
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

304

Manuscript received April 5, 2008

Manuscript revised April 20, 2008

An Optimized Implementation of the S-Box using Residues of
Prime Numbers

Eltayeb Salih Abuelyman & Abdul-Aziz Sultan Alsehibani
CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia

Summary

The S-Box is a major step of the Advanced Encryption
Standard (AES). In the current AES, the step uses a table
lookup based on the Galois Field GF(2n) to map the plaintext to
the ciphertext with confusion. This paper proposes an AES S-
Box implementation that is based on modified lookup table.
The proposed platform for implementing the S-Box builds upon
the hypothesis that the set of residues of any prime number
forms a mathematical field. Two sparse lookup tables with
irregularly distributed entries are used to add more confusion to
the process. The inverse of any entry in either of the tables is
stored on one of them. The goal of this paper is therefore
twofold: the first is to find an alternative to the Galois Field
implementation and the second is to add more confusion to the
S-Box implementation.

Keywords: Modulo Arithmetic, Mathematical Field, VHDL,
Hardware Implementation, S-Box Confusion and Diffusion.

1. Introduction

The need for encryption continues to grow directly
proportional to the amount of data transmitted in
plaintext. The situation is worsened by the incredible
amount of time spent in hacking and the sophistication of
tools used in the process. Another point of concern is that
software-based implementations of cryptographic
algorithms fall short of achieving the expected
performance for lower ranges of transmission speeds.
The significance and applicability of hardware-based
implementations of cryptographic algorithms is therefore
of interest to researchers including members of the
VHDL design community [1]. First, a brief introduction
to the AES is provided.

1.1 The Advanced Encryption Standard

In Reference [2] the authors stated that “The Advanced
Encryption Standard (AES) committee solicited
proposals for an encryption algorithm that would become
the first choice for most situations requiring a block
cipher”. Consequently, several algorithms were
submitted and Rijndael was chosen by the American
National Institute of Standards and Technology
(NIST)[3].

1.2 The Rijndael Algorithm

For Rijndael, the length of both the block to be encrypted
and the encryption key are not fixed. They can be
independently specified to 128, 192 or 256 bits. The
number of rounds, however, varies according to the key
length. It can be equal to 10, 12 and 14 when the key
length is 128 bits, 192 bits and 256 bits, respectively [4].
The basic components of Rijndael are simple
mathematical, logical, and table lookup operations. The
latter is actually a composite function of an inversion
over Galois Field (GF) with an affine mapping. Such
structure makes Rijndael suitable for hardware
implementation [2]. Nevertheless, both hardware and
software implementations have their own drawbacks.
Hardware implementation is rigid as a block and key
sizes must be held at fixed values. However, the running
time is better compared to its software counterpart. All in
all, Rijndael is considered to be the fastest algorithm in
terms of the critical path between plaintext and cipher-
text [2].

In general, most of the low-level components of block
ciphers emphasize the functional aspect of the likes of
the S-Box. According to Vincent Rijmen, the co-designer
of the Rijndael algorithm, the Advanced Encryption
Standard (AES), which is based on the S-BOX is still
superior in security [1]. In fact, their algorithm enjoys
extremely high level of confusion and diffusion.
Furthermore, the resistance of the inverse function in the
Galois Field GF(2n) [20] to linear, differential and
higher-order differential attacks is exceptional according
to Rijmen. However, one of the disadvantages of AES is
the simplicity of description in GF (2n), which is also the
field in which the diffusion layer is linear. The AES
designers believe that this may create uneasy feelings,
but they are not aware of any vulnerability thereof.
Should such a vulnerability exist, they suggest the
replacement of the GF(2n) by another field that has
similar properties, but is not algebraic over GF(2n).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

305

A potential vulnerability that will be dealt with here is
not directly related to the aforementioned discussion. The
vulnerability discussed here stems from storing the S-
Box in an attempt to avoid the overhead of tedious real
time computations. The authors of this paper
demonstrated in a previous paper that arithmetic modulo
prime numbers provides a valid, less complex alternative
to real time computation of S-Box inverses [18]. One
may argue that a platform with less computation
complexity compared to the Galois Field option may
suffer from increase in vulnerability. However, such
tradeoff is acceptable considering the gain in the amount
of information stored and the consequences thereto.
However, more work is needed to confirm that the
vulnerability of the resulting platform is less relative to
that of the original implementation via Galois Fields.

