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Summary 

The S-Box is a major step of the Advanced Encryption 
Standard (AES).  In the current AES, the step uses a table 
lookup based on the Galois Field GF(2n) to map the plaintext to 
the ciphertext with confusion. This paper proposes an AES S-
Box implementation that is based on modified lookup table. 
The proposed platform for implementing the S-Box builds upon 
the hypothesis that the set of residues of any prime number 
forms a mathematical field. Two sparse lookup tables with 
irregularly distributed entries are used to add more confusion to 
the process. The inverse of any entry in either of the tables is 
stored on one of them.  The goal of this paper is therefore 
twofold: the first is to find an alternative to the Galois Field 
implementation and the second is to add more confusion to the 
S-Box implementation. 

Keywords: Modulo Arithmetic, Mathematical Field, VHDL, 
Hardware Implementation, S-Box Confusion and Diffusion.  

1. Introduction 

The need for encryption continues to grow directly 
proportional to the amount of data transmitted in 
plaintext. The situation is worsened by the incredible 
amount of time spent in hacking and the sophistication of 
tools used in the process. Another point of concern is that 
software-based implementations of cryptographic 
algorithms fall short of achieving the expected 
performance for lower ranges of transmission speeds. 
The significance and applicability of hardware-based 
implementations of cryptographic algorithms is therefore 
of interest to researchers including members of the 
VHDL design community [1]. First, a brief introduction 
to the AES is provided.  

1.1 The Advanced Encryption Standard 

In Reference [2] the authors stated that “The Advanced 
Encryption Standard (AES) committee solicited 
proposals for an encryption algorithm that would become 
the first choice for most situations requiring a block 
cipher”. Consequently, several algorithms were 
submitted and Rijndael was chosen by the American 
National Institute of Standards and Technology 
(NIST)[3]. 

1.2 The Rijndael Algorithm 

For Rijndael, the length of both the block to be encrypted 
and the encryption key are not fixed. They can be 
independently specified to 128, 192 or 256 bits. The 
number of rounds, however, varies according to the key 
length. It can be equal to 10, 12 and 14 when the key 
length is 128 bits, 192 bits and 256 bits, respectively [4]. 
The basic components of Rijndael are simple 
mathematical, logical, and table lookup operations. The 
latter is actually a composite function of an inversion 
over Galois Field (GF) with an affine mapping. Such 
structure makes Rijndael suitable for hardware 
implementation [2]. Nevertheless, both hardware and 
software implementations have their own drawbacks. 
Hardware implementation is rigid as a block and key 
sizes must be held at fixed values. However, the running 
time is better compared to its software counterpart. All in 
all, Rijndael is considered to be the fastest algorithm in 
terms of the critical path between plaintext and cipher-
text [2].  

In general, most of the low-level components of block 
ciphers emphasize the functional aspect of the likes of 
the S-Box. According to Vincent Rijmen, the co-designer 
of the Rijndael algorithm, the Advanced Encryption 
Standard (AES), which is based on the S-BOX is still 
superior in security [1]. In fact, their algorithm enjoys 
extremely high level of confusion and diffusion. 
Furthermore, the resistance of the inverse function in the 
Galois Field GF(2n) [20] to linear, differential and 
higher-order differential attacks is exceptional according 
to Rijmen. However, one of the disadvantages of AES is 
the simplicity of description in GF (2n), which is also the 
field in which the diffusion layer is linear. The AES 
designers believe that this may create uneasy feelings, 
but they are not aware of any vulnerability thereof. 
Should such a vulnerability exist, they suggest the 
replacement of the GF(2n) by another field that has 
similar properties, but is not algebraic over GF(2n).   



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008 
 

305

A potential vulnerability that will be dealt with here is 
not directly related to the aforementioned discussion. The 
vulnerability discussed here stems from storing the S-
Box in an attempt to avoid the overhead of tedious real 
time computations. The authors of this paper 
demonstrated in a previous paper that arithmetic modulo 
prime numbers provides a valid, less complex alternative 
to real time computation of S-Box inverses [18]. One 
may argue that a platform with less computation 
complexity compared to the Galois Field option may 
suffer from increase in vulnerability. However, such 
tradeoff is acceptable considering the gain in the amount 
of information stored and the consequences thereto. 
However, more work is needed to confirm that the 
vulnerability of the resulting platform is less relative to 
that of the original implementation via Galois Fields. 

This paper proposes the design of residues of a prime 
number based S-Box. The rest of the paper is organized 
as follows. In section 2, a literature survey is presented; 
in section 3, the S-Box implementation using residues of 
a prime number is introduced. The conclusion is given in 
section 4. 

