
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

232

Revised Variable Length Interval Batch Rekeying with Balanced
Key Tree Management for Secure Multicast Communications

Joe Prathap, P.M† and Vasudevan,V†

Department of Information Technology,

†Arulmigu Kalasalingam Coll. of Engg., KrishnanKoil, 626 190, India.

Summary
With the evolution of the Internet, multicast communications
seem particularly well adapted for large scale commercial
distribution applications, for example, the pay TV channels and
secure videoconferencing. A key tree approach has been
proposed by other authors to distribute the multicast group key
in such a way that the rekeying cost scales with the logarithm
of the group size for a join or depart request. The efficiency of
this key tree approach critically depends on whether the key
tree remains balanced over time as members join or depart. So
the researchers try to create a balanced tree by applying
merging algorithms for batch join requests and to handle the
batch depart request they extended and created a batch
balanced algorithm. But we found that the algorithm works
well only if the number of joining members is greater than the
number of departing members. In this paper we analyzed
various strategies and extended the Batch balanced algorithm
further by utilizing variable length batch rekeying interval. This
paper analyses the efficiency of the proposed scheme with the
existing schemes and the comparison shows that the proposed
scheme performs better than the existing schemes in terms of
balanced key tree generation and minimizing the number of key
update messages.

Keywords : Multicast security, group key management,
secure group communication, rekeying

1 INTRODUCTION

Multicasting is a type of communication
between computers in a network that enables a computer
to send one stream of data to many interested receivers
without interrupting computers that are not interested.
For these reasons, multicasting has become the favored
transmission method for most multimedia and triple play
applications, which are typically large and use up a lot of
bandwidth. Multicasting not only optimizes the
performance of your network, but also provides
enhanced efficiency by controlling the traffic on your
network and reducing the loads on network devices. This
technology benefits many group communication
applications such as pay-per-view, online teaching, and
share quotes [4], [6].

 Before these group oriented multicast
applications can be successfully deployed, access control
mechanisms [7], [9], [13], [22] must be developed such
that only authorized members can access the group

communication. The only way to ensure controlled
access to data is to use a shared group key, known only
to the authorized members, to encrypt the multicast data.
As group membership might be dynamic, this group key
has to be updated and redistributed securely to all
authorized members whenever there is a change in the
membership in order to provide forward and backward
secrecy [5] [8]. Forward secrecy means that a departing
member cannot obtain information about future group
communication and backward secrecy means that a
joining member cannot obtain information about past
group communication. We assume the existence of a
trusted entity, known as the Group Controller (GC),
which is responsible for updating the group key. This
allows the group membership to scale to large groups. A
number of scalable approaches have been proposed and
one in particular, the key tree approach [2], [3], [10],
[20], [23], [24], is analyzed in detail and extended in this
paper. In short, the key tree approach employs a
hierarchy of keys in which each member is assigned a set
of keys based on its location in the key tree. The
rekeying cost of the key tree approach increases with the
logarithm of the group size for a join or depart request
[16], [17], [18]. The operation for updating the group key
is known as rekeying and the rekeying cost denotes the
number of messages that need to be disseminated to the
members in order for them to obtain the new group key.

Individual rekeying, that is, rekeying after each
join or depart request, has two drawbacks [12], [14],[18].
First, it is inefficient since each rekey message has to be
signed for authentication purposes and a high rate of
join/depart requests may result in performance
degradation because the signing operation is
computationally expensive. Second, if the delay in a
rekey message delivery is high or the rate of join/ depart
requests is high, a member may need a large amount of
memory to temporarily store the rekey and data
messages before they are decrypted. Batch rekeying
techniques have been recently presented as a solution to
overcome this problem. In such methods, a departed user
will remain in the group longer and a new user has to
wait longer to be accepted. All join and leave requests
received within a batch period are processed together at
the same time. A short rekey interval does not provide
much batch rekeying benefit, whereas a long rekey

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

233

interval causes a delay to joining members and increases
vulnerability from departing members who can still
receive the data.
 The efficiency of the key tree approach
critically depends on whether the key tree is balanced
[21], [24], [25]. A key tree is considered balanced if the
distance from the root to any two leaf nodes differs by
not more than 1. For a balanced key tree with N
members, the height from the root to any leaf node is
logkN, where k is the out degree of the key tree, but, if
the key tree becomes unbalanced, then the distance from
the root to a leaf node can become as high as N. In other
words, this means that a member might need to perform
N - 1 decryptions in order to get the group key.

