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Summary 
An efficient algorithm is presented for computing the k-
error linear complexity of a binary sequence with period 
2pn, where 2 is a primitive root modulo p2. The new 
algorithm is a generalization of an algorithm for 
computing the k-error linear complexity of a binary 
sequence with period pn presented by Wei, Chen, and Xiao. 
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1. Introduction 

Although linear complexity is a necessary index for 
measuring the unpredictability of a sequence, it is not 
sufficient. The linear complexity has a typical unstable 
property as a fast change (increase or decrease) by only a 
few bit change within one period of the original sequence, 
hence it is cryptographically weak. Ding, Xiao and Shan 
[2] introduced some measure indexes on the security of 
stream ciphers. One of them is the sphere complexity of 
periodic sequences. Stamp and Martin [6] proposed a 
measure index analogous with the sphere complexity, the 
k-error linear complexity, and gave an algorithm for 
determining the k-error linear complexity of binary 
sequences with period 2n. Kaida, Uehara and Imamura [4] 
generalized the algorithm to an algorithm for determining 
the k-error linear complexity of sequences over GF(pm) 
with period pn. This algorithm is also a generalization of 
the algorithm presented by Ding [2]. In this paper, we 
present an efficient algorithm for determining the k-error 
linear complexity of a binary sequence with period 2pn, 
where 2 is a primitive root modulo p2. The new algorithm 
is a generalization of an algorithm presented by Xiao, Wei, 
Imamura and Lam [7].In this paper we will consider 
binary sequences. 
Let s=(s0, s1, s2, L) be a binary sequence. s is called an L-
order linear recusive sequence if there exists a positive 
integer L and c1, c2, L, cL  in GF(2) such that  s satisfies 
sj+c1sj−1+L+cLsj−L=0 for any j≥L; and the minimal order is 
called the linear complexity of s, and denoted by c(s). If 
there exists a positive number N such that si=si+N for i=1, 

2, L, s is called a periodic sequence, and N is called a 
period of s. The generating function of s is defined as  

s(x)=s0+s1x+s2x2+L. 
Let s be a binary sequence with the first period sN=(s0, s1, 
L, sN−1). Then 

)(
)(

)1),(gcd(/)1(
)1),(gcd(/)(

1
)()(

xf
xg

xxsx
xxsxs

x
xsxs

s
NNN

NNN

N

N

=
−−
−

=
−

= , 

Where 
fs(x)=(1−xN)/gcd(sN (x), 1−xN), 
 g(x)= sN (x)/gcd(sN (x), 1−xN). 

Obviously, gcd(g(x), fs(x))=1, deg g(x)<deg fs(x), fs(x) is 
the minimal polynomial of s, and degfs(x)=c(s) [3]. 

2. An Algorithm for Computing the Linear 
Complexity 

Let us recall some results in finite field theory and number 
theory. Let p be a prime. Then φ(pn)=pn−pn−1, where n is a 
positive integer, φ is the Euler φ-function. Let Φn(x) be the 
n-th cyclotomic polynomial. Then Φn(x) is irreducible 
over GF(2) if and only if 2 is a primitive root modulo n, i.e. 
if 2 has order φ (n) modulo n. 
From Theorem 3.1 in [8] we have the following theorem. 

Theorem 1. Let s be a binary sequence with the first 
period sN=(s0, s1, L, sN−1), and let 2 be a primitive root 
(mod p2), and N=2pn. Denote l=pn−1, Ai=(a(i−1)l, a(i−1)l+1,L, 
ail−1), i=1, 2, L, 2p. Then 

gcd(sN (x), 1+xN)= gcd(sN (x), Φpl (x)2)⋅gcd(1+x2l, 
(A1(x)+A3(x)+L+ A2p−1(x))+(A2(x)+A4(x)+L+A2p(x)) xl), 
and 
1)  Φpl (x)2⎜sN(x) if and only if 

 (A1, A2)=(A3, A4)=L=(A2p−1, A2p); 
2)  Φpl(x)⎜sN(x) if and only if  

A1+Ap+1=A2+Ap+2=L=Ap+A2p. 
Let s be a binary sequence with period N=2pn, 2 a 
primitive root (mod p2), and sN=(s0, s1, L, sN−1) the first 
period of s. From Algorithm 4.2 in [8] and Theorem 1 it 
immediately follows Algorithm 1. 
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Algorithm 1.  Initial: a←sN , l←pn , c←0, f←1. 