This paper proposes the design of residues of a prime
number based S-Box. The rest of the paper is organized
as follows. In section 2, a literature survey is presented;
in section 3, the S-Box implementation using residues of
a prime number is introduced. The conclusion is given in
section 4.

2. Literature Survey

Ichikawa, Kasuya, and Mastui published a paper that
evaluates hardware implementations of the AES finalists:
Twofish [13]; Serpent [14]; RC6 [15]; Mars [16]; and
Rijndael [17]. Commenting on Mars, the authors stated
two problems: the keyed transformations take a long time
and, the algorithm is very complex. They also concluded
that RC6 gives a poor performance since the critical path
is long. The RC6, according to them, did not satisfy the
need for fast encryption. They believe Serpent has the
best security but it requires the largest circuit. They also
believed that Twofish has quite a long critical path. In
their paper, Pawel Chodowiec and Kris Gai gave data
supporting Rijndael [6]. The throughput of Rijndael
came second. However, considering all the other criteria,
Rijndael was found to be the best. Ian Harvey discussed
the selection of encryption algorithm in practical
situations in his paper [7]. AES finalists are compared
based on the factors considered for algorithm selection.
Bryan Weeks et al presented an overview of the methods
and architectures used for the AES hardware comparison
in their paper [4]. In general, throughput, area and
latency are the characteristics considered for design
tradeoffs in hardware engineering. The five finalists were
examined from the standpoint of minimum area and
maximum throughput. Interested readers may consult
reference [4] for further details. A. Satoh, S. et al
presented an AES hardware implementation they
considered to be efficient in their paper [8]. However, the
main drawback of their architecture is the critical path

time. The SubBytes, MixColumns and AddRoundKey
transformations are done for one column within one
clock cycle. This increases the critical path time. In the
next subsection, a survey of some of the VHDL
implementations is presented.

2.1 VHDL implementations

Algotronix AES Core [9] represents the second
generation of their AES VHDL technology. It is a stable
implementation of the entire algorithm. It offers
competitive density and performance on all the main
Field Programmable Gate Arrays (FPGA) families from
Xilinx, Altera and Actel. It is supplied as synthesizable
source code to allow for customer code review in
security sensitive applications. The core is highly
configurable with many implementation options but
unlike most competitive products, this is achieved using
VHDL generic parameters and does not require
customizing the VHDL code.

In their paper, Arda Yurdakul et al [10] discussed the
design and implementation of three configurable and
flexible cores of Rijndael. The three cores are; an
encryptor, a decryptor and a combined encryptor-
decryptor. These cores support not only the AES, but
also the whole Rijndael algorithm. Another feature of the
cores is that they are all designed using Electronic Code
Book (ECB) mode, meaning that every single data block
is encrypted and decrypted independently from each
other. Since ECB is the basic element of all other main
modes such as Cipher Block Chaining (CBC), Cipher
Feedback (CFB) and Output Feedback (OFB), it is easy
to extend their design and implement the other modes.
All the modules in these flexible cores are realized using
VHDL language. Some modules are designed by using
behavioral style and some are designed using Register
Transfer Language. In the next section the
implementation of the modulo arithmetic based AES is
presented.

2.2 Concerns about the Rijndael

Generally speaking for the hardware implementations of
Rijndael, Ian Harvey [2] states that the average time for
one lookup table is 3.2 nanoseconds for Rijndael (8x8). If
one is able to optimize the S-Box lookup process, then
the speed can be greatly increased. The S-Box
computation is the most time consuming operation. This
is the case because it is required in every round. Current
implementations pre-compute the S-Box and store it on a
Read Only Memory (ROM). However, in a highly
sensitive data environment, storing such information
poses a threat to its security. To harden against such

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

306

vulnerability, at least a part of the S-Box entries should
be dealt with differently.

Another concern is the speed of computation. To speed
up real-time S-Box construction, an environment other
than the Galois Field (GF) must be used. The residue
arithmetic environment takes significantly less time and
space compared to the GF as argued in reference [11].
Legitimate candidates for the residues arithmetic are
numbers that are residues of powers of two, and numbers
that are residues of a prime. The former candidate results
in table entries that are symmetric and produces columns
that follow systematic patterns. In reference [19] authors
took advantage of these patterns and reduced the table to
only a single row. That was an interesting move;
nonetheless, for devices with limited computational
resources storing the S-Box may become a better option.
This paper proposes a compromise which stores carefully
selected parts of the S-Box entries. The choice of the
stored entry enables the deduction of the rest. The
process uses arithmetic on residues of a prime number to
generate entries of the S-Box as discussed in the next
section.