2. Literature Survey 

Ichikawa, Kasuya, and Mastui published a paper that 
evaluates hardware implementations of the AES finalists: 
Twofish [13]; Serpent [14]; RC6 [15]; Mars [16]; and 
Rijndael [17]. Commenting on Mars, the authors stated 
two problems: the keyed transformations take a long time 
and, the algorithm is very complex. They also concluded 
that RC6 gives a poor performance since the critical path 
is long. The RC6, according to them, did not satisfy the 
need for fast encryption. They believe Serpent has the 
best security but it requires the largest circuit. They also 
believed that Twofish has quite a long critical path. In 
their paper, Pawel Chodowiec and Kris Gai gave data 
supporting Rijndael [6]. The throughput of Rijndael 
came second. However, considering all the other criteria, 
Rijndael was found to be the best. Ian Harvey discussed 
the selection of encryption algorithm in practical 
situations in his paper [7]. AES finalists are compared 
based on the factors considered for algorithm selection. 
Bryan Weeks et al presented an overview of the methods 
and architectures used for the AES hardware comparison 
in their paper [4]. In general, throughput, area and 
latency are the characteristics considered for design 
tradeoffs in hardware engineering. The five finalists were 
examined from the standpoint of minimum area and 
maximum throughput. Interested readers may consult 
reference [4] for further details. A. Satoh, S. et al 
presented an AES hardware implementation they 
considered to be efficient in their paper [8]. However, the 
main drawback of their architecture is the critical path 

time. The SubBytes, MixColumns and AddRoundKey 
transformations are done for one column within one 
clock cycle. This increases the critical path time. In the 
next subsection, a survey of some of the VHDL 
implementations is presented. 

2.1 VHDL implementations 

Algotronix AES Core [9] represents the second 
generation of their AES VHDL technology. It is a stable 
implementation of the entire algorithm. It offers 
competitive density and performance on all the main 
Field Programmable Gate Arrays (FPGA) families from 
Xilinx, Altera and Actel. It is supplied as synthesizable 
source code to allow for customer code review in 
security sensitive applications. The core is highly 
configurable with many implementation options but 
unlike most competitive products, this is achieved using 
VHDL generic parameters and does not require 
customizing the VHDL code.  

In their paper, Arda Yurdakul et al [10] discussed the 
design and implementation of three configurable and 
flexible cores of Rijndael. The three cores are; an 
encryptor, a decryptor and a combined encryptor-
decryptor. These cores support not only the AES, but 
also the whole Rijndael algorithm. Another feature of the 
cores is that they are all designed using Electronic Code 
Book (ECB) mode, meaning that every single data block 
is encrypted and decrypted independently from each 
other. Since ECB is the basic element of all other main 
modes such as Cipher Block Chaining (CBC), Cipher 
Feedback (CFB) and Output Feedback (OFB), it is easy 
to extend their design and implement the other modes. 
All the modules in these flexible cores are realized using 
VHDL language. Some modules are designed by using 
behavioral style and some are designed using Register 
Transfer Language. In the next section the 
implementation of the modulo arithmetic based AES is 
presented. 

2.2 Concerns about the Rijndael 

Generally speaking for the hardware implementations of 
Rijndael, Ian Harvey [2] states that the average time for 
one lookup table is 3.2 nanoseconds for Rijndael (8x8). If 
one is able to optimize the S-Box lookup process, then 
the speed can be greatly increased. The S-Box 
computation is the most time consuming operation. This 
is the case because it is required in every round. Current 
implementations pre-compute the S-Box and store it on a 
Read Only Memory (ROM). However,  in a highly 
sensitive data environment, storing such information 
poses a threat to its security. To harden against such 
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vulnerability, at least a part of the S-Box entries should 
be dealt with differently.  

Another concern is the speed of computation. To speed 
up real-time S-Box construction, an environment other 
than the Galois Field (GF) must be used. The residue 
arithmetic environment takes significantly less time and 
space compared to the GF as argued in reference [11]. 
Legitimate candidates for the residues arithmetic are 
numbers that are residues of powers of two, and numbers 
that are residues of a prime. The former candidate results 
in table entries that are symmetric and produces columns 
that follow systematic patterns. In reference [19] authors 
took advantage of these patterns and reduced the table to 
only a single row. That was an interesting move; 
nonetheless, for devices with limited computational 
resources storing the S-Box may become a better option. 
This paper proposes a compromise which stores carefully 
selected parts of the S-Box entries. The choice of the 
stored entry enables the deduction of the rest. The 
process uses arithmetic on residues of a prime number to 
generate entries of the S-Box as discussed in the next 
section. 

