
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

262

An Enhanced Ant Algorithm for Grid Scheduling Problem

Kousalya.K and Balasubramanie.P,

Anna University, Kongu Engineering College, Tamilnadu, India

Summary

Grid computing is a form of distributed computing that
coordinates and shares computation, application, data storage, or
network resources across dynamic and geographically dispersed
organizations. One primary issue associated with the efficient
utilization of heterogeneous resources in a grid is grid scheduling.
Grid Scheduling is a critical design issue of grid computing. It is
a challenge because the capability and availability of resources
vary dynamically. The complexity of scheduling problem
increases with the size of the grid and becomes difficult to solve
effectively. Hence a new area of research is developed to design
optimal methods. It focuses on new heuristic techniques that
provide an optimal or near optimal solution for large grids. In
this paper, Ant Colony Optimization based grid scheduling
algorithm for grid computing is proposed. The proposed
scheduler allocates an application to a host from a pool of
available hosts and applications by selecting the best match. In
the evaluation study a number of intensive experiments with
various simulation settings have been conducted. Based on the
experimental results, the proposed algorithm confidently
demonstrates its practicability and competitiveness with three
previously proposed algorithms.

Key words:
Grid computing, Grid Scheduling, Ant System, Heuristics

1. Introduction

Grid Computing allows the integration and sharing of
computers and computing resources, such as software,
data and peripherals, in corporate networks. Grid-enabled
networks stimulate cooperation among users and
organizations, create dynamic and multi-institutional
environment, provide and use the resources to achieve
common or individual goals [1]. The usage of grids to
solve CPU-intensive problems potentially benefits the
entire society. With further development of grid
technology, it is very likely that corporations, universities
and public institutions will exploit grids to enhance their
computing infrastructure. In recent years there has been a
large increase in grid technologies research, which has
produced some reference grid implementations. A vast
number of researchers have been putting in a lot of effort
to facilitate building and efficient utilization of grids. A
significant grid is Globus toolkit [2]. The Security
Infrastructure (GSI) in the Globus toolkit addresses and
effectively deals with the security issue. However, there

are still a considerable number of difficulties that should
be over come for efficiently scheduling jobs in grids.

A Grid scheduler, often called resource broker, acts as an
interface between the user and distributed resources and
hides the complexities of Grid computing [3,4]. It
performs resource discovery, negotiates for access costs
using trading services, maps jobs to resources (scheduling),
stages the application and data for processing
(deployment), starts job execution, and finally gathers the
results. It is also responsible for monitoring and tracking
the progress of application execution along with adapting
to the changes in the runtime environment of the Grid,
variation in resource share availability, and failures.
Essentially, the Grid broker does application scheduling
on distributed Grid resources on which it does not have
full control—the local scheduler has its own policies and
performs actual allocation of resource(s) to the user job(s).

The previous work in scheduling on distributed systems
such as clusters and supercomputers has focused on
extracting the maximum throughput from the entire system
[5,6]. Grid scheduling concentrates on improving response
times in an environment containing autonomous resources
whose availability dynamically varies with time. The Grid
scheduler has to interact with the local schedulers
managing computational resources and adapt its behavior
to changing resource loads. Thus the scheduling is
conducted from the perspective of the application or the
user rather than that of the system.

Grid scheduling requires a series of challenging tasks.
These include, searching for resources in the collection of
geographically distributed heterogeneous computing
systems and making scheduling decisions, taking into
consideration quality of service. A grid scheduler differs
from a scheduler for conventional computing systems in
several respects. One of the primary differences is that the
grid scheduler does not have full control over the grid.
More specifically, the local resources are in general not
controlled by the grid scheduler, but by the local scheduler.
Another difference is that the grid scheduler cannot
assume that it has a global view of the grid.

The demand for scheduling is to achieve high performance
computing. It is very difficult to find an optimal resource
allocation for specific job that minimize the schedule

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

263

length of jobs. The scheduling problem is a NP-hard
problem [7] and it is not trivial.

