
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

255

Manuscript received April 5, 2008

Manuscript revised April 20, 2008

What Makes APIs Difficult to Use?

Minhaz Fahim Zibran

University of Calgary, 2500 University Drive NW, Calgary, Canada

Summary
Use of APIs is an inseparable part of software development today.
But programmers often find difficulties in using those APIs in
client code [27]. This reduces programmers' productivity as well
as quality of the client code [30]. Therefore, APIs should be
implemented to have high usability, and to this extent a good
understanding of what makes APIs difficult to use demands the
foremost importance. I reviewed existing literature in this area
and identified significant factors that put barriers on usability of
the APIs.

In presenting the findings this paper makes two contributions: (1)
The results would be useful for the API designers and developers
to produce more usable APIs for the community, (2) The findings
indicate further research scope in this area, which would be
interesting to the researchers.
Keywords:
Application programming interface, API design, API usability

1. Introduction

In the '70s and '80s if a programmer wanted to create
software, he or she had to write pretty much everything
from the scratch. But with the progress of technology and
software engineering reusable components, frameworks,
and API libraries have been developed. As a result, the
process of creating software has changed considerably:
instead of creating functionality, much of today's software
engineering is about integrating existing functionality or
repacking it using the APIs [14].

Programmers often find difficulties in using APIs, which
reduce their productivity [30] and deteriorate quality of the
client code. So, usability of APIs demands increasing
interest these days than in the past. A major purpose of
APIs is to increase reusability of codes. But, if an API is
not usable, it cannot be reusable. There are thousands of
times more people using an API than designing it [9].
Once an API is deployed, it is hard to change, because any
change may break the client code necessitating
corresponding changes in all applications that calls that
API. Practically the number of such applications is not
small. Hence, the design phase of an API is the most
appropriate time to take into account the usability issues.
Joshua Bloch [4] expresses more conservative argument in
this regard, “Public APIs are forever – one chance [before
release] to get it right”. Therefore, API designers and

developers need a good understanding on what makes the
APIs difficult to be used by programmers (users).

Not much work has been done in the area of API usability
[5]. Most of the works done till date are focused on design
of more sophisticated APIs aiming to increase their power
[28], modular implementation [10], tailorability [8] and so
on. Some design guidelines are also proposed [4, 14].
However, a few researchers focused to address the API
usability issues [1, 18]. Studying the existing literature, I
identified a set of important factors that affects the
usability of APIs. This paper presents all these findings. A
complete review of existing literature is very hard, if not
impossible. Therefore, the set of factors presented in this
paper may not be complete. Further research in the area
should be useful to add more. Identification of potential
factors affecting usability of APIs would be useful for API
designers and developers to implement more usable APIs.

The remaining of the paper is organized as follows. In
section 2, I discuss previous works relevant to API
usability. Findings of my study are presented in section 3.
Finally, I conclude the paper in section 4 with some
remarks and future research direction.

2. Related Work

Works previously done in the area of API usability can
roughly be classified into three categories: some proposed
design recommendations, some proposed API usability
measurement techniques, and some designed or
implemented third party tools to help using APIs.

2.1 Design Guidelines

Michi Henning [14] using relevant examples showed that
API design matters in producing useful and usable APIs.
Ken Arnold [1] also addressed the importance of usability
of APIs reminding that programmers who use the APIs to
write client code are also human beings, and so human
factors also apply to APIs. McLellan and et al. [18]
conducted a case study to observe how usability of APIs
affects programmers’ job. Using the lessons learned from
the literature, field observations, and the case study they
proposed some guidelines for building more usable APIs.
Joshua Bloch [4] presented the importance of designing
good APIs and proposed a number of guidelines to attain

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

256

this goal. Jeffrey Stylos and Steven Clarke [27] conducted
a comparative study to asses the usability of parameterized
constructors as opposed to parameterless default
constructors. Brian Ellis and et al. [9] performed a
quantitative user study comparing the usability of factory
pattern and constructors in instantiating an object.
Architectural design guidelines [3, 8, 22, 23, 25, 29] for
frameworks and applications proposed by researchers also
indicate some API usability issues.