Recently, two Merging Algorithms suitable for
batch join events for combining subtrees together was
proposed [18]. These two Merging Algorithms not only
balance the key tree, but have lower rekeying costs
compared to existing algorithms. In order to additionally
handle departing members, the above algorithm extend
to a Batch Balanced Algorithm [1] where the tree height
adapts to the change in the group membership. However,
this requires a reorganization of the group members in
the key tree. But this Batch Balanced Algorithm
performs significantly better than existing algorithms
only when the number of joining members is greater than
the number of departing members or when the number of
departing members is around N=k, with no joining
members. Our approach extends this algorithm further by
using two phase batch rekeying interval. This will try to
avoid the number of departing members exceeds the
number of joining members as much as possible. And in
turn lead to improve the overall performance when
compared with existing work.

2 BACKGROUND
2.1 Key Tree Approach

In a typical key tree approach [3], [20], [23] as
shown in Fig. 1a, there are three different types of keys:
Traffic Encryption Key (TEK), Key Encryption Key
(KEK), and individual key. The TEK is also known as
the group key and is used to encrypt multicast data. To
provide a scalable rekeying, the key tree approach makes
use of KEKs so that the rekeying cost increases
logarithmically with the group size for a join or depart
request. An individual key serves the same function as
KEK, except that it is shared only by the GC and an
individual member.

Fig 1.(a) key tree structure (b)ID assignment
 In the example in Fig. 1a, K0 is the TEK, K1 to
K3 are the KEKs, and K4 to K12 are the individual keys.
The keys that a group member needs to store are based
on its location in the key tree; in other words, each
member needs to store 1+logkN keys when the key tree is
balanced. For example, in Fig. 1a member U1 knows K0,
K1, and K4 and member U7 knows K0, K3, and K10.
The GC needs to store all of the keys in the key tree.
 To uniquely identify each key, the GC assigns
an ID to each node in the key tree. The assignment of the
ID is based on a top-down and left-right order. The root
has the lowest ID, which is 0. For a node with an ID of m,
its parent node has an ID of (m-1)/k], with its children’s
IDs ranging from km+1 to km+k, as shown in Fig. 1b.
 When a member is removed from the group, the
GC must change all the keys in the path from this
member’s leaf node to the root to achieve forward
secrecy. All the members that remain in the group must
update their keys accordingly. If the key tree is balanced,
the rekeying cost for a single departing member is
klogk(N)-1 messages. For example, suppose member U9
is departing in Fig. 1a. Then, all the keys that it stores
(K0 and K3) must be changed, except for its individual
key.
 If backward secrecy is required, then a join
operation is similar to a depart operation in that the keys
that the joining member receives must be different from
the keys previously used in the group. The rekeying cost
for a single joining member is 2logkN messages when the
key tree is balanced.

The efficiency of the key tree approach
critically depends on whether the key tree remains
balanced. For a balanced key tree with N leaf nodes, the
height from the root to the any leaf node is logkN.
However, if the key tree becomes unbalanced, the
distance from the root to a leaf node can become as high
as N. and if it is unbalanced we can’t predict the number
of rekeying messages also.
2.2. Batch Rekeying Approach

Before we proceed our work, we introduce
some notations and definitions used in this paper. We use
“minimum height” to mean the minimum number of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

234

levels in a tree or subtree from the root to any leaf node.
We define the following variables:
ST
J
D
h
HMIN
HMAX
HINSERT
BIMIN
BIMAX
BRI

Sub Tree
Number of joining members
Number of departing members
Height of key tree(1+logkN)
Minimum height of the leaf node
Maximum height of the leaf node
HMIN of ST_A-HMAX of ST_B
Minimum Batch rekeying Interval
Maximum Batch rekeying Interval
Batch rekeying interval