The main goal is to schedule all the incoming applications
to the available computational power. Meta heuristic
approaches have shown their effectiveness for a wide
variety of hard problems. These approaches produce best
results in practice.

2. Literature Review

2 .1 Overview of Previous Algorithms

The resource scheduling in grid is a NP complete problem.
Various algorithms have been designed to schedule the
jobs in computational gird. The most commonly used
algorithms are OLB, MET, MCT, Min-Min and Max-Min.

2.1.1 Opportunistic Load Balancing (OLB)

Without considering the job’s execution time, it assigns a
job to the earliest free machine. If more than one machine
is free then it assigns the job in arbitrary order to the
processor. This scheduler runs faster and assigns each job
in the arbitrary order to the next available node. The
advantage of this method is that it keeps almost all
machines busy all possible time. Yet the solution is not
optimal.

2.1.2 Minimum Execution Time (MET)

The first available machine is assigned a job with the
smallest execution time. It neither considers the ready time
nor the current load of the machine. Also, the availability
of the resources at that instant of time is not taken into
account. The resources in grid system have different
computing power. Allocating all the smallest tasks to the
same fastest resource redundantly creates an imbalance
condition among machines. Hence this solution is static.

2.1.3 Minimum Completion Time (MCT)

It uses the ready time of the machine to calculate the job’s
completion time (ready time of the machine + execution
time of the job). It calculates the completion time of
current job in the earliest available machines. From the list,
the job with smallest completion time is selected and is
assigned to that machine. This means the assigned job may
have a higher execution time than any other job. This
algorithm calculates the completion time of current
unfinished job in only one earliest available node. But the

same job may be completed in lesser time in some other
machine which is available at that time.

2.1.4 Min-Min

It starts with a set of unmapped tasks. The minimum
completion time of each job in the unmapped set is
calculated. This algorithm selects the task that has the
overall minimum completion time and assigns it to the
corresponding machine. Then the mapped task is removed
from the unmapped set. The above process is repeated
until all the tasks are mapped. When compared with MCT,
Min-Min considers all the unmapped tasks during their
mapping decision. The smaller makespan can be obtained
when more tasks are assigned to machines that complete
them the earliest and also execute them the fastest.

2.1.5 Max-Min

First it starts with a set of unmapped tasks. The minimum
completion time of each job in the unmapped set is found.
This algorithm selects the task that has the overall
maximum completion time from the minimum completion
time value and assigns it to the corresponding machine.
The mapped task is removed from the unmapped set. The
above process is repeated until all the tasks are mapped.
On comparison with MCT, Max-Min considers all
unmapped tasks during their mapping decision. The Max-
Min may produce a balanced load across the machine.
When compare to Max-Min Min-Min is the best one.

2.1.6 Drawbacks of the above stated algorithms

Though the above mentioned algorithms have various
advantages, they also have some pitfalls. The drawback of
Min-Min is that, too many jobs are assigned to a single
grid node. This leads to overloading and the response time
of the job is not assured. OLB does not assure load
balance. In MCT calculation of minimum completion time
for a job is longer. Other algorithms are very difficult to
implement. In paper [4], the job moving from one machine
to another machine is discussed. So the traffic in the grid
system will be automatically increased. In paper [3]
communication cost is considered.

The problem of scheduling a grid is complex. So a
number of researchers research in this area. They are
trying to find an optimal solution and harness the existing
resources effectively. The main aim of scheduling is to
improve the overall system performance. Min-Min, Max-
min, fast greedy tabu search and ant system are some of
the heuristic algorithms which create a static environment.
They must predict the execution time and workload in

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

264

advance. In paper [8], they have proposed a simple grid
simulation architecture using ACO. They have used
response time and average utilization of resources as the
evaluation index. In the paper [9] and [10], they have
proposed ACO algorithms, which could improve the
performance like job finishing ratio. In paper [11], the job
is moved from one machine to another machine, so that
the traffic in the grid system will be automatically
increased. In paper [10], communication cost is considered
and in paper [12], six different ant agents are used. To
solve the grid scheduling problem, ACO is one of the best
algorithms.