2.2 Measuring API Usability

Steven Clarke and Curtis Becker [6] proposed 12 cognitive
dimensions for describing and measuring API usability.
Chris Bore and Sarah Bore [5] proposed 7 measures for
profiling usability of APIs. Jeffrey Stylos and Brad Myers
[28] map the space of API design decisions and API
quality attributes.

2.3 Tool Support

In order to help developers understand API usages and
write client code more effectively Tao Xie and Jian Pei
developed an API usage mining framework and its
supporting tool called MAPO [30]. Reid Holmes and et al.
presents Strathcona [16], a tool, which provides useful
examples matching heuristically the structure of the source
code (that the developer is writing) to a repository of
source code that uses the API. David Mandelin and et al.
presented a tool, PROSPECTOR [17], which
automatically synthesizes API client code to help
programmers use APIs more easily. CatchUp! [13] and
Diff-CatchUp [31] are tools developed to minimize the
difficulties of changing client code due to change or
evolution of the underlying APIs. Another such tool is
presented by Ittai Balaban and et al. [2].

3. Findings

A good API makes doing simple things easy and difficult
things possible. A usable API should be easy to use and
hard to misuse [4]. Functional correctness, functional
coverage and performance (in terms of resource utilization,
speed, etc.) are the prerequisite for any API to be useful. A
useful API is usable if it has 5 characteristics: (1) easy to
learn, (2) easy to remember, (3) easy write client code, (4)
easy to interpret client code, and (5) difficult to misuse.
Factors affecting these five characteristics and
consequently usability of APIs are discussed below.

3.1 Complexity

Complex APIs are difficult to learn, remember, and use
correctly. If the API provides a huge set of functions,
programmers find difficulty in choosing the appropriate

one to use. For instance, Unix kernel provides wait(),
waitpid(), wait3(), wait4(). But wait4() function is
sufficient as it can be used to implement functionality of
other three. Another good example may be the ‘string’ and
‘cstring’ classes of C++ [14].

However, too less functionality also limits the usability of
the APIs. Use of abstraction reduces complexity and
transparency, while decreases flexibility [23]. So,
insensible balance between complexity and flexibility
reduces usability. In this respect the recent idea of
progressive disclosure [1, 19] may be useful. Conceptual
complexity and trickiness in the architecture of the APIs
also appear difficult for developers to learn and use them.
For example, the concerns about multiple inheritance,
copy constructors, destructors, friend functions, virtual
functions, virtual classes, and such so many tricky
concepts make C++ harder to learn and use compared to
simple C or Java.

3.2 Naming

The naming scheme used in APIs much affect its usability.
If appropriate names of methods, classes or variables are
not consistently used throughout the API, or if the names
are not self- documenting, then the API becomes difficult
to use [4, 14]. Abbreviated names (Hungarian notations)
are less comprehensive than camel case names.
Abbreviated names don't make much sense to a
programmer new to the domain or code-base. For this
reason Microsoft's MFC library is difficult to use, as
opposed to Java APIs. Moreover, the naming conventions
recommended for Java programmers, such as, a class name
should start with a capital letter, if consistently used,
increases readability of the code. Because seeing a name
beginning with a capital letter, a programmer new to the
code-base can easily interpret that as the name of a class.
Further, a Java source file name must be same as the
public class defined in it. This also prevents programmers
from mistakes by forcing them to use consistent names.

APIs should use the same name to mean the same things
and different things should look different [4]. Otherwise
programmers face difficulty in using them correctly. For
instance, Perl 5's “string eval” and “block eval” may be an
example of using inappropriate names, which has been
fixed in Perl 6, where “block eval” is now spelled “try”.

3.3 Ignorance of Caller’s Perspective

APIs should be designed from the perspective of the caller
[14]; otherwise it may loose usability. An example [14]
should be explanatory here. Suppose, an API designer is
implementing a function to create a TV: black&white or
color, and CRT or flat-screen. The method signature he
designs is as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

257

void makeTV (bool isBlackAndWhite, bool isFlatScreen);

Such a design apparently looks fine as it uses explanatory
names. But here the caller’s perspective is ignored. To
create a color flat-screen TV the client code will make a
call as

makeTV (false, true);

Such a call reduces readability of the client code. Without
reading the documentation, just looking at the code it is
hard to understand the meaning of the parameters. Taking
caller’s perspective into account may require little more
work such as, adding enum definitions with a different
function signature:

enum ColorTypef {Color, BlackAndWhite };
enum ScreenTypef {CRT, FlatScreen };
void makeTV (ColorType col, ScreenType st);

Now the client code for a call will be

makeTV (Color, FlatScreen);

Looking at such a more readable code a programmer
would easily understand what the parameters mean.