1) If l=1, go to 2); otherwise l←l/p,  
Ai=(a(i−1)l, a(i−1)l+1,L, ail−1), i=1, 2, L, 2p,  

 go to 4). 
2) If a=(0,0), stop; otherwise , go to 3). 
3) If a0=a1 ， c←c+1, f←(1+x)f, otherwise c←c+2, 
f←(1+x2)f, stop. 
4) If (A1, A2)= (A3, A4)= L=(A2p−1, A2p), a←(A1,A2) , go to 
1); otherwise go to 5). 
5) If A1+Ap+1=A2+Ap+2=L=Ap+A2p, then 

 a←(A1+A2+L+Ap, A2+A3+L+Ap+1),  
c←c+(p−1)l, f←fΦpl(x), 

go to 1); otherwise 
a←(A1+A3+L+ A2p−1, A2+A4+L+A2p),  
c← c+2(p−1)l,  f←fΦpl(x)2, 

go to 1). 
Finally, we have that the linear complexity c(s)=c and the 
minimal polynomial fs(x)=f of s. 

3. The New Algorithm 

Let s=(s0, s1, s2, L) be a binary sequence with period N. 
The smallest linear complexity that can be obtained when 
any k (0≤k≤N) or fewer of the si's are altered in every 
period of s is called the k-error linear complexity of s [6], 
and denoted by ck(s), i.e. ck(s)=minw(t)≤k{c(s+t)}, where t 
is a binary sequence with period N, w(t) is the number of 
non-zero elements of the first period of t, c(s) is the linear 
complexity of s. The k-error linear complexity of any 
sequence could be found by repeated application of the 
Berlekamp-Massey [5] Algorithm. But, to compute the k-
error linear complexity of a binary sequence with period N 

would require ∑
=

k

j

N
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)(  applications of the Berlekamp-

Massey Algorithm. In the case of N=2pm, 2 is a primitive 
root modulo p2, to compute the k-error linear complexity 

of s would require ∑
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)(  becomes very large even for moderate N 

and k. 
In this section, we propose and prove an efficient 
algorithm for determining the k-error linear complexity of 
binary sequences with period N=2pn, where 2 is a 
primitive root modulo p2. The new algorithm is a 
generalization of Algorithm 1. Let s=(s0, s1, s2, L) be a 
binary sequence with period N=2pn, and let 2 be a 
primitive root modulo p2, and sN=(s0, s1, L, sN−1) the first 
period of s. An efficient algorithm for computing the k-
error linear complexity of s is as follows. 

Algorithm 2  Initial: a←sN, l←pn, c←0, cost[i] ←1, i=0, 
1, 2, L, 2l−1, K←k. 

1) If l=1, then T←a0cost[0]+ a1cost[1], go to 2); otherwise,  
l←l/p,  Ai←(a(i−1)l, a(i−1)l+1,L, ail−1), i=1, 2, L, 2p,  
Ti1←aicost[i]+ai+lcost[i+l]+L+ai+(p−1)lcost[i+(p−1)l],  
Ti0←cost[i]+ cost[i+l]+L+cost[i+(p−1)l] −Ti1,  
Ti←min{Ti1, Ti0}, T←T1+T2+L+Tl−1, 

go to 4). 
2) If T≤ K, stop; otherwise T= (1+a0)cost[0]+(1+a1)cost[1], 
go to 3). 
3) If T≤ K, c←c+1, stop; otherwise c←c+2, stop. 
4) If T≤ K, K←K−T, cost[i]←max{Ti1, Ti0}−Ti , i=0, 1, L, 
2l−1, go to 5); otherwise,  