Marking Algorithms have been proposed to
update the key tree and generate, at the end of each rekey
interval, a rekey subtree with a collection of join and
depart requests. Several variations of Marking
Algorithms have been proposed [17], [18]. We refer to
the algorithm in [17] as Marking Algorithm 1. For this
algorithm, there are four cases to consider. If J=D, then
all departing members are replaced by the joining
members. If J < D, then we pick the J shallowest leaf
nodes from the departing members and replace them
with the joining members. If J >D and D=0, then the
shallowest leaf node is selected and removed. This leaf
node and the joining members form a new key tree that is
then inserted at the old location of the shallowest leaf
node. Next, if J >D and D > 0, then all departing
members are replaced by the joining members. The
shallowest leaf node is selected from these replacements
and removed from the key tree. This leaf node and the
extra joining members form a new key tree that is then
inserted at the old location of the removed leaf node.
Last, the GC generates the necessary keys and distributes
them to the members.
 The algorithm in [18] is referred to here as
Marking Algorithm 2. There are only three cases to
consider for this Marking Algorithm. Two of them, J=D
and J<D, are similar to the one mentioned above, except
that the nodes of departing members that are not replaced
by the joining members are marked as null nodes. For
J>D, all departing members are replaced by the joining
members. If there are null leaf nodes in the key tree,
then they are also replaced by the joining members,
starting from the null nodes with the smallest node ID. If
there are still extra joining members, then the member
with the smallest node ID is removed and it is inserted as
a child, together with k-1 joining members at its old
location. The next smallest node ID member is selected
if there are more joining members. This insertion
continues until all of the joining members have been
inserted into the key tree. As before, the GC distributes
the new key to the members.

3 BATCH REKEYING ALGORITHM

We now propose two Merging Algorithms to

combine subtrees together in a way that is suitable for
batch join events. To handle all cases such as depart or
both join and depart requests, we then extend these two
Merging Algorithms into a Batch Balanced Algorithm.
The two Merging Algorithms are used to combine two
subtrees: ST_A and ST_B. We assume that ST_A has a
greater height than ST_B and both subtrees are of the
same out degree k.

3.1 Merging Algorithm 1

This algorithm is only used when the difference
in the maximum height between the two subtrees ST_A
and ST_B is greater than or equal to 1.We now describe
Merging Algorithm 1. The criteria for choosing Merging
Algorithm 1 is when the difference between HMAX_ ST_ A
and HMIN_ ST_ B is greater than 1 and when the difference
between HMAX_ ST_ A and HMAX_ ST_ B is greater than or
equal to 1. If both of these conditions are fulfilled, then
the algorithm calculates HINSERT. The following steps are
then performed:
Step 1. For k > 2, the algorithm searches for an empty
child node in ST_A at either level HINSERT or level
HINSERT-1. If HINSERT=0, then levels 0 and 1 are searched.
If such a node exists, then the algorithm inserts ST_B as
the child of that particular key node.
Step 2. If an empty node is not found in Step 1, mark a
suitable key node in ST_A at level HINSERT for insertion
as follows: If HINSERT =0, then a suitable key node at
level 1 is marked. The marked key node is given by the
one with the greatest number of leaf nodes at level
HMIN_ST_A.
Step 3. For k > 2, when an empty node is not found in
Step 1, the algorithm searches the root of ST_B for an
empty node. If this exists, then the algorithm inserts the
marked key node from Step 2 as the child of ST_B and
inserts ST_B at the old location of the marked key node.
Step 4. For k = 2 or k > 2, if Steps 1 to 3 have not
inserted ST_B into ST_A, then the algorithm creates a
new key node at the old location of the marked key node
(from Step 2) and inserts the marked key node and ST_B
as its children.

Finally, the GC may need to multicast at most
one update message to inform the affected members.
 3.2 Merging Algorithm 2

We now describe our Merging Algorithm 2 [18].
This algorithm is only used for combining subtrees
whose height difference is 0 or equal to 1. The criteria
for using Merging Algorithm 2 are when the difference
between HMAX_ST_A and both HMIN_ST_B and HMAX_ST_B

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

235

is 0 or equal to 1. The algorithm performs the following
steps
Step 1. For k > 2, the algorithm searches the root of
ST_A for an empty child key node. If it exists, then the
algorithm inserts ST_B at the empty child key node.
Step 2. For k = 2 or when Step 1 is not valid for k > 2,
the algorithm creates a new key node at the root and
inserts ST_A and ST_B as its children.
 The GC needs to multicast at most one update
message to all existing members. After updating the
affected node IDs, the members can identify the set of
keys that they need in the rekey messages.