3.4 Documentation and Code Examples

A usable API is expected to be called involving the least
consultation with documentation. However,
documentation is a part of APIs [14], and large APIs
without good documentations are usually difficult to use
[4]. Incomplete or unclear documentation reduces the
usability of APIs. The notion of progressive disclosure [1,
19] may also be useful in this regard. Often open source
APIs are more usable since the developers can investigate
the source codes, and modify if needed. But for such APIs,
absence of inline documentation in the source codes makes
it hard to investigate them.

Programmers often look for example codes demonstrating
common use the APIs. Absence of useful examples in the
documentation often makes the APIs difficult to use [4].
Scott Henninger [15] and Lisa Rubin Neal [20]
emphasized more on examples and proposed example
based programming environments.

3.5 Consistency and Conventions

Inconsistencies in the design of APIs makes them difficult
to learn and use correctly [4, 14]. For example, the read()
and write() Unix system calls place the file descriptor first,
but the Unix standard library I/O calls such as fgets() and
fputs(), place the stream pointer last, except for fscanf()
and fprintf(), which place it first [14]. This inconsistent
order of method parameters makes them difficult to
remember. Another type of inconsistency found in the

strtok() function of ANSI C, where the first call has
different semantics to subsequent calls.

If APIs don't respect programmers' common practices and
conventions, they become difficult to use. While
conducting a user study McLellan and et al. [18] found
that programmers were looking for a counterpart of the
function GetCommonType(), but the API did not have any
such SetCommonType() or PutCommonType() functions.
During the same study they found that the programmers
needed clarification about the use of the term \template" in
RODE library, which meant something very different for
the C++ programmers.

3.6 Conceptual Correctness

Conceptual incorrectness in the design of APIs makes
them difficult for the developers to learn and use correctly.
For example, the .NET socket Select() function in C# takes
as arguments three lists (IList) of sockets that are to be
monitored. But, conceptually the function is expected to
receive three sets of sockets. Using lists to model sets is
incorrect: it created semantic problem because lists allow
duplicates while sets don't. Unfortunately .NET collection
classes do not include set abstraction [14]. Use of lists as
parameters allows developers pass duplicate sockets,
which is incorrect use of the function. Another design flaw
in the C# v1.0 API was that
Environment.HasShutDownStarted was an instance
property of the static class Environment, but its constructor
was private. So, developers had no way of instantiating the
class to access the HasShutDownStarted property.
However, this design mistake is corrected in v1.1 [19].

Another common design aw is implementation of
inheritance where there is no subset (is-a) relationship [4,
12]. Such insensible inheritance hierarchies also incur
difficulties to learn and correctly use the APIs.

3.7 Method Parameters and Return Type

Functions taking many parameters, specially those with
multiple consecutive parameters of the same type are
difficult to use [4]. For instance, the CreateWindow()
function of Win32 API takes eleven arguments including
four consecutive integers. Another example is the
(currently deprecated) constructor of Date class in Java,
namely Date(int day, int month, int year). It is very easy to
make mistakes in following the input order while calling
such functions. Moreover, if a function requires ten
parameters, five of which are irrelevant for majority of use
cases, callers pay the price of supplying them every time
they make a call [14]. Joshua Bloch [4] suggests that
functions requiring three or fewer parameters are ideal.
Inconsistent ordering of parameters across similar

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

258

functions (as mentioned in section 3.5) also makes a
developer's job difficult in using them [4].

Developers often face difficulties when function's return
type or value does not indicate whether it successfully
accomplished its job. For instance, the .NET socket
Select() function in C# (as mentioned in section 3.6)
returns when no socket becomes ready within the specified
timeout. But the function has void return type - that is, it
does not indicate on return whether any sockets are ready
[14]. Moreover, functions with return values that demand
exceptional processing also impose difficulties on the
developers. Returning zero-length array or empty
collection is better than returning null [4].