2.1.7 Ant Algorithm

The ant algorithm is also based upon heuristic approach. It
is based on the behavior of real ants. Each ant deposes the
chemical pheromone on its path when it searches for food
from its nest. When each ant moves in a particular
direction, the strength of chemical pheromone increases.
With this, other ants could also trail along.

This inspired the discovery of ACO algorithm. This
algorithm uses a colony of artificial ants that behave as co-
operative agents in a mathematical space where they are
allowed to search and reinforce pathways (solutions) in
order to find the optimal ones. This approach which is
population based has been successfully applied to many
NP-hard optimization problems.

3. Problem Description

Grid computing is a dynamic environment and
allocates the jobs to the resources effectively. The
important challenge in grid scheduling is that, no one has
the ability to control all the jobs completely. The other
challenges are, the resources dynamic nature and the
difference between the expected execution time and the
actual time in algorithm. The main aim of the scheduler is
to allocate the jobs to the available nodes. The best match
must be allocated from the list of available jobs and the list
of available resources. The selection is based on the
prediction of the computing power of the resource [13].

The grid users expect to run their jobs efficiently. The
efficiency depends upon two criteria; one is makespan and
the other is flow time. These two criteria are very much
important in the grid system. The makespan measures the
throughput of the system and flow time measures its QOS
[14,15].

The expected execution time ET is the expected time to
complete the matrix. The element ETij of the ET matrix is

defined as the amount of time taken to complete ith job in
the jth resource. The jobs are owned by different users.
Each job has to be completely preempted. All jobs are
interdependent. Each and every resource has its own
computing characteristics. All the resource may be
dynamically added or removed from the grid. They use
the expected time to compute (ET) the model [16].
Between ET value and actual time taken to complete a job
there is a difference but calculate or assume that the values
in ET matrix are the completion time for that job.

The ET matrix will have N x M entries, where N is the
number of independent jobs to be scheduled and M is the
number of resources which is currently available. Each job
workload is measured by million of instructions and the
capacity of each resource is measured by MIPS. The
Ready time (Readym) indicates the time resource ‘m’
would have finished the previously assigned jobs. The
completion time of ith job on the jth machine is

CTij=Readyj+ETij (1)

Maxs(CT ij) is the makespan of the complete schedule.
Makespan is used to measure the throughput of the grid
system. The main objective of this algorithm is to
minimize the makespan. The grid scheduling problem is a
NP-complete problem. In general the existing heuristic
mapping can be divided into two categories. One is on line
mode and the other one is batch mode. In the on line mode,
the scheduler is always in ready mode. Whenever a new
job arrives to the scheduler, it is immediately allocated to
one of the existing resources required by that job. Each job
is considered only once for matching and scheduling.

 In the batch mode, the jobs and resources are collected
and mapped at prescheduled time. In this mode, it takes
better decision because the scheduler knows the full
details of the available jobs and resources. The proposed
algorithm is also heuristic algorithm for batch mode.

The result of the algorithm will have four values (task,
machine, starting time, expected completion time). The
number of jobs available for scheduling is always greater
than the available number of machines in the grid. The
machine Mj’s free time will be known using the function
free (j). The starting time of job ti on resource Mj is

 Bi = free (j) + 1 (2)

Then the new value of free(j) is the starting time plus ETij.
In the algorithm, use the minimization function to find out
the best resource

 F = max (free (j)) (3)

And use the following heuristic information

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

265

=
1-ρ

Fk

⌂Tij

ηij =
1

Free(j)

T ij . η ij Pij =
Σ T ij . η ij

 (4)

Using the formula (4) find out the highest priority machine
which is free earlier. Use three to four ants. Each ant starts
from random resource and task (they select ETij randomly
jth resource and ith job). All the ants are maintaining a
separate list. Whenever they select next task and resource,
they are added into the list. At each iteration the ants
calculate the minimize function ‘Fk (kth ant)’ and
Pheromone trail updates the value.

 (5)

In this algorithm two set of tasks are maintained. One is
set of scheduled tasks and the other is set of arrived and
unscheduled tasks. The algorithm starts automatically,
whenever the set of scheduled jobs become empty.