3. S-Box generation using residue of a prime
arithmetic

The proposed implementation is based on residues of a
prime number. Table 1 below shows the complete S-Box
with 256 entries. These entries are the residues of the
prime number 257. The choice of 257 is logical because
residues from 1 to 255 have unique inverses.
Furthermore, these residues can be used for all block
sizes of the AES; that is, they can be used for the 256,
192 and 128 bits blocks. The residues handling within
the S-Box is discussed next.

3.1 The Residues of 257

The row and column headers of table 1 are hexadecimal
digits. For short, an S-Box table lookup is hereafter
referred to by S. Without loss of generality, and given the
hexadecimal digits i, j, k, and l, it can be seen that if S(i,
j) = kl, then S(k, l) = ij. In this case S(i, j) defines a
look up for the inverse of the two digits hexadecimal
number ij. Similarly, S(k, l) is a lookup for the two digits
inverse of the hexadecimal number kl. Both ij and kl are
stored on the table. Without loss of generality, let us take
ij = A7. The inverse of ij denoted by kl is equal to ED.
This can easily be verified by checking the entry in ith
row and jth column. One can also verify that the reverse
is also true. That is, the inverse of ED is A7. Once again,
both numbers are stored on the table.

To address the vulnerability concern of storing the S-Box
table, one needs to store only some of the entries and
figure out a way to determine the rest. Fortunately, a
50% reduction of table 1 is achievable due to the fact that
all the double digits hexadecimal numbers and their
inverses coexist on the same table. Therefore, the best
possible reduction is to store only half of the numbers
and their inverses and omit the other half. Obviously,
such reduction will result in a miss ratio that equals the
reduction percentage.

When the lookup of the reduced table fails, a deduction
process must be used to determine the sought value. In
the next section we will discuss reducing the table.

3.2 Reducing the lookup table

Without loss of generality, let us consider a couple of
lookup operations on table 1. It is clear that S(F, A) = 6E
and S(6, E) = FA. This implies that both numbers are
inverses of each other and both are stored on the table.
Since every double digits hexadecimal number and its
inverse are stored, it is logical to reduce the table by
eliminating half of the numbers and their inverses. Table
2 below shows the reduced version of table 1. While the
eliminated half is unknown, one cannot determine
whether or not a number is stored on the reduced table.

The reduced table contains 128 entries or 50% of table 1,
hence, not every lookup operation will be successful.
Obviously in the case of a lookup hit, only one operation
is sufficient. However, in the case of a miss, two
operations will be necessary. The following two steps
can be used to lookup the reduced table.

1. If S(F, A) returns a number then that number is
the inverse of FA and the second step is not
required

2. a) Search the reduced table for the cell
containing FA and return the row and column
headers of that cell.

b) Use the returned row and column headers as
the most and least significant digits respectively
of the inverse of FA

For example, performing S(F, A) on the reduced table
will return a blank (a miss) indicating that the inverse of
FA is not stored on the table but FA is. However, the cell
in which FA is stored in unknown and a search for it is
necessary. When the cell in which FA is stored is found,
a number is constructed from the row and column
headers of the cell. The row header is the most
significant digit and the column header is the least digit.
The constructed number is the inverse of FA.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

307

Applying the algorithm for the number FA will result in
the number (6E) as its inverse. While step 2(b) is
acceptable, step 2(a) is time consuming. Particularly, the
average search to locate a value in the 256 possible cells

is 128 tries which may not be acceptable for devices with
low computational resources. Handling this concern is
discussed next.