3.3 Batch Balanced Algorithm

We now show how our two Merging
Algorithms can be extended to produce an algorithm that
we call Batch Balanced Algorithm that encompasses
both joining and departing members.
There are six steps in our Batch Balanced Algorithm.
1. Identify and mark all key nodes that need to be
updated. These key nodes are on the ancestor paths from
each departing member to the root.
2. Remove all marked key nodes. After removal, there
are only two types of element left: the remaining subtrees
and the joining members.

3. Classify all siblings of the departing members as
joining members since all of the KEKs that they store
cannot be used.
 4. Group the joining members into one or many subtrees,
each with k members. If there are remaining
members left, then they are grouped into another subtree
of between 2 and k - 1 members unless there is only one
member left. If there is only one member left, then treat
it as a single-node subtree.
5. Starting from the subtree with the minimum height,
compare it with another subtree with the next
minimum height and if the Merging Algorithm 1 criteria
are met, combine them using Merging Algorithm 1, else
combine them using Merging Algorithm 2. Repeat this
process until there is only one key tree.
6. Construct the update and rekey messages and
multicast them to the members.

For clarity, we illustrate it with an example.
Assume that we have a key tree with 16 members.
Suppose members U11 and U15 are departing from the
group and six new members, U17 to U22, are joining the
group.

All of the key nodes in the path from the departing
members to the root are marked and removed (Steps 1
and 2). The siblings of departing members U12 and U16
form a new subtree, ST7, since the KEKs that they store
are unusable (Step 3). The joining members form one or
more subtrees of k members (Step 4). These usable

subtrees ST1 to ST7 are identified as shown in Fig. 2.In
Step 5, we start with the minimum-height subtrees and
merge them. Thus, ST2 forms a subtree with ST3, ST4
forms a subtree with ST5, and ST6 forms a subtree with
ST7. Then, the resulting subtree of ST2 and ST3 is
combined with the resulting subtree of ST4 and ST5.

Fig. 2. Steps 1 to 4 of the Batch Balanced Algorithm.

Fig. 3. Resulting key tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

236

Point at which J = D occur

This resulting subtree, in turn, forms another subtree
with the resulting subtree of ST6 and ST7. Finally, the
last two subtrees form a single key tree, as shown in Fig.
3. The GC sends out the update messages to inform the
members of their new location. Those members that need
to receive the update messages are U12 and the members
in ST2 and ST3, which means that a total of three update
messages is needed. In this example, we assume that
member U16 and subtree ST1 are left intact at their old
location. If their locations are changed, then two extra
update messages are needed. For ST4, ST5, and ST6, no
update message is needed since the members in the
subtrees are newly joining members. At the same time,
the GC can multicast the rekey messages to the members.
The total rekeying cost is 20 messages.
If we use Marking Algorithm 1 [17] or Marking
Algorithm 2 [18] in a similar situation, then Marking
Algorithm 1 has the same rekeying cost, but it ends up
with an unbalanced key tree. Although Marking
Algorithm 2 can maintain a balanced key tree, it needs
28 rekey messages. From this, we can see that
reorganizing the group members leads to saving on
rekeying costs.

4 REVISED TWO PHASE BATCH
REKEYING ALGORITHM

The batch rekeying with variable interval is
more suitable to the network than that with fix interval,
because the batch rekeying with variable interval leads to
the steady rekey traffic and cost of rekey [15]. Keeping
this point in mind, we are going to apply variable batch
rekey interval for rekeying. It has two threshold interval
level; lower threshold called as BIMIN, which means
minimum interval at which rekeying can occur. Higher
threshold called as BIMAX, which means maximum batch
rekey interval. The exact batch rekey interval will be
called as BRI , and in the range of,

 BIMIN ≤ BRI ≥ BIMAX (1)