According to the paper [17], the first task to be performed
and the machine in which it is performed is chosen
randomly. Next, the task to be run and the machine in
which it is to be run is computed by the following formula

 (6)

Where
- ηij is the attractiveness of the move as computed by

some heuristic information indicating a prior
desirability of that move

- Tij is the pheromone trail level of the move,
indicating how profitable it has been in the past to
make that particular move(it represents therefore a
posterior indication of the desirability of that move)

- Pk i,j - is the probability to move from a state i to a
state j is depending on the combination of above two
values:

The above formula (6) has the disadvantage, that all the
columns in the probability matrix has the same probability
value. This decides the best resource, but the task is
chosen to be the first non zero value of the column. In
paper [18], they use one ant. To overcome this
disadvantage a new algorithm is proposed. In this method,
modify the probability matrix (Pk i,j) and use several ants,
and the number of ants used is less than or equal to the
number of tasks. From all the possible scheduling lists find

the one having minimum makespan and use that ant’s
scheduling list.

Here two kinds of ET matrices are formed, one of them
consists of currently scheduled jobs and the other consists
of jobs which have arrived but not scheduled. The
scheduling Algorithm is executed periodically. At the time
of execution, it finds the list of available resources
(processors) in the grid environment, form the ET matrix
and start scheduling.

3. 1 Scheduling Algorithm

The execution time matrix ETij of task ti on
machine mj, is defined as the amount of time taken by mj,
to execute ti

Given that mj has no load ti assigned. The expected
completion time is (CTij)

CTij = Bi + ETij (7)
where

Bi = Beginning time of ti on machine mj

The function free[j] – return time when the machine
 Mj will be free.

 free[j]= Bi+ETij+1 (8)

Use the objective function Fk = max(free[j]) over the
solution constructed by an ant k and added pheromone by
an ant k

The result will be in the following format (task, machine,
starting time, Ending time)

Step 1: Collect all necessary information about the jobs
(n) and resources (m) of the system in matrix ETmxn.

Step 2: Set all the initial value

ρ = 0.05(pheromone evaporation value)
T0 = 0.01(initial pheromone deposit value)
Free[0.. m-1] = 0(one dimensional matrix of
 size m)
k = m(number of ants= no. of tasks)
Step 3: For each ant (to prepare the scheduling list) do the
following steps 4 and 5

Step 4: Select the task (i) and resource (j) randomly.

Step 5: Repeat the following until all jobs are executed.

a. Calculate the heuristic information (ηij)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

266

T ij . η ij (1/ET ij) Pij =
Σ T ij . η ij (1/ET

=
1-ρ

Fk

⌂Tij

 ------------(9)

If a machine is free earlier then the corresponding
machine will be more desirable

b. Calculate current pheromone trail value

 -----------------------(10)

where Fk = max(free(j));

c. Update the Pheromone Trail Matrix

 T ij = ρ T ij + ⌂Tij (11)

d. Calculate the Probability matrix

 ----- (12)

where
- ηij is the

attractiveness of the move computed by some
heuristic information indicating a prior
desirability of that move.

- Tij is the pheromone trail level of the move,
indicating how profitable it has been in the past to
make that particular move(it represents therefore
a posterior indication of the desirability of that
move)

- ET ij - Execution Matrix.

e. Select the task with highest probability’s of ‘i’
and ‘j’ as the next taski to be executed on the
resourcej

Step 6: Find the best feasible solution using all the ants
scheduling List

4 Computational Results

 Here the results are compared with the various
implementations of OLB, MET, MCT, and existing Ant
algorithms. To simulate the various heterogeneous
problems, different type of ET matrix using benchmark
simulation model [16] are defined. The ET matrix
considers three factors: task heterogeneity, machine
heterogeneity and consistence. The task heterogeneity
depends upon the various execution times of the jobs. The

two possible values are defined high and low. Similarly
the machine heterogeneity depends on the running time of
a particular job across all the processors and again has two
values: high and low. In the real scheduling, three
different ET consistencies are possible. They are
consistent, inconsistent, and semi consistent.