B←(A1+Ap+1, A2+Ap+2, L, Ap+A2p), 
cost′[i]←min{cost[i], cost[i+pl]}, i=0, 1, 2, L, pl−1, 
Ti1′=bicost′[i]+bi+lcost′[i+l]+L+bi+(p−1)lcost′[i+(p−1)

l] 
Ti0′=cost′[i]+ cost′[i+l]+L+cost′[i+(p−1)l]−Ti1′, 
Ti′=min{Ti1′, Ti0′}, T′=T1′+T2′+L+Tl−1′,  

go to 6).  
5) For i=0, 1, 2, L, 2l−1, if Ti = Tih, then ai←h, h=0, 1, 
a←(A1, A2), go to 1). 
6) If T′ ≤ K, K←K−T′, c←c+(p−1)l; for i=0, 1, L, pl−1, 
do 

δ(i)←1 if Ti1′≤Ti0′ and ai +ai+pl=1, or Ti1′>Ti0′ and ai 
+ai+pl=0; 

δ(i)←0 if if Ti1′≤Ti0′ and ai +ai+pl=0, or Ti1′>Ti0′ and 
ai +ai+pl=1; 
go to 7); otherwise, c←c+2(p−1)l,  

]}2[{cosmin][cos
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,i=0,1, L, 2l−1, 

a←(A1+A3+L+A2p−1,A2+A4+L+A2p),  
go to 1). 
7) Do  

ai←ai +1 if δ(i)=1 and cost[i] ≤ cost[i+pl], 
ai+pl←ai+pl +1 if δ(i)=1 and cost[i+pl] ≤ cost[i], 

}][cos)1(][cos{min][cos )(
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for i=0, 1,L, 2l−1,  
a←(A1+A2+L+ Ap, A2+A3+L+Ap+1), 

go to 1). 
Finally, the k-error linear complexity ck(s) of s is equal to c. 
In Algorithm 2, cost[i] (cost′[i]) is the minimal number of 
changes in the initial sequence sN necessary and sufficient 
for changing the current element ai (bi) without disturbing 
the results 

 (A1, A2)= (A3, A4)= L=(A2p−1, A2p)    and 
 A1+Ap+1=A2+Ap+2=L= Ap+A2p 

of any previous step. 
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Theorem 2 Let s=(s0, s1, s2, L) be a binary sequence with 
period N=2pn, ２ a primitive root modulo p2, and 0≤ k≤ 
2pn. Then Algorithm 2 computes c, the k-error linear 
complexity of s, in n steps. 

Proof: Obviously, when k=0, Algorithm 2 reduces to 
Algorithm 1. If k>0 then we are allowed to make k (or 
fewer) bit changes in sN in order to reduce the complexity 
c as much as possible. As with Algorithm 1, c only 
increases when (A1, A2) = (A3, A4) = L = (A2p−1, A2p) 
doesn't hold. Therefore, if we can force 
(A1,A2)=(A3,A4)=L=(A2p−1,A2p) at the mth step of 
Algorithm 2 we should do so, since this prevent 
2(p−1)pn−m from being added to c, and the total of all 
remaining possible additions is only 2pn−m. 
Now, suppose that at some step m, the value of cost[i] 
correctly gives the cost of changing ai.  If  
ai=ai+2l=L=ai+2(p−1)l doesn't hold, changing all 1 or all 0 in 
{ai+2(j−1)l, j=1, 2, L, p} will force ai=ai+2l=L=ai+2(p−1)l, 
and hence the cost of forcing ai=ai+2l=L=ai+2(p−1)l is the 
minimum Ti=min{Ti1, Ti0} of the cost  

Ti1=aicost[i]+ai+2lcost[i+2l]+L+ai+2(p−1)lcost[i+2(p−1)l] 
of changing all 1 and the cost  

Ti0=cost[i]+ cost[i+2l]+L+cost[i+2(p−1)l] −Ti1 
of changing all 0. Therefore, the variable 