Based on the multicast application & its
required security level, we can choose the threshold
limits BIMIN & BIMAX. Its operation as follows: the
current batch rekey interval was chosen based on the
following condition. The algorithm will wait until the
minimum batch interval BIMIN to occur. After reaching
the time interval BIMIN, now the algorithm checks
whether J >= D condition will achieved or not. If the
condition satisfied then BIMIN will be considered as the
Batch rekey interval BRI. If the condition will not occur
then for each join or depart request the system will
continuously check if the J>=D condition achieved or not.
And if it happened means that particular current time will
be taken as the current BRI. But sometimes the condition
J >= D will not occur for a long period of time and it will

reach the maximum batch rekey limit BIMAX. Then
BIMAX will be considered as the current BRI. Thus we
are trying to avoid the condition J < D as much as
possible, and the performance of the algorithm improved
further. After finding the BRI the group controller will
apply the batch balanced algorithm. The above
possibilities will be explained by various cases shown
below.

Ca
se(i)

Ca
se(ii)

Ca
se(iii)

Ca
se (iv)

Fig 4. Various possibilities for calculating BRI

In fig 4, various cases for calculating batch
rekeying interval was depicted and each cases explained
below. In Case(i) the group will receive the join
requests and depart requests until it receive the BIMIN.
When reaching BIMIN it will compare the total number of
join and depart requests. If it found that J > D or J =D
then the BIMIN considered as a batch rekey interval and
the batch balanced algorithm applied. In case (ii) & (iii),
the group will receive the join requests and depart
requests upto BIMIN, and check whether J >= D condition
occur or not and found that it will not happened. So it
continuously receive join & depart requests and check
for the same condition. If it happened then that particular
moment will be considered as the current BIR and the
batch balanced algorithm applied. In case (iv) also the
above conditions applied. But the condition J >= D will
never occur within the threshold limits. So the BIMAX
considered as the current batch rekey interval BIR and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

237

the batch balanced algorithm applied. To determine the
batch interval we should consider two factors: the
average delay of users request response and the batch
traffic which is determine by the number of users request
in batch interval. Also, while choosing the threshold
limits BIMIN & BIMAX care should be taken so that we
can preserve the forward and backward secrecy
optimally.

4.1. Update Messages
In order for the members to identify the keys

that they need after the key tree has been reorganized, the
GC needs to inform the members of their new location
[11]. An update message consists of the smallest node ID
of the usable key tree m and the new node ID m’. With
the new node ID m’, the members can update the
remaining keys m0 by using the following function:

f(m0)= K x (m’-m)+ m0 (2)
where x denotes the level of the usable key tree.

5. PERFORMANCE EVALUATION
 In this section, we study the performance of our
proposed algorithms and compare them with the existing
batch balanced Algorithm. We consider four
performance metrics:

• rekeying cost,
• update cost,
• minimum and maximum height in the key tree,

and
• Key storage.
The rekeying cost denotes the total number of rekey

messages that need to be sent to all authorized group
members in order for them to learn the new group key. A
higher rekeying cost means that more bandwidth is
needed for the transmission. The update cost denotes the
total number of update messages that need to be sent to
all affected members after the key tree has been
reorganized in order for them to identify the keys that
they need. As for the minimum and maximum height,
they affect the members’ key storage and, thus, the
number of decryptions needed by each member and may
even increase the rekeying costs, too. Last, the key
storage denotes the number of keys each member need to
store.
 We ran our algorithms on a Linux terminal with
a 512 Mbyte RAM on a 2 GHz processor. To give an
indication of runtime, for a tree size of 4,096 members,
runtimes are typically in the range of 1 to 5 sec and, for a
tree size of 65,536 members, runtimes are typically in the
range of 1 to 40 sec, both results being less than or equal
to approximately 2,000 departing and joining members.

5.1. Batch Balanced Algorithm
5.1.1 Rekeying Cost

A theoretical analysis for the rekeying cost of
the Batch Balanced Algorithm was already done in
[1].we have built a simulator for the algorithm. The
simulator first constructs a balanced key tree with 1,024
members for k = 2. Departing members are either
randomly selected. Joining members are then inserted
into the key tree and the rekeying costs are calculated.