3.8 Parameterized Constructor

Parameters in the constructors are commonly used to
instantiate objects and set certain attributes at the same
time. But, conducting a user study Jeffrey Stylos and
Steven Clarke found that programmers preferred calling
parameterless constructors followed by setter methods to
instantiate objects and set certain attributes, as opposed to
calling parameterized constructors [27]. Their study
suggests that required constructor parameters interfere
with common learning strategies, causing undesirable
premature commitment.

3.9 Factory Pattern

‘Factory’ design pattern is commonly used in APIs. But,
Brian Ellis and et al. [9] using a user study found that
getting a desired class's instance from a factory often
imposes difficulties on the programmers. They found that
programmers naturally expect to use constructors to
instantiate objects. They suggested that the use of factories
can and should be avoided in many cases, where other
techniques such as constructors or class clusters may serve
the purpose.

3.10 Data Types

Improper choices of data types also may cause the
developers do extra work of explicit casting, which is
inconvenient [9] and may cause loss of precession. Joshua
Bloch [4] suggests avoiding use of strings if a better type
exists, because strings are cumbersome, error-prone, slow,
and often make the user convert it to numeric values. He
further suggests to prefer using double (64 bits) over float
(32 bits), arguing that the precision loss due to the use of
float type may be significant to the users and cause
difficulty in using the concerned API.

3.11 Use of Attributes

Steven Clarke 1 conducted a user study with respect to
attributes and functionality. He found that developers face
difficulty when the API requires them to configure
multiple attributes to achieve specific functionality, for
example, when a change in application behavior needs
modifying more than one attributes at a time. Developers
often find difficulty in understanding the relationships
between attributes. The reasons are often low visibility of
concerned attributes and unclear interaction among them.

3.12 Concurrency

Often elements of APIs are designed without anticipating
concurrent access in mind, and consequently
documentation misses necessary information about thread
safety. Concurrent access to such elements often causes
unexpected behavior of the client code and even
catastrophe. Ben Pryor [24] proposed four guidelines as a
starting point while deciding threading policy of a class or
class-member. Exposure of much mutable elements to the
developers also imposes on them the extra burden to take
care of thread-safety in case of concurrent use [4].

3.13 Error Handling and Exceptions

Pitfalls and back doors exposed to the users allow them
doing wrong things with the API and consequently face
difficulties. Class members should be private unless there
is good reason to expose them [4]. Use of constants, as
well as final methods and classes (where appropriate)
protect the users from erroneously misusing them [1, 12].

Improper error handling also reduces usability of APIs.
For example, the .NET Receive() API commits the crime
for non-blocking sockets: it throws an exception if the call
worked but no data is ready, and it returns zero without an
exception if the connection is lost, which is just the
opposite of what callers need [14]. Layered APIs become
difficult to use if the exception is thrown far from where it
occurred. Another common design flaw - namely
exceptions for expected outcomes - also imposes difficulty
in use [14]. Overuse of checked exceptions causes
boilerplate [4]. Moreover, error messages with insufficient
information for diagnosis and repair or recovery reduce
usability of the APIs [4, 14].

1This information is collected from Steven Clarke's WebLog at
http://blogs.msdn.com/stevencl/archive/2004/05/12/130826.aspx,
http://blogs.msdn.com/stevencl/archive/2004/10/08/239833.aspx

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

259

3.14 Leftovers for Client Code

An API with high usability requires the user to type as few
as possible. If the API can implement a functionality that
the user needs, it should not be left for the users to
implement [4], because this extra work on the users' side
may make it difficult for them to use the API. For instance,
simple operations like opening a file, writing a string, and
closing it using the raw Windows API may take a page of
code, while in Visual Basic similar operations can be
implemented using just three lines of code [26]. The .NET
socket Select() function in C#, as mentioned in section 3.6,
would be illustrative. The function overwrites its
arguments, so the caller must make a copy of each list
before passing it to it, which is inconvenient. But the
problem is IList does not inherit from IClonable, so there
is no convenient way to copy an IList, except doing the job
element by element. Moreover, the function takes an
integer as the time-out parameter in microseconds. So, the
maximum possible wait time is Int.MaxValue (231 - 1),
which is little more than 35 minutes. The function does not
provide any way to wait longer or indefinitely. To
implement such needs, the users may write wrapper over
Select(), which may cause them write 100 lines of code
[14]. Consequently the API becomes less usable.