T=T1+T2+L+Tl−1 
in Algorithm 2 correctly gives the total cost of forcing 

 (A1, A2)= (A3, A4)= L=(A2p−1, A2p). 
Suppose that T≤ K. (1) If ai=ai+2l=L=ai+2(p−1)l doesn't hold 
and Ti1≥Ti0, then we change all 0 in {ai+2(j−1)l, j=1,2,L,p} 
since it has the lower cost, thus forcing ai=ai+2l=L 
=ai+2(p−1)l. Notice that at the end of this step we will let 
a←(A1, A2). If we change ai in step m+1 we have 
effectively restored 1 (in step m) to its previous value. In 
order to maintain ai=ai+2l=L=ai+2(p−1)l in step m, we must 
change all 1 in {ai+2(j−1)l, j=1, 2, L, p} in step m, which 
has a net cost of Ti1−Ti0=max{Ti1,Ti0}−Ti,, and hence 
cost[i] is computed correctly in this case. (2) If ai=ai+2l=L 
=ai+2(p−1)l doesn't hold and Ti1<Ti0, the discussion similar to 
(1) will show that cost[i] is computed correctly in this case. 
(3) If ai=ai+2l=L=ai+2 (p−1)l holds, then Ti=0. Notice that at 
the end of this step we will let a←(A1, A2). If we change ai 
in step m+1, in order to maintain ai=ai+2l=L=ai+2 (p−1)l in 
step m, we must change every ai+2(j−1)l, (j=1,2,L,p) in step 
m, which has a net cost of, 

cost[i]+cost[i+l]+L+cost[i+(p−1)l] 
=Ti1+Ti0=max{Ti1, Ti0}−Ti,  

and hence cost[i] is computed correctly in this case. 
It remains to consider the case T>K. In this case we cannot 
force (A1, A2)= (A3, A4)= L=(A2p−1, A2p). But if we can 
force A1+Ap+1=A2+Ap+2=L=Ap+A2p at the mth step of 

Algorithm 2 we should do so, since this prevent (p-1)pn−m 
from being added to c, and the total of all remaining 
possible additions is only 2pn−m. Denote Bj=Aj+Ap+j, j=1, 2, 
L, p. (1) If bi=bi+l=L=bi+(p−1) l doesn't hold, changing all 
1 or all 0 in {bi+(j-1) l , j=1, 2, L, p} will force 
bi=bi+l=L=bi+(p−1)l, and hence the cost of forcing 
bi=bi+l=L=bi+(p−1)l is the minimum Ti′=min{Ti1′, Ti0′} of 
the cost  

Ti1′=bicost′[i]+bi+lcost′[i+l]+L+bi+(p−1)lcost′[i+(p−1)
l] 
of changing all 1 and the cost 

Ti0′=cost′[i]+ cost′[i+l]+L+cost′[i+(p−1)l] −Ti1′ 
of changing all 0, where bi=ai+ai+pl, hence the cost of 
changing bi is as follows 

cost′[i]=min{cost[i], cost[i+pl]}, i=0, 1, 2, L, pl−1. 
 Therefore, the variable T′=T1′+ T2′+L+Tl−1′ in Algorithm 
2 correctly gives the total cost of forcing 

A1+Ap+1=A2+ Ap+2=L=Ap+A2p. 
Define δ(i+jl)=1 if bi+jl is changed in forcing 
bi=bi+l=L=bi+(p−1)l, otherwise δ(i+jl)=0, for j=0, 1, 2, L, 
p−1, i=0, 1, 2, L, pl−1. 
Now, suppose that T′≤ K. If bi=bi+l=L=bi+(p−1)l doesn't 
hold, then we change all 0 in {bi+(j−1)l, j=1, 2, L, p} if 
Ti1′≥Ti0′, or all 1 in {bi+(j−1)l, j=1, 2, L, p} if Ti1′<Ti0′,  
since it has the lower cost, thus forcing bi=bi+l=L=bi+(p−1)l. 
Notice that at the end of this step we will let 