3. S-Box generation using residue of a prime 
arithmetic  

The proposed implementation is based on residues of a 
prime number. Table 1 below shows the complete S-Box 
with 256 entries. These entries are the residues of the 
prime number 257. The choice of 257 is logical because 
residues from 1 to 255 have unique inverses. 
Furthermore, these residues can be used for all block 
sizes of the AES; that is, they can be used for the 256, 
192 and 128 bits blocks. The residues handling within 
the S-Box is discussed next. 

3.1  The Residues of 257 

The row and column headers of table 1 are hexadecimal 
digits. For short, an S-Box table lookup is hereafter 
referred to by S. Without loss of generality, and given the 
hexadecimal digits i, j, k, and l, it can be seen that if  S(i,  
j)   =  kl, then S(k, l) = ij.  In this case S(i, j) defines a 
look up for the inverse of the two digits hexadecimal 
number ij. Similarly, S(k, l) is a lookup for the two digits 
inverse of the hexadecimal number kl. Both ij and kl are 
stored on the table. Without loss of generality, let us take 
ij = A7. The inverse of ij denoted by kl is equal to ED. 
This can easily be verified by checking the entry in ith 
row and jth column. One can also verify that the reverse 
is also true. That is, the inverse of ED is A7. Once again, 
both numbers are stored on the table.  

 

To address the vulnerability concern of storing the S-Box 
table, one needs to store only some of the entries and 
figure out a way to determine the rest. Fortunately, a 
50% reduction of table 1 is achievable due to the fact that 
all the double digits hexadecimal numbers and their 
inverses coexist on the same table. Therefore, the best 
possible reduction is to store only half of the numbers 
and their inverses and omit the other half. Obviously, 
such reduction will result in a miss ratio that equals the 
reduction percentage.  

When the lookup of the reduced table fails, a deduction 
process must be used to determine the sought value. In 
the next section we will discuss reducing the table. 

3.2  Reducing the lookup table 

Without loss of generality, let us consider a couple of 
lookup operations on table 1. It is clear that S(F, A) = 6E 
and S(6, E) = FA. This implies that both numbers are 
inverses of each other and both are stored on the table. 
Since every double digits hexadecimal number and its 
inverse are stored, it is logical to reduce the table by 
eliminating half of the numbers and their inverses. Table 
2 below shows the reduced version of table 1. While the 
eliminated half is unknown, one cannot determine 
whether or not a number is stored on the reduced table.  

The reduced table contains 128 entries or 50% of table 1, 
hence, not every lookup operation will be successful. 
Obviously in the case of a lookup hit, only one operation 
is sufficient. However, in the case of a miss, two 
operations will be necessary. The following two steps 
can be used to lookup the reduced table. 

1. If S(F, A) returns a number then that number is 
the inverse of FA  and the second step is not 
required 

2. a) Search the reduced table for the cell 
containing FA and return the row and column 
headers of that cell. 

b)  Use the returned row and column headers as 
the most and least significant digits respectively 
of the inverse of FA  

For example, performing S(F, A) on the reduced table 
will return a blank ( a  miss) indicating that the inverse of 
FA is not stored on the table but FA is. However, the cell 
in which FA is stored in unknown and a search for it is 
necessary. When the cell in which FA is stored is found, 
a number is constructed from the row and column 
headers of the cell. The row header is the most 
significant digit and the column header is the least digit. 
The constructed number is the inverse of FA.  
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Applying the algorithm for the number FA will result in 
the number (6E) as its inverse. While step 2(b) is 
acceptable, step 2(a) is time consuming. Particularly, the 
average search to locate a value in the 256 possible cells 

is 128 tries which may not be acceptable for devices with 
low computational resources. Handling this concern is 
discussed next. 