3.15 Multiple Ways to Do One

If the APIs provide the users multiple different ways to do
the same thing, developers often become puzzled to choice
one from the different alternatives available. For instance,
a Java programmer may create a thread in two ways:
writing a class extending the java.lang.Thread class, or
implementing the java.lang.Runnable interface. Since, java
does not support multiple inheritance, creating a thread
extending from Thread is not possible when the class
already inherits another class. In such situations the only
possible means is implementing the Runnable interface.
Bit, in other situations often developers get puzzled to
decide which way to create a thread.

Another example is the .NET socket Select() function in
C#. As mentioned in section 3.6, callers pass to it three
lists of sockets that they want to be monitored. In this case,
there are two legal parameter values for one and the same
thing: both null and empty list indicate that the caller is not
interested in monitoring one of the passed lists. Here, the
caller may be puzzled wondering if there is any difference
between the two means. Moreover, the problem becomes
severe causing difficulty in reusing Select(), for instance,
writing wrapper over it [14], as indicated in section 3.14.

3.16 Long Chain of Reference

If the underlying architectures of the APIs have long
complex inheritance hierarchies, the users often find

difficulty in understanding them. Therefore, Gurp and
Bosch [29] recommend use of delegation over inheritance.
They argued that the flatter structure of the inheritance
hierarchy, when using delegation, is easier to understand
than vertical inheritance hierarchy. However, for method
invocation, they argued that long chain of method
delegations is also difficult to track, and so they further
suggested preferring loose coupling (in the form of event
mechanism) to delegation.

However, when a single functionality scattered over a
number of objects, it is naturally difficult to track [27], no
matter whether loose coupling or method call chain is used.

3.17 Implementation vs. Interface Dependency

Interface dependencies between components are more
flexible and should be preferred over implementation
dependencies [29]. Joshua Bloch [4] also suggests
preferring interface types to classes for input. When a
method needs to take an object as parameter, using the
class of the object as parameter type causes
implementation dependency. In such implementation an
object of that specific class or any of its subclasses can be
passed to the method. On the contrary using an interface as
the parameter type allows passing any object
implementing the interface or its sub-interface. This gives
more flexibility to the users of the function.

3.18 Memory Management

APIs that leave the responsibility of memory management
and garbage collection on the user are less usable. For
example, a C++ programmer needs to take care of possible
memory misuse, when he or she uses a pointer,
dynamically allocates memory invoking functions like
malloc(), or creates, destroys or passes objects as
parameter to functions. This makes C++ difficult to use
compared to Java and .NET, which take care of memory
management and garbage collection overheads. The
CORBA C++ mapping requires callers to fastidiously keep
track of memory allocation and deallocation
responsibilities; the result is a less usable API making it
easy to corrupt memory [14].

3.19 Technical Mismatch

Use of more than one programming languages or
frameworks in developing a single application is a
common practice today. But sometimes, APIs are designed
making wrong assumptions about the control model, data
model or protocols, which consequently make those APIs
less inter-operable with others [11]. Such a common
mistake is, when a framework is assumed to have the main
control of execution, which may not be true in situations.
Moreover, an API may work fine on a platform while

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

260

malfunctions on another. Such incompatibilities and
technical mismatches negatively affect usability of the
APIs.

3.20 API Evolution or Change

Sometimes evolution or change in APIs breaks the client
code. APIs without support of backward compatibility are
typically difficult to use specially in maintaining legacy
software, or those evolving through a number of releases
over time. Since Microsoft Visual Basic .NET is not
backward compatible to VB 6.0, applications developed
using VB 6.0 has become difficult to migrate to VB .NET.
Such difficulties increase when the APIs don't come with
complete documentation about the changes made. As
mentioned in section 2.3 researchers introduced third party
tools to mitigate such difficulties.