 a←(A1+A2+L+ Ap, A2+A3+L+Ap+1).  
If we change ai in step m+1 we must change one of ai, ai+l, 
L, ai+(p-1)l in step m. In order to maintain bi=bi+l=L 
=bi+(p−1)l, i.e. ai+ai+pl=ai+l+ai+l+pl=L=ai+(p−1)l+ai+(2p−1)l in 
step m, changing ai+(j−1)l and ai+(j-1)l+pl must happen at the 
same time, j=1, 2, L, p.  
Suppose that Ti1′≥Ti0′, we change all 0 in {bi+(j−1)l= 
ai+(j−1)l+ai+(j−1)l+pl, j=1, 2, L, p} in step m. If bi+(j−1)l= 
ai+(j−1)l+ai+(j−1)l+pl=1, then bi+(j−1)l isn’t change in forcing 
bi=bi+l=L=bi+(p−1)l, hence δ(i+jl)=0. The cost of changing 
ai+(j−1)l and ai+(j−1)l+pl at the same time is 

cost[i+jl]+cost[i+jl+pl] 
=⎟ cost[i+jl]+(−1)δ(i+jl)cost[i+jl+pl]⎜. 

If bi+(j−1)l= ai+(j−1)l+ai+(j−1)l+pl=0, then bi+(j−1)l is changed in 
forcing bi=bi+l=L=bi+(p−1)l, δ(i+jl)=1, and the cost of 
changing bi is as follows cost′[i]=min{cost[i], cost[i+pl]}. 
The net cost of changing ai+(j−1)l and ai+(j−1)l+pl at the same 
time is 

max{cost[i+jl], cost[i+jl+pl]} −min{cost[i+jl], 
cost[i+jl+pl]}=⎟ cost[i+jl]+( −1)δ(i+jl)cost[i+jl+pl]⎜. 

Therefore, the cost of changing ai in step m+1 is the 
minimum  

}][cos)1(][cos{min )(
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of the costs of changing ai+(j-1)l and ai+(j-1)l+pl, j=1, 2, L, p, 
at the same time in step m. Therefore, cost[i] is computed 
correctly in this case. 
The discussion similar to above will show that cost[i] is 
computed correctly when Ti1<Ti0. 
If bi=bi+l=L=bi+(p−1)l holds, then Ti′=0. Notice that at the 
end of this step we will let a←(A1+A2+L+Ap, 
A2+A3+L+Ap+1). If we change ai in step m+1 we must 
change one of ai, ai+l, L, ai+(p-1)l in step m. In order to 
maintain bi=bi+l=L=bi+(p−1)l, i.e. ai+ai+pl=ai+l+ai+l+pl 
=L=ai+(p−1)l+ai+(2p−1)l in step m, changing ai+(j−1)l and 
ai+(j−1)l+pl must happen at the same time, j=1, 2, L, p. 
Since bi+(j−1)l isn’t change in forcing bi=bi+l=L=bi+(p−1)l, 
we have that δ(i+jl)=0. The cost of changing ai+(j−1)l and 
ai+(j−1)l+pl at the same time is 

cost[i+jl]+cost[i+jl+pl] 
=⎟ cost[i+jl]+( −1)δ(i+jl)cost[i+jl+pl]⎜. 

Therefore, the cost of changing ai in step m+1 is the 
minimum  

}][cos)1(][cos{min )(
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pj
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δ   

of the costs of changing ai+(j−1)l and ai+(j−1)l+pl, j=1, 2, L, p, 
at the same time in step m. Therefore, cost[i] is computed 
correctly in this case. 
Finally, we consider the case T ′>k. In this case we cannot 
force A1+Ap+1=A2+Ap+2=L=Ap+A2p. Notice that at the 
end of this step we will let a←(A1+A3+L+ A2p−1, 
A2+A4+L+A2p). If we change ai in step m+1 we have 

effectively restored ∑
=

−+=
p

j
ljii aa

1
)1(2  (in step m). We need 

only change one of {ai+2(j−1)l, j=1, 2, L, p} in step m, 
hence the cost of changing ai is the minimum 

]}2[{cosmin
10

jlit
pj

+
−≤≤

 of the costs of changing ai+2(j−1)l, j=1, 

2, L, p. Therefore, cost[i] is computed correctly in this 
case. 

4. Conclusion 

In this paper, an efficient algorithm for determining the k-
error linear complexity of a binary sequence s with period 
2pn is presented, where 2 is primitive root modulo p2. The 
algorithm computes the k-error linear complexity of s in n 
steps. The algorithm solves partially the open problem by 
Stamp and Martin [6]. 
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