The instances of bench mark problems are classified into
twelve different types of ET matrices. Each consists of
100 instances. The instances depend upon the above three
factors task heterogeneity, machine heterogeneity and
consistence. Instances are labeled as u_x_yyzz.k where

u - is a uniform distribution, used to generate the matrix.

x – is a type of consistency
 c- consistent
 s-semi consistent
 i-inconsistent

 An ET matrix is said to be consistent if a resource
Ri execute a task Ti faster than the resource Rk, then Ri
will execute all other jobs faster than Rk. An ET matrix is
said to be in-consistent if a resource Ri may execute some
jobs faster than Rj and some slower. A semi consistent
ETC matrix is an inconsistent matrix which has a sub
matrix of a predefined size.

yy- is used to indicate the heterogeneity of the jobs(hi –
high, lo-low)

zz-is used to indicate the heterogeneity of the resources (h-
high, lo-low)

All the instances consist of 512 jobs and 16 machines. For
each method the makespan is computed. It allows a fair
comparison of the presented methods.

 The computation results are given in tables 1,
2,3,4,5,6,7,8 and 9. The results are obtained from
immediate mode methods for makespan like MCT, MET
and two heuristic methods (existing ant algorithm [17] and
proposed ant algorithm), for a set of 12 instances of the
bench mark [17]. From the bench mark problem, chose
three groups of four instances having consistent, semi
consistent and inconsistent ET matrices. The selected
instances are having the different types of heterogeneity of
jobs and heterogeneity of resources.

5 Performance Evaluations

The tables 1,3,5,7 show the comparison of proposed ant
algorithm with OLB,MCT,MET and existing ant
algorithm in High Task High Machine, Low Task High
Machine, High Task Low Machine, Low Task Low

ηij =
1

Free(j)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

267

Machine respectively and the corresponding graphs are
shown in the Figure 1,2,3,4. The percentage decreases in
the makespan value by the proposed ant algorithm when
compared to OLB, MCT, MET and Existing ant are listed
in the tables 2 ,4, 6, 8 in High Task High Machine, Low
Task High Machine, High Task Low Machine, Low Task
Low Machine respectively.

The entire makespan of the computational results are
given in table 9. In table 9, the name of the instance is in
the first column, the best makespan obtained by OLB is in
the second, MCT is in the third and MET is in the fourth
column respectively. , The best makespan obtained by
existing ACO is in the fifth and proposed ACO is in sixth
column. Figure 5 shows the comparison of all the five
algorithms’ makespan. The proposed algorithm performs
better than immediate mode methods like MCT, MET,
OLB and also existing ant algorithm.

The proposed ant algorithm performs on an average of ten
percentage better than other algorithms.

Table 1: Makespan values for Braun et al. benchmark (in arbitrary time
units) by algorithms MCT, MET, Existing-Ant, Proposed Ant on HTHM
when they are consistent, inconsistent (IC) and partially consistent (PC)

High Task High Machine

 CONSISTENT IC PC

OLB 14376662.18 26102017.618 19464875.910

MCT 11422624.49 4413582.982 6693923.896

MET 47472299.43 4508506.791 25162058.136

Existing-
Ant 13496496.72 5703005.083 8765320.713

Proposed
Ant 12485079.88 3659080.427 7722087.294

Table 2 Percentage decrease in makespan value by Proposed Ant

algorithm in comparison with other algorithms (values in percentages)

 High Task High Machine

 CONSISTENT IC PC

OLB 13.16 85.98 60.33

MET -9.30 17.10 -15.36

MCT 73.70 18.84 69.31

Existing Ant 7.49 35.84 11.90

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

CONSISTENT IC PC

M
ak

es
pa

n

OLB MCT MET Existing-Ant Proposed Ant

Fig. 1: Graphical Representation of Table 1

Table 3: Makespan values for Braun et al. benchmark (in arbitrary time

units) by algorithms MCT, MET, Existing-Ant, Proposed Ant on LTHM
when they are consistent, inconsistent (IC) and partially consistent (PC)

