitjlit jli

pj
++−++ +

−≤≤

δ

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

224

of the costs of changing ai+(j-1)l and ai+(j-1)l+pl, j=1, 2, L, p,
at the same time in step m. Therefore, cost[i] is computed
correctly in this case.
The discussion similar to above will show that cost[i] is
computed correctly when Ti1<Ti0.
If bi=bi+l=L=bi+(p−1)l holds, then Ti′=0. Notice that at the
end of this step we will let a←(A1+A2+L+Ap,
A2+A3+L+Ap+1). If we change ai in step m+1 we must
change one of ai, ai+l, L, ai+(p-1)l in step m. In order to
maintain bi=bi+l=L=bi+(p−1)l, i.e. ai+ai+pl=ai+l+ai+l+pl
=L=ai+(p−1)l+ai+(2p−1)l in step m, changing ai+(j−1)l and
ai+(j−1)l+pl must happen at the same time, j=1, 2, L, p.
Since bi+(j−1)l isn’t change in forcing bi=bi+l=L=bi+(p−1)l,
we have that δ(i+jl)=0. The cost of changing ai+(j−1)l and
ai+(j−1)l+pl at the same time is

cost[i+jl]+cost[i+jl+pl]
=⎟ cost[i+jl]+(−1)δ(i+jl)cost[i+jl+pl]⎜.

Therefore, the cost of changing ai in step m+1 is the
minimum

}][cos)1(][cos{min)(

10
pljlitjlit jli

pj
++−++ +

−≤≤

δ

of the costs of changing ai+(j−1)l and ai+(j−1)l+pl, j=1, 2, L, p,
at the same time in step m. Therefore, cost[i] is computed
correctly in this case.
Finally, we consider the case T ′>k. In this case we cannot
force A1+Ap+1=A2+Ap+2=L=Ap+A2p. Notice that at the
end of this step we will let a←(A1+A3+L+ A2p−1,
A2+A4+L+A2p). If we change ai in step m+1 we have

effectively restored ∑
=

−+=
p

j
ljii aa

1
)1(2 (in step m). We need

only change one of {ai+2(j−1)l, j=1, 2, L, p} in step m,
hence the cost of changing ai is the minimum

]}2[{cosmin
10

jlit
pj

+
−≤≤

 of the costs of changing ai+2(j−1)l, j=1,

2, L, p. Therefore, cost[i] is computed correctly in this
case.

4. Conclusion

In this paper, an efficient algorithm for determining the k-
error linear complexity of a binary sequence s with period
2pn is presented, where 2 is primitive root modulo p2. The
algorithm computes the k-error linear complexity of s in n
steps. The algorithm solves partially the open problem by
Stamp and Martin [6].

Acknowledgments

This work was supported in part by the Natural Science
Foundation of China under Grant 60573026 and 60773121,
the Key Project of Chinese Ministry of Education under

Grant 205074, and the Academic and Technical leading
scholars Research Project of the Education Department of
Anhui Province in China under Grant 2005hbz24, and the
Natural Science Foundation of Anhui Province in China
under Grant 070412052.

References
[1] S. R. Blackburn, "A generalisation of the discrete Fourier

transform: determining the minimal polynomial of a
periodic sequence", IEEE Trans. Inform. Theory, Vol.40,
pp.1702-1704, 1994

[2] Ding, C., Xiao, G., Shan, W.: The Stability Theory of
Stream Ciphers. Lecture Notes in Computer Science, Vol.
561. Springer-Verlag, Berlin Heidelberg New York (1991)

[3] Games, R. A., Chan, A. H.: A fast algorithm for
determining the complexity of a binary sequence with
period 2n. IEEE Trans on Inform. Theory. 29(1): (1983)144-
146

[4] T. Kaida, S. Uehara and K. Imamura, "An algorithm for the
k-error linear complexity of sequences over GF(pm) with
period pn, p a prime", Information and Computation, Vol.
151, pp.134-147, 1999

[5] Massey, J. L.: Shift register synthesis and BCH decoding.
IEEE Trans. on Inform. Theory. 15(1): (1969)122-127

[6] M. Stamp, C. F. Martin, "An algorithm for k-error linear
complexity of binary sequences with period 2n, IEEE Trans
on Inform. Theory, vol. 39, pp. 1398-1401, 1993

[7] Wei S, Chen Z, Xiao G. A fast algorithm for k-error linear
complexity of a binary sequence. 2001 International
Conferences on Info-tech and Info-net Proceedings,
Conference E, IEEE Press, 2001, 152-157

[8] Wei, S., Xiao, G., Chen, Z.: A fast algorithm for
determining the linear complexity of a binary sequence with
period 2npm. Science in China(Series F). 44(6): (2001)453-
460

Shimin Wei received the B. S.
degree in Mathematics from the
Huaibei Coal Normal College,
Huaibei, Anhui, China, in 1986, the
M. S. Degree in Mathematics from
the Northwest University, Xi'an,
Shaanxi, China, in 1993, and the Ph.
Degree in Cryptography from the
Xidian University, Xi'an, Shaanxi,

China, in 2001. From April 2001 to July 2003, he was a
postdoctoral with the Department of Department of Computer
Science and Technique, Peking University, Beijing, China.
He was a Lecturer from June 1993 to November 1994, was a
associate professor from December 1994 to November 1996, has
been a professor since December 1996, with the Department of
Mathematics and the Department of Computer Science &
Technique, Huaibei Coal Normal College, Huaibei, Anhui, China.
Since October 2003, he has been the header with the Department
of Computer Science & Technique, Huaibei Coal Normal
College. His research interests include Applied Mathematics,
Cryptography and Coding, Information and Network Security.