Moreover, deprecation of commonly used classes and
methods in the newer version of API often surprises the
users. They often face difficulty in understanding the
reason of deprecation and finding the proper alternatives.

3.21 API Aging

The notion of software aging [21] also applies to APIs.
Many programmers are using APIs provided my Microsoft,
while many others are reluctant to use those. Without
keeping backward compatibility Microsoft introduces
completely new APIs, and their new operating systems
(OS) often don't support old APIs. Applications using
Win32 APIs don't work properly on OS versions later than
Windows 98. Later they introduced MFC library. Instead
of adding features to Win32 APIs they introduced WinFX,
Avalon, XAML. If one developed GUI applications using
Microsoft's programming environment, WinForms, he had
to start over again in two years to support Longhorn and
Avalon [26]. Such frequent replacements of Microsoft’s
APIs reduce motivation of many programmers to use them.

3.22 Intelligibility of Source Code

This factor applies to open source APIs. Low readability
of source code due to large source files, large methods,
lack of inline documentation, improper indentation, split
implementation of classes (i.e. C++ classes implemented
using header and implementation files), etc. imposes
difficulties on the users when they need to investigate the
source code of the concerned APIs.

4. Conclusion and Future Work

An API is a user interface to the underlying programming
model (i.e., frameworks, components, etc.) that is
presented to the user (client code developer) [1].
Essentially there are two aspects of a good API design.
From the perspective of the API designer architectural
elegance is important to ensure efficiency, usefulness and
changeability of the API. From the perspective of client
code developer usability of a useful API is significant.
Usability problems in APIs reduce programmers'
productivity [30]. Damian Conway states, “The most
important aspect of any module is not how it implements
the facilities it provides, but the way in which it provides
those facilities in the first place” [7]. Many software
engineering techniques have been introduced to guide
elegant architectural design. But comparatively few works
have been done addressing the usability issues.

From the study of existing literature, I pointed out
significant factors that make APIs difficult to use. The
findings presented in this paper would help API designers
to gain better understanding on API usability and develop
more usable APIs.

However, factors leveraging changeability and reusability
of components may conflict with usability of the APIs. For
example, large components composed of smaller
components increase reusability of those smaller
components. As small components are easier to
comprehend [29], this would help API developers ease in
maintaining and changing the implementation. But on the
other hand, such implementation may require the client
code developers track long chain of method delegation,
which is inconvenient.

Hence, future work in this regard may include study of
factors that enhance architectural elegance to leverage
reusability and evolution, as well as identifying those
factors, which conflict with usability issues. From such
study valuable guidelines may be introduced for
developing evolvable, useful, and usable APIs making
sensible balance among such conflicting factors.

References
[1] K. Arnold. Programmers are people, too. Queue, 3 (5):

54-59, 2005.
[2] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for

class library migration. SIGPLAN Not., 40 (10): 265-279,
2005.

[3] T. Biggerstaff. The library scaling problem and the limits
of concrete component reuse. Software Reuse: Advances
in Software Reusability, 1994. Proceedings., Third
International Conference on, pages 102-109, 1-4 Nov
1994.

[4] J. Bloch. How to design a good API and why it matters. In

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

261

OOPSLA '06: Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 506-507, New York,
NY, USA, 2006. ACM.

[5] C. Bore and S. Bore. Profiling software API usability for
consumer electronics. Consumer Electronics, 2005. ICCE.
2005 Digest of Technical Papers. International
Conference on, pages 155-156, 8-12 Jan. 2005.

[6] S. Clarke and C. Becker. Using the cognitive dimensions
framework to evaluate the usability of a class library. In
Joint Conf. EASE & PPIG, Petre & D. Budgen (Eds),
pages 359-366, 2003.

[7] D. Conway. Ten essential development practices. 14 July
2004.

[8] S. Demeyer, T. D. Meijler, O. Nierstrasz, and P. Steyaert.
Design guidelines for tailorable frameworks. Commun.
ACM, 40 (10): 60-64, 1997.

[9] B. Ellis, J. Stylos, and B. Myers. The factory pattern in
API design: A usability evaluation. In ICSE '07:
Proceedings of the 29th International Conference on
Software Engineering, pages 302-312, Washington, DC,
USA, 2007. IEEE Computer Society.