Low Task High Machine

 CONSISTENT IC PC

OLB 477357.019 833605.654 603231.467

MCT 378303.624 143816.093 186151.286

MET 1453098.003 185694.594 674689.535

Existing-
Ant 370797.065 169621.082 260822.210

Proposed
Ant 319142.292 125062.742 207160.951

Table 4 : Percentage decrease in makespan value by Proposed Ant
algorithm in comparison with other algorithms (values in percentages)

 Low Task High Machine

 CONSISTENT IC PC

OLB 33.14 85.00 65.66

MET 15.64 13.04 -11.29

MCT 78.04 32.65 69.30

Existing Ant 13.93 26.27 20.57

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

268

0.000

200000.000

400000.000

600000.000

800000.000

1000000.000

1200000.000

1400000.000

1600000.000

CONSISTENT IC PC

M
ak

es
pa

n

OLB MCT MET Existing-Ant Proposed Ant

Fig. 2: Graphical representation of table 3.

Table 5: Makespan values for Braun et al. benchmark (in arbitrary time

units) by algorithms MCT, MET, Existing-Ant, Proposed Ant on HTLM
when they are consistent, inconsistent (IC) and partially consistent (PC)

High Task Low Machine

 CONSISTENT IC PC

OLB 221051.823 272785.200 250362.113

MCT 185887.404 94855.913 126587.591

MET 1185092.968 96610.481 605363.772

Existing-Ant 117674.295 48855.353 82109.419

Proposed
Ant 98017.149 32256.535 55977.881

0.000

200000.000

400000.000

600000.000

800000.000

1000000.000

1200000.000

1400000.000

CONSISTENT IC PC

M
ak

es
pa

n

OLB MCT MET Existing-Ant Proposed Ant

Fig. 3 : Graphical representation of table 5

Table 6: Percentage decrease in makespan value by proposed ant algorithm
when compared to other algorithms. (Values in percentage)

 High Task Low Machine

OLB 55.66 88.18 77.64

MET 47.27 65.99 55.78

MCT 91.73 66.61 90.75

Existing Ant 16.70 33.98 31.83

Table 7: Makespan values for Braun et al. benchmark (in arbitrary time units) by
algorithms MCT, MET, Existing-Ant, Proposed Ant on Low Task High Machine

when they are consistent, inconsistent (IC) and partially consistent (PC)
Low Task Low Machine

 CONSISTENT IC PC

OLB 7309.595 89380.269 8938.389

MCT 6360.054 3137.350 4436.117

MET 39582.297 3399.284 21042.413

Existing-Ant 4208.342 1605.428 2914.206

Proposed Ant 3675.097 1073.454 1890.407

0.000

10000.000

20000.000

30000.000

40000.000

50000.000

60000.000

70000.000

80000.000

90000.000

CONSISTENT IC PC

M
ak

es
pa

n

OLB MCT MET Existing-Ant Proposed Ant

Fig. 4 Graphical representation of Table 7

Table 8 : Performance of proposed ant algorithm is shown with the help
of decrease in makespan value (in percentage) in comparison with other
algorithms.

 Low Task Low Machine

OLB 49.72 98.80 78.85

MET 42.22 65.78 57.39

MCT 90.72 68.42 91.02

Existing Ant 12.67 33.14 35.13

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

269

Hence, as a result of experimental evaluation discussed so
far it is very clear that the heuristic technique in general,
performs much better when compared to OLB, MCT and
MET. Among the heuristic techniques seen above, the
Proposed Ant algorithm performs 10 percentage better
than the existing ant algorithm in all possible cases on an
average. Thus, addition of ETij in the calculation of free(j),
that is inclusion of execution time of the ith job by the jth
machine(predicted) in the calculation of probability, that
the jth machine will be free, has shown a positive result in
performance improvement. This improvement is in terms
of decrease in makespan time.