The theoretical analysis and the simulated
results match so well that we could not distinguish
between the two. The highest rekeying cost occurs when
the number of departing members approaches half the
group size, which means that most or all the key nodes in
the key tree cannot be used.

Fig.5. Rekeying costs for Batch Balanced Algorithm.

If the departing members are randomly selected,

then we obtain the mean rekeying costs that lie between
the theoretical best and worst cases[1]. Generally, we can
predict the rekeying costs for a key tree of any outdegree
k if we are able to group the members according to their
departing probability since it is based purely on the
number of joining members rather than the number of
departing members. However, if the departing members
are spread around as in the worst case, the highest
rekeying cost happens when the number of departing
members is around N=k since most or all of the KEKs
that the members store cannot be used.

Fig. 5 shows the rekeying costs for the batch
balanced algorithm for k = 2.

5.1.2 Update Cost

For the Batch Balanced Algorithm, there are
some overheads incurred since we reorganize the group
members in the key tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

238

Fig. 6 shows the total update messages that need to be
sent to the remaining group members, including the
siblings of the departing members, in order for them to
update their new key node IDs. As expected, the update
messages are purely dependent on the number of
departing members. The number of update messages
increases as the number of departing members increases
to around half the group size. This is because more key
nodes in the key tree are affected by the departing
members. However, once the number of departing
members exceeds half the group size, the number of
update messages decreases since there are fewer
members left in the group. If we assume that a key is 128
bits long and the node ID is 20 bits (that is, up to 220
members), then a rekey message is at least 148 bits,
excluding other overheads. An update message consists
of the old node ID and the new node ID and, ignoring
overheads, is therefore 40 bits long. In other words, a
rekey message is 3.7 times the length of an update
message; thus, the maximum update cost is equivalent to
109 rekey messages. Fig. 7 shows the total number of
update messages that need to be multicast to the
members for k = 4.

We can see that there is a sharp increase in
update messages compared with a binary key tree. This
is because, for every departing member, the GC needs to
send three update messages to its siblings so that they
can update the new location. The highest number of
update messages occurs when the number of departing
members is in the region of N/k.

5.1.3 Minimum and Maximum Height

Fig. 8. (a) Minimum and (b) maximum height for the Batch Balanced
Algorithm (k=2)

Fig. 8. shows the minimum and maximum
heights for the Batch Balanced Algorithm. Regardless of
the number of joining or departing numbers, both
minimum and maximum height adapt to the changes in
the group membership.

Fig. 6. Update messages for the Batch Balanced Algorithm (k=2).

Fig. 7. Update messages for the Batch Balanced Algorithm (k=4).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

239

Fig. 9. (a) Minimum and (b) maximum height in the Batch Balanced
Algorithm (k=4)

Fig. 9 shows the minimum and maximum
heights for the Batch Balanced Algorithm for k = 4. Both
the minimum and maximum height have similar output.

5.1.4 Key Storage

Table 1 shows the minimum and maximum key
storage for the Batch Balanced Algorithm.

Table 1

Minimum and Maximum Key Storage for
Batch Join and/or Depart Events

 Batch balanced algorithm
Min key storage └log k(N+J-D)┘
Max key storage └log k(N+J-D)┘

6 DISCUSSION

6.1 Revised batch rekeying algorithm
 From the above simulations we observed that
the algorithm works well only when J >= D. Our
proposed revised variable length batch rekeying
algorithm will try to avoid this condition to occur, so
automatically leads to the minimum rekeying cost,
update cost. But, the little overhead occur due to the
batch rekey interval calculation. However this drawback
can be shadowed due to its overall efficiency.

6.1 Optimization

From the above simulations, we observe that the

Batch Balanced Algorithm has identical rekeying costs
compared to existing algorithms when the number of
joining members and the number of departing members
are comparable. Therefore, one optimization that we can
apply to our Batch Balanced Algorithm is not to
reorganize the members in the key tree for the following
condition:

D ≤ J ≤ (D-Dmin) + kDmin (3)
where Dmin is the number of departing members at the
minimum height.

For the case where J is equal to D, we replace
all D departs by J joins. If J is greater than D and
provided that J is smaller or equal to [(D-Dmin)+kDmin],
then we replace all [D-Dmin] departs at the maximum
height with [D-Dmin] joins. The remaining joining
members are split across the Dmin nodes.