0 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 01 81 56 C1 67 2B 93 E1 C8 B4 BB 96 B2 CA 78 
1 F1 79 64 E6 5A 31 DE BE 4B 48 59 EE 65 C3 3C C7 
2 F9 94 BD EB 32 84 73 91 2D A3 99 06 6F 28 5F AF
3 A6 15 24 7E AD 61 77 F3 B3 F8 E2 3D 1E 3B E4 66 
4 FD 57 4A EA DF 95 F6 B5 19 A9 42 18 BA F7 C9 F4 
5 97 A5 D2 60 CD 7F 03 41 B8 1A 14 D1 B0 98 D8 2E 
6 53 35 8B 87 12 1C 3F 05 D7 A4 B1 F5 BC E0 FA 2C 
7 DA 74 7C 26 71 86 9F 36 0F 11 9E 8C 72 DC 33 55 
8 FF 02 AC CE 25 8F 75 63 F0 F2 CB 62 7B 90 DB 85 
9 8D 27 D5 07 21 45 0C 50 5D 2A FC C2 E5 EF 7A 76 
A CC AE D3 29 69 51 30 ED E7 49 C0 FE 82 34 A1 2F 
B 5C 6A 0D 38 0A 47 E9 BF 58 E8 4C 0B 6C 22 17 B7 
C AA 04 9B 1D C6 E3 C4 1F 09 4E 0E 8A A0 54 83 DD
D EC 5B 52 A2 D9 92 FB 68 5E D4 70 8E 7D CF 16 44 
E 6D 08 3A C5 3E 9C 13 A8 B9 B6 43 23 D0 A7 1B 9D 
F 88 10 89 37 4F 6B 46 4D 39 20 6E D6 9A 40 AB 80 

Table 1  Residues of the prime number 257 

0 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 01 81 56 C1 67 2B 93 E1 C8 B4 BB 96 B2 CA 78 
1 F1 79 64 E6 5A 31 DE BE 4B 48 59 EE 65 C3 3C C7 
2 F9 94 BD EB 32 84 73 91 2D A3 99  6F  5F AF
3 A6   7E AD 61 77 F3 B3 F8 E2 3D   E4 66 
4 FD 57 4A EA DF 95 F6 B5  A9   BA F7 C9 F4 
5 97 A5 D2 60 CD 7F   B8   D1 B0 98 D8  
6    87     D7 A4 B1 F5 BC E0 FA  
7 DA 74 7C   86 9F    9E 8C  DC   
8 FF  AC CE  8F   F0 F2 CB 62  90 DB  
9   D5        FC C2 E5 EF   
A CC AE D3     ED E7  C0 FE     
B       E9 BF  E8       
C     C6 E3          DD
D EC    D9  FB          
E                 
F                 

Table 2  Reduced version of the residues of 257 
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3.3 Generating an inverse for the reduced table 

A second table complementing the reduced table can be 
generated to avoid searching the whole reduced table at 
the aforementioned step 2(b) upon a lookup miss. The 
second table is called the complement of the reduced 
table and is manipulated using the following rules: 

I) If S(i, j) is a miss, then the hexadecimal number 
ij is found on the reduced table and its inverse 
can be looked up in the complement table. 

II) The parameters for looking up the complement 
table for the inverse of the hexadecimal number 

ij in rule I) would be the 1's complement of the 
binary representations of the number. 

The second rule uses the complement of each of the 
parameters in a miss case when the reduced table is 
looked up. For example, in section 3.1 and using table 1, 
it has been shown that S(F, A) = 6E and S(6, E) = FA. 
Now, using table 2 one can verify that S(F, A) is a miss 
and S(6, E) is a hit. It is clear that one has to use rule 
number 2 in locating the inverse of FA. A quick glance 
at table 3 shows that the inverse of FA is found looking 
up S(0,5). Noticeably, 0 and F are the 1's complements of 
F and A respectively. 

 

0 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 80 AB 40 9A D6 6E 20 39 4D 46 6B 4F 37 89 10 88 
1 9D 1B A7 D0 23 43 B6 B9 A8 13 9C 3E C5 3A 08 6D 
2 44 16 CF 7D 8E 70 D4 5E 68  92  A2 52 5B  
3  83 54 A0 8A 0E 4E 09 1F C4   1D 9B 04 AA
4 B7 17 22 6C 0B 4C  58   47 0A 38 0D 6A 5C 
5 2F A1 34 82   49   30 51 69 29    
6 76 7A     2A 5D 50 0C 45 21 07  27 8D 
7 85   7B     63 75  25   02  
8 55 33  72   11 0F 36   71 26    
9 2C        05 3F 1C 12  8B 35 53 
A 2E     14 1A  41 03       
B     18 42  19         
C   3B 1E          24 15  
D   28  06            
E                 
F                 

Table 3.  Inverse of the reduced table 

4.  Conclusion 

This paper introduces the concept of a reduced S-Box 
table and its complement. The dual table solution 
introduced further confusion to the S-Box process. The 
proposed solution avoids directly storing the S-Box 
entries to improve security while providing easy 
mechanism for finding inverses. On the average, the use 
of the dual table solution returns the inverse of a number 
in 1.5 tries. Considering the gain in security, the 
proposed solution is superior to the option of directly 
storing all the entries despite the fact that every inverse is 
found in the first try for the latter case. The proposed 
solution is also superior to the reduced table version 

which stores only half of the entries but needs 128 tries 
on the average to locate an inverse.  
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