6 Conclusions and Future Work

Selecting the appropriate resources for the specific task is
the one of the challenging work in computational grid.
This paper shows how to schedule the jobs using ACO
method in computational grid system. It provides a real
distributed real time system with no global control for
schedulers. This method will sense the current
environment and aware the contexts to decide what do to
next. The resource allocation decision is not directly made
by the grid system. The algorithm can adopt the system
environment freely at runtime. It uses the previous

information and allocates the resource optimally and
adaptively in the scalable, dynamic and distribute-
controlled environment.

In the study, the algorithm is designed and compared to
different grid environments. Using ACO can get good
workload balancing results. The proposed ACO algorithm
can consistently find better schedules for several
benchmark problems as compared to other techniques in
the literature.

In the Grid environment the proposed ant algorithm will
achieve high throughput as compared with previous ant
system [8]. In this algorithm, the jobs execution time is the
one of the major input parameter. The ACO algorithms
can be improved the solution by combining them with
local search techniques. But future research will be done
using the following factors CPU workload,
Communication delay and so on. The next research
direction is to create different heuristic based algorithms
for problem arising in grid computing. The one more
future work is automatically changing the amount of
pheromone evaporation and deposit depending upon the
performance of the grid system. The techniques used may
have to diverge somewhat from those described here, but
the results presented here suggest that there is considerable
scope for future research in this area.

Table 9 : Makespan values for Braun et. al. benchmark (in arbitrary time units)

 OLB MCT MET ACO Proposed
ACO

u_c_hihi.0 14376662.175 11422624.494 47472299.429 13496496.722 12485079.884
u_c_hilo .0 221051.823 185887.404 1185092.968 117674.295 98017.149
u_c_lohi .0 477357.019 378303.624 1453098.003 370797.065 319142.292
u_c_lolo .0 7309.595 6360.054 39582.297 4208.342 3675.097
u_i_hihi.0 26102017.618 4413582.982 4508506.791 5703005.083 3659080.427
u_i_hilo .0 272785.200 94855.913 96610.481 48855.353 32256.535
u_i_lohi .0 833605.654 143816.093 185694.594 169621.082 125062.742
u_i_lolo .0 89380.269 3137.350 3399.284 1605.428 1073.454
u_s_hihi.0 19464875.910 8693923.896 25162058.136 8765320.713 7722087.294
u_s_hilo .0 250362.113 126587.591 605363.772 82109.419 55977.881
u_s_lohi .0 603231.467 186151.286 674689.535 260822.210 207160.951
u_s_lolo .0 8938.389 4436.117 21042.413 2914.206 1890.407

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

270

0

5000000

10000000

15000000

20000000

25000000

30000000

CHTHM

CHTLM

CLT
HM

CLT
LM

IC
HTHM

IC
HTLM

IC
LT

HM

IC
LT

LM

PCHTHM

PCHTLM

PCLT
HM

PCLT
LM

Instances

M
ak

es
pa

n

OLB

MCT

MET

ACO

Proposed
ACO

Graph 5: Graphical Representation of Table 13

References

 [1] I. Foster, C. Kesselman, and S. Tuecke. “The anatomy
of the Grid: Enabling Scalable Virtual Organizations”.
International Journal of Super computing Applications,
pp.200-222, Fall. 2001.

 [2] I. Foster and C. Kesselman, “Globus: A Meta
computing Infrastructure Toolkit,” Int’l J Super
computer App., 1997, pp. 115–128.

 [3] Abramson D, Giddy J, Kotler L. “High performance
parametric modeling with Nimrod/G: Killer
application for the global Grid “ Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS 2000). Cancun, Mexico, 1–5 May
2000. IEEE Computer Society Press: Los Alamitos,
CA, 2000.

 [4] Buyya R, Abramson D, Giddy J. “Nimrod/G: An
architecture for a resource management and scheduling
system in a global computational Grid”. Proceedings

of the 4th International Conference and Exhibition on
High Performance Computing in Asia-Pacific Region
(HPC ASIA 2000), Beijing, China, May 2000. IEEE
Computer Society Press: Los Alamitos, CA, 2000.