Fig. 10 shows the update messages for our
revised Batch Balanced Algorithm for k = 2. We can see
that there are some cases where no update message is
needed since there is no reorganization in the group. But,
The rekeying costs still remain the same.

Fig. 10. Update message for the revised Batch Balanced
Algorithm(k=2).

There is no way to maintain a balanced key tree
without reorganizing the key tree when the number of
departing members is greater than the number of joining
members. So , it is necessary to avoid the condition J<D
as much as possible.

By reducing the number of update messages we
can reduce rekeying cost. This will achieved only by
avoiding the condition J<D as much as possible. This can
be achieved by our proposed work.

6 CONCLUSION

In this paper, we have presented revised
variable length batch rekeying algorithm along with

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

240

batch balanced algorithm. This algorithm tries to
minimize the difference in height in the key tree without
adding extra network costs. However, the algorithms
require the GC to update the affected members on their
node position by using update messages also it need to
calculate its rekey interval. By minimizing the
differences in height, we minimize the number of key
storage and decryptions needed by each member. This is
critical for terminals with limited computation and
storage. Furthermore, reducing the number of
decryptions can help to reduce the energy consumption,
which, in turn, leads to battery saving. For batch join
events, the way the joining members are inserted has a
significant effect on the key tree, especially when there
are a large number of join requests in a batch. The key
tree can become unbalanced even if the insertion is at the
minimum height. Existing algorithms do not
simultaneously consider both the balancing of key tree
and rekeying costs and therefore lead to either an
unbalanced key tree or high rekeying costs. Our
proposed Algorithm provide a good compromise
compared to existing algorithms, producing a balanced
key tree with low rekeying costs.. As for other events,
our Batch Balanced Algorithm outperforms existing
algorithms when the number of joining members is
greater than the number of departing members and when
the number of departing members is around N=k with no
joining member. However, our algorithm try to avoid the
condition J < D as much as possible and provide optimal
solution in terms of rekeying cost, update messages. We
further observe that, if we are able to group the members
according transmission error rate than in conventional
environments [19]. to their departing probability, then we
are able to predict the rekeying costs based on the
number of joining members. However, if the departing
members are spread evenly across the key tree, then the
highest rekeying cost happens at around N=k since most
or all of the KEKs that the members store cannot be used.

REFERENCES
[1] Wee Hock Desmond Ng, Michael Howarth, Zhili Sun, and

Haitham Cruickshank, ”Dynamic Balanced Key Tree
Management for Secure Multicast Communications,” IEEE
Trans. Computers, vol.56, no. 5, pp.590-605, May 2007.

[2] C. Wong, M. Gouda, and S. Lam, “Secure Group
Communication Using Key Graphs,” IEEE/ACM Trans.
Networking, vol. 8, pp. 12- 23, Feb. 2000.

[3] D. R. Stinson and T. van Trung, “Some new results on key
distribution patterns and broadcast encryption,” Designs,
Codes and Cryptography, vol. 14, no. 3, pp. 261–279,
1998.

[4] S. Paul, Multicast on the Internet and Its Applications.
Kluwer Academic, 1998.

[5] U. Varshney, “Multicast over Wireless Networks,” Comm.
ACM, vol. 45, no. 12, pp. 31-37, Dec. 2002.

[6] U. Varshney, “Multicast Support in Mobile Commerce
Application,” Computer, vol. 35, no. 2, pp. 115-117, Feb.
2002.

[7] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Noar, and
B. Pinkas, “Multicast Security: A Taxonomy and Efficient
Constructions,” Proc. IEEE INFOCOM, vol. 2, pp. 708-
716, Mar. 1999.

[8] H. Harney and C. Muckerhirn, “Group Key Management
Protocol (GKMP) Specification,” IETF RFC 2093, July
1997.

[9] D.M. Wallner, E.J. Harder, and R.C. Agee, “Key
Management for Multicast Issues and Architectures,” IETF
RFC 2627, June 1999.