[10] M. Fayad and D. C. Schmidt. Object-oriented application
frameworks. Commun. ACM, 40 (10): 32-38, 1997.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch or why it's hard to build systems out of existing
parts. In ICSE '95: Proceedings of the 17th international
conference on Software engineering, pages 179-185, New
York, NY, USA, 1995. ACM.

[12] E. R. Harold. XOM design principles. Extreme Markup
Languages, 2-6 August 2004.

[13] J. Henkel and A. Diwan. CatchUp!: capturing and
replaying refactorings to support API evolution. In ICSE
'05: Proceedings of the 27th international conference on
Software engineering, pages 274-283, New York, NY,
USA, 2005. ACM.

[14] M. Henning. API design matters. Queue, 5 (4): 24-36,
2007.

[15] S. Henninger. Retrieving software objects in an example-
based programming environment. In SIGIR'91:
Proceedings of the 14th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 251-260, New York, NY, USA, 1991.
ACM.

[16] R. Holmes, R. Walker, and G. Murphy. Approximate
structural context matching: An approach to recommend
relevant examples. Software Engineering, IEEE
Transactions on, 32 (12): 952-970, Dec. 2006.

[17] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle. In
PLDI '05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 48{61, New York, NY, USA,
2005. ACM.

[18] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi.
Building more usable APIs. Software, IEEE, 15 (3): 78-
86, May/Jun 1998.

[19] Microsoft Developer Network. Designing .NET class
libraries: Designing progressive APIs. MSDN Online
Chat, 02 March 2005.

[20] L. R. Neal. A system for example-based programming. In

CHI '89: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 63-68, New
York, NY, USA, 1989. ACM.

[21] L. R. Neal. A system for example-based programming. In
CHI '89: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 63-68, New
York, NY, USA, 1989. ACM.

[22] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15 (12): 1053-
1058, 1972.

[23] D. L. Parnas and D. P. Siewiorek. Use of the concept of
transparency in the design of hierarchically structured
systems. Commun. ACM, 18 (7): 401-408, 1975.

[24] B. Pryor. Simple concurrency guidelines. Ben Pryor's
Blog, March 2008.

[25] Y. Smaragdakis and D. Batory. Mixin layers: an object-
oriented implementation technique for refinements and
collaboration-based designs. ACM Trans. Softw. Eng.
Methodol., 11 (2): 215-255, 2002.

[26] J. Spolsky. How Microsoft lost the API war. In Business
of Software 2008, a JOEL ON SOFTWARE Conference,
Boston, MA, United States, 13 June 2004.

[27] J. Stylos and S. Clarke. Usability implications of requiring
parameters in objects' constructors. In ICSE'07:
Proceedings of the 29th International Conference on
Software Engineering, pages 529-539, Washington, DC,
USA, 2007. IEEE Computer Society.

[28] J. Stylos and B. Myers. Mapping the space of API design
decisions. Visual Languages and Human-Centric
Computing, 2007. VL/HCC 2007. IEEE Symposium on,
pages 50-60, 23-27 Sept. 2007.

[29] J. van Gurp and J. Bosch. Design, implementation and
evolution of object oriented frameworks: concepts and
guidelines. Softw. Pract. Exper., 31 (3): 277-300, 2001.

[30] T. Xie and J. Pei. MAPO: mining API usages from open
source repositories. In MSR '06: Proceedings of the 2006
international workshop on Mining software repositories,
pages 54-57, New York, NY, USA, 2006. ACM.

[31] Z. Xing and E. Stroulia. API-evolution support with Diff-
CatchUp. Software Engineering, IEEE Transactions on,
33 (12): 818-836, Dec. 2007.

Minhaz Fahim Zibran received the
B.Sc. in Computer Science and Information
Technology in the year 2002 from the
Islamic University of Technology,
Bangladesh. He earned M.Sc. in Computer
Science in 2005 from the University of
Lethbridge in Alberta, Canada. Currently
he is a Ph.D. student in the Laboratory for
Software Modification Research at the
University of Calgary in Alberta, Canada.

He has research experience in the area of combinatorial
optimization. His current research is focused on evolutionary
software engineering.