0 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 01 81 56 C1 67 2B 93 E1 C8 B4 BB 96 B2 CA 78
1 F1 79 64 E6 5A 31 DE BE 4B 48 59 EE 65 C3 3C C7
2 F9 94 BD EB 32 84 73 91 2D A3 99 06 6F 28 5F AF
3 A6 15 24 7E AD 61 77 F3 B3 F8 E2 3D 1E 3B E4 66
4 FD 57 4A EA DF 95 F6 B5 19 A9 42 18 BA F7 C9 F4
5 97 A5 D2 60 CD 7F 03 41 B8 1A 14 D1 B0 98 D8 2E
6 53 35 8B 87 12 1C 3F 05 D7 A4 B1 F5 BC E0 FA 2C
7 DA 74 7C 26 71 86 9F 36 0F 11 9E 8C 72 DC 33 55
8 FF 02 AC CE 25 8F 75 63 F0 F2 CB 62 7B 90 DB 85
9 8D 27 D5 07 21 45 0C 50 5D 2A FC C2 E5 EF 7A 76
A CC AE D3 29 69 51 30 ED E7 49 C0 FE 82 34 A1 2F
B 5C 6A 0D 38 0A 47 E9 BF 58 E8 4C 0B 6C 22 17 B7
C AA 04 9B 1D C6 E3 C4 1F 09 4E 0E 8A A0 54 83 DD
D EC 5B 52 A2 D9 92 FB 68 5E D4 70 8E 7D CF 16 44
E 6D 08 3A C5 3E 9C 13 A8 B9 B6 43 23 D0 A7 1B 9D
F 88 10 89 37 4F 6B 46 4D 39 20 6E D6 9A 40 AB 80

Table 1 Residues of the prime number 257

0 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 01 81 56 C1 67 2B 93 E1 C8 B4 BB 96 B2 CA 78
1 F1 79 64 E6 5A 31 DE BE 4B 48 59 EE 65 C3 3C C7
2 F9 94 BD EB 32 84 73 91 2D A3 99 6F 5F AF
3 A6 7E AD 61 77 F3 B3 F8 E2 3D E4 66
4 FD 57 4A EA DF 95 F6 B5 A9 BA F7 C9 F4
5 97 A5 D2 60 CD 7F B8 D1 B0 98 D8
6 87 D7 A4 B1 F5 BC E0 FA
7 DA 74 7C 86 9F 9E 8C DC
8 FF AC CE 8F F0 F2 CB 62 90 DB
9 D5 FC C2 E5 EF
A CC AE D3 ED E7 C0 FE
B E9 BF E8
C C6 E3 DD
D EC D9 FB
E
F

Table 2 Reduced version of the residues of 257

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

308

3.3 Generating an inverse for the reduced table

A second table complementing the reduced table can be
generated to avoid searching the whole reduced table at
the aforementioned step 2(b) upon a lookup miss. The
second table is called the complement of the reduced
table and is manipulated using the following rules:

I) If S(i, j) is a miss, then the hexadecimal number
ij is found on the reduced table and its inverse
can be looked up in the complement table.

II) The parameters for looking up the complement
table for the inverse of the hexadecimal number

ij in rule I) would be the 1's complement of the
binary representations of the number.

The second rule uses the complement of each of the
parameters in a miss case when the reduced table is
looked up. For example, in section 3.1 and using table 1,
it has been shown that S(F, A) = 6E and S(6, E) = FA.
Now, using table 2 one can verify that S(F, A) is a miss
and S(6, E) is a hit. It is clear that one has to use rule
number 2 in locating the inverse of FA. A quick glance
at table 3 shows that the inverse of FA is found looking
up S(0,5). Noticeably, 0 and F are the 1's complements of
F and A respectively.

0 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 80 AB 40 9A D6 6E 20 39 4D 46 6B 4F 37 89 10 88
1 9D 1B A7 D0 23 43 B6 B9 A8 13 9C 3E C5 3A 08 6D
2 44 16 CF 7D 8E 70 D4 5E 68 92 A2 52 5B
3 83 54 A0 8A 0E 4E 09 1F C4 1D 9B 04 AA
4 B7 17 22 6C 0B 4C 58 47 0A 38 0D 6A 5C
5 2F A1 34 82 49 30 51 69 29
6 76 7A 2A 5D 50 0C 45 21 07 27 8D
7 85 7B 63 75 25 02
8 55 33 72 11 0F 36 71 26
9 2C 05 3F 1C 12 8B 35 53
A 2E 14 1A 41 03
B 18 42 19
C 3B 1E 24 15
D 28 06
E
F

Table 3. Inverse of the reduced table

4. Conclusion

This paper introduces the concept of a reduced S-Box
table and its complement. The dual table solution
introduced further confusion to the S-Box process. The
proposed solution avoids directly storing the S-Box
entries to improve security while providing easy
mechanism for finding inverses. On the average, the use
of the dual table solution returns the inverse of a number
in 1.5 tries. Considering the gain in security, the
proposed solution is superior to the option of directly
storing all the entries despite the fact that every inverse is
found in the first try for the latter case. The proposed
solution is also superior to the reduced table version

which stores only half of the entries but needs 128 tries
on the average to locate an inverse.