[10] D. Balenson, D. McGrew, and A. Sherman, “Key
Management for Large Dynamic Groups: One-Way
Function Trees and Amortized Initialization,” Internet
Draft, draft-irtf-smug-groupkeymgmt-oft- 00.txt, Aug.
2000.

[11] M. Valdvogel, G. Caronni, D. Sun, N. Weiler, and B.
Plattner, “The Versakey Frameworks: Versatile Group
Key Management,” IEEE J. Selected Areas in Comm.
(JSAC), vol. 17, no. 9, pp. 1614-1631, Sept. 1999.

[12] M.P. Howarth, S. Iyengar, Z. Sun, and H. Cruickshank,
“Dynamics of Key Management in Secure Satellite
Multicast,” IEEE J.Selected Areas in Comm. (JSAC), Feb.
2004.

[13] S. Mittra, “Iolus: A Framework for Scalable Secure
Multicasting,” Proc. ACM SIGCOMM, vol. 27, pp. 277-
288, Sept. 1997.

[14] B.DeCleene et al., “Secure Group Communication for
Wireless Networks,” Proc. Military Comm. Conf.
(MILCOM), Oct. 2001.

[15] A. Perrig, “Efficient Collaborative Key Management
Protocol for Secure Autonomous Group Communication,”
Proc. Int’l Workshop CrypTEC, 1999.

[16] X.S. Li, Y.R. Yang, M. Gouda, and S. Lam, “Batch
Rekeying for Secure Group Communications,” Proc.
10th Int’l WWW Conf., May 2001.

[17] S. Setia, S. Koussih, and S. Jajodia, “Kronos: A Scalable
Group Rekeying Approach for Secure Multicast,” Proc.
IEEE Symp. Security and Privacy, 2000.

[18] X.B. Zhang, S. Lam, D.Y. Lee, and Y.R. Yang, “Protocol
Design for Scalable and Reliable Group Rekeying,”
IEEE/ACM Trans. Networking, vol. 11, pp. 908-922, Dec.
2003.

[19] Mingyan Li, R. Poovendran and C. Berenstein, ”Design of
Secure Multicast Key Management Schemes With
Communication Budget Constraint” IEEE
Communications Letters, vol. 6, no. 3, pp. 108-110, Mar.
2002

[20] J. Pegueroles and F. Rico-Novella, “Balanced Batch LKH:
New Proposal, Implementation and Performance
Evalution,” Proc.IEEE Symp. Computers and Comm.
(ISCC), June 2003.

[21] P.P.C. Lee, J.C.S. Lui, and D.K.Y. Yau, “Distributed
Collaborative Key Agreement Protocols for Dynamic Peer
Groups,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), Nov. 2002.

[22] A.M. Eskicioglu, “Multimedia Security in Group
Communication: Recent Progress in Key Management,
Authentication and Watermarking,”ACM Multimedia

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

241

Systems J., special issues on multimedia security, pp. 239-
248, Sept. 2003.

[23] W. Ng and Z. Sun, “Multi-Layers LKH,” Proc. IEEE Int’l
Conf. Comm. (ICC), May 2005.

[24] M.J. Moyer, J.R. Rao, and P. Rohatgi, “Maintaining
Balanced Key Trees for Secure Multicast,” Internet
Research Task Force (IRTF), Internet draft, draft-irtf-
smug-key-tree-balance-00.txt, June 1999.

[25] W.H.D Ng, H. Cruickshank, and Z. Sun, “Scalable
Balanced Batch Rekeying for Secure Group
Communication,” Elsevier Computers and Security, vol.
25, pp. 265-273, June 2006.

Joe Prathap P M received the
B.E. and M.E. degree in Computer
Science & Engineering from Anna
University in 2003 and 2005. He
has registered for his Ph.D and has
published papers in national and
international conference, in the
area of multicast security. He is
currently a senior lecturer at
Kalasalingam University. He is a
member of ISTE, India.

 Dr. V Vasudevan obtained his
Ph.D degree from Madurai Kamaraj
University, in 1991, He is working
as a Senior Professor and Head in
the Department of Information
Technology. He has 25 years of
teaching experience. He is guiding
many research scholars and has
published many papers in national

and international conference and in many international
journals. He has visited many universities in UK. He is a
member of ISTE, India.