 [5] Casavant TL, Kuhl JG. “A taxonomy of scheduling in
general purpose distributed computing”. IEEE
Transactions on Software Engineering 1988; 14(2).

 [6] Feitelson DG, Rudolph L (eds.). Proceedings of the
5th IPPS/SPDP’99 Workshop “Job Scheduling
Strategies for Parallel Processing” (JSSPP 1999), San
Juan, Puerto Rico, April 1999 (Lecture Notes in
Computer Science, vol. 1659). Springer: Heidelberg,
1999.

 [7] D. Fernandez-Baca(1989) “Allocation Modules to
processors in a Distributed System”, IEEE
Transactions on Software Engineering. Vol.15(11):
Pages 1427-1436

 [8] Z. Xu, X. Hou and J. Sun, “Ant Algorithm-Based
Task Scheduling in Grid Computing”, Electrical and
Computer Engineering, IEEE CCECE 2003, Canadian
Conference, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

271

 [9] E. Lu, Z. Xu and J. Sun, “An Extendable Grid
Simulation Environment Based on GridSim”, Second
International Workshop, GCC 2003, volume LNCS
3032, pages 205–208, 2004.

 [10] H. Yan, X. Shen, X. Li and M. Wu, “An Improved
Ant Algorithm for Job Scheduling in Grid Computing”,
In Proceedings of the Fourth International Conference
on Machine Learning and Cybernetics, 18-21 August
2005.

 [11] Li Liu, Yi Yang, Lian Li and Wanbin Shi, “ Using
Ant Optimization for super scheduling in
Computational Grid, IEEE proceedings of the 2006
IEEE Asia-pasific Conference on Services Computing
(APSCC’ 06)

 [12] R. Armstrong, D. Hensgen, and T. Kidd, “The
relative performance of various mapping algorithms is
independent of sizable variances in run-time
predictions,” in 7th IEEE Heterogeneous Computing
Workshop, pp. 79–87, Mar. 1998.

 [13] Gong L., Sun X.H., Waston E.: “Performance
Modeling and Prediction of Non-Dedicated Network
Computing”, IEEE Transaction on Computer, 51 9
(2002) 1041–1055.

 [14] Maheswaran M., Ali S., Siegel H.J., Hensgen D.,
Freund R.: “Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Computing
Systems”, 8th IEEE Heterogeneous Computing
Workshop (HCW’99), San Juan, Puerto Rico, (1999)
30–44.

 [15] Pinedo M.:Scheduling: “Theory, Algorithms and
Systems”, Prentice Hall, Englewood Clifts, NJ, (1995).

 [16] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L.,
Maheswaran, M., Reuther, A.I., Robertson, J.P., et al. (2001)
‘A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems’, J. of Parallel and Distr. Comp., Vol. 61,
No. 6, pp.810–837

 [17] Stefka Fidanova and Mariya Durchova,” Ant
Algorithm for Grid Scheduling Problem”, Large Scale
Computing, Lecture Notes in Computer Science No.
3743, Springer, germany, 2006, 405-412.

Kousalya .K received the B.E. and
M.E. degrees in Computer Science
and Engineering from Bharathiar
University, Coimabatore,India, in
1993 and 2001, respectively. She is
Currently doing her Ph.D degree in
Anna Univercity, Chennai, India.
Currently she is a assistant professor
in the department of computer science
and Engineering, Perundurai,

Tamilnadu. Her area of interest are grid computing, Compiler
Design and Theory of Computation. She has presented papers in
National and International Conferences.

Dr.P.Balasubramanie has
obtained his Ph.D degree in
theoretical computer science in
the year 1996 from Anna
University, Chennai. He was
awarded junior research fellow by
CSIR in the year 1990. Currently
he is a professor in the department
of Computer Science and
Engineering, Kongu Engineering

College, Perundurai, Tamilnadu. He has published more
than 50 research articles in International/National Journals.
He has also authored six books. He has guided 3 Ph.D
scholars and guiding 15 research scholars. His area of
interest include theoretical computer science, data mining,
image processing and optimization Techniques.