References

[1] Swankoski, E.J., Brooks, R.R., Narayanan, V. ,
Kandemir, M., Irwin, M.J. (2004) “A Parallel
architecture for Secure FPGA Symmetric Encryption”

[2] Harvey, I., (2005) “The Effects of Multiple Algorithms in
the Advanced Encryption
Standard”, nCipher Corporation Ltd., 4’Th January 2000
Retrieved on November 6, 2005

[3] Daemen, J. and Rijmen, V. (2005) “AES Proposal:
Rijndael,” Document vers on 2, Date: 03/09/99. Retrieved
on October 20, 2005

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

309

[4] Bryan Weeks, Mark Bean, Tom Rozylowicz, Chris Ficke,
“Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms”, National
Security Agency. Retrieved on November 8, 2005

[5] Tetsuya Ichikawa, Tomomi Kasuya, Mitsuru Matsui,
“Hardware Evaluation of AES Finalists”, Kamakura
Office, Mitsubishi Electric Engineering Company
Limited.
Retrieved on October 30, 2005

[6] Pawel Chodowiec and Kris Gaj , “Comparison of the
Hardware Performance of AES candidates using
reconfigurable hardware” ,spring 2002

[7] Advanced Encryption Standard Development Effort.
http://www.nist.gov/aes.

[8] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A
Compact Rijndael Hardware Architecture with S-Box
Optimization,” Proc.Advances in Cryptology—
ASIACRYPT 2001, pp. 239-254, 2001.

[9] http://www.algotronix.com/engineering/aes1.html
[10] http://www.cmpe.boun.edu.tr/~yurdakul/papers/OzpinarD

SD03.pdf
[11] Abuelyaman, E. “Alternative S-Box Computation Method

for AES Environments.”
 Technical Report, School of Information Technology,
Illinois State University, Normal, IL.
 December 2005

[12] Guy, R. K. "Euler's Totient Function," "Does
Properly Divide ," "Solutions of

," "Carmichael's Conjecture," "Gaps
Between Totatives," "Iterations of and ," "Behavior of

and ." §B36-B42 in Unsolved
Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 90-99, 1994.

[13] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N.
Ferguson, “Twofish: A 128-
 Bit Block Cipher”, 15’Th June, 1998

[14] Ross Anderson, Eli Biham and Lars Knudsen ,” The Case
for Serpent” , 24th March 2000

[15] Ronald L. Rivest1, M.J.B. Robshaw2, R. Sidney2, and
Y.L. Yin2, “The RC6 Block
 Cipher”, August 20, 1998

[16] IBM MARS Team, “MARS and the AES Selection
Criteria”, May 15, 2000

[17] J. Daemen and V. Rijmen, “AES Proposal: Rijndael ”
Document version 2 1999 – May

[18] Abuelyaman Eltayeb and El-Affendi Mohamed “A Real
Time S-Box Construction Using
 Arithmetic Modulo Prime Numbers” Journal of Digital
Information Management, Vol 5,
 No. 6, pp 354-360, December 2007

[19] Abuelyaman Eltayeb and El-Affendi Mohamed “An
Optimized Real Time Generation of
 the S-Box Inverses Using Arithmetic Modulo Powers
of Two” International Journal of
 Computer Science and Network Security, Vol. 7, No
12, pp 240-246, December 2007

Eltayeb Salih Abuelyaman
received a PhD degree in
Computer Engineering from the
University of Arizona in 1988.
He served as faculty member at
various universities in the US
for 18 years before moving to
Prince Sultan University in
Saudi Arabia where he served
as a Faculty Member, the
Director of the Information

Technology and Computing Services and currently serves as
the Dean of the College of Computer and Information Sciences.
His current research Interest is in the areas of Computer
Networks, Information Security and Database.

Dr. Abdul-Aziz Sultan
Alsehibani received a BS
and MS degrees in Computer
Engineering from King Saud
University in 1989 and
Syracuse University in 1993
respectively. He received a
PhD degree in Computer
Science from Syracuse
University in 1999. He is
currently serving as the Dean
of Admissions and
Registration. He also served

as interim Dean for the College of Computer and Information
Sciences form 2006 to 2007. Dr. Alsehibani's research is in the
areas of Multimedia and Object Allocations, Computer
Architecture, and Networking Security.

