
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

318

Manuscript received April 5, 2008

Manuscript revised April 20, 2008

Enhancement of Security through an Efficient Substitution-
based Block Cipher of Bit-level Implementation with Possible

Lossless Compression

Pranam Paul
Dr. B. C. Roy Engineering College

Durgapur - 713206
West Bengal, India

Saurabh Dutta
Dr. B. C. Roy Engineering College

Durgapur - 713206
West Bengal, India

A K Bhattacharjee
National Institute of Technology

Durgapur - 713209
West Bengal, India

Abstract

This paper presents a substitution-based block cipher
that considers a file to be encrypted as a bit-stream. The cipher
implements a storage efficient algorithm through which along
with encryption a reduction in size is also achieved. As
encryption is done at bit label, this algorithm can be
implemented on any kind of files. A tendency of increase in
execution time is observed. The proposed technique is compared
with the existing International Data Encryption Algorithm
(IDEA) with respect to execution time and degree of non-
homogeneity. A generalized expression for the key space is
formularized.

Key Words:
cryptography, encryption, decryption, cipher, private key,
symmetric key, plain text, cryptographic modeling.

1. Introduction

Cryptography is an essential tool of data security
through mathematical manipulation of data with an
incomprehensible format for unauthorized person.
Lossless data compression ensures storage efficiency.
Incorporation of size-reduction while implementing a
ciphering protocol introduces a special dimension in the
scope of encryption.

In this paper, a substitution-based, private-key,
block cipher, termed as “Block Substitution with the
Sequential Position of Sorted Distinct blocks on
Frequency (BSSPSDF)” is presented, which is modeled
for implementing at bit-level with decomposing equal
block length. This storage-efficient, cipher BSSPSDF is
generated smaller encrypted bit-stream in size than the
source one, but it depends on context of the plain text. If
the difference between number of distinct blocks in source
bit-stream and number of all possible combinations of
blocks containing that particular length is at least 2, 1-bit
compression is achieved for each and every occurrence of
two particular blocks in source bit-stream.

Section 2 presents the scheme followed in the
encryption technique. Section 3 describes an
implementation of the technique. Section 4 presents
results of executing the technique on some real files.

Section 5 is an analytical discussion on the technique and
draws a conclusion

2. The Scheme

This section presents a description of the actual
scheme, used during implementing BSSPSDF technique.
To encrypt a source-bit-stream, we decomposed it into
some blocks of equal length. Then each block is replaced
with some other binary blocks. Different blocks in source-
bit-stream, that is termed as Original Code are replaced by
different binary blocks, which are termed in this particular
paper as Replaced Codes, but for each same block,
proposed replaced binary block is same during encryption.
Generation of Replaced Code for each different block, i.e.
Original Code is discussed in section 2.1. Section 2.2
describes the scheme used in ciphering technique, while
Section 2.3 describes the scheme used in deciphering
technique and in section 2.4, formation of Key is
discussed

Replaced Code generation for source bit-stream-
block.

At first, source file, means source bit stream is
decomposed into blocks of equal length. Find out the
distinct blocks of particular length with their sequence in
original bit stream. Let us assume N be the number of
distinct blocks if block length is L. So 0 ≤ N ≤ 2L –1.

Step 1: We calculate the minimum numbers of bits for

representing N, say n.
 0 ≤ N ≤ 2L –1 and n ≤ L

Step 2: For all Original Code Bi (∀ 0 ≤ i ≤ N and i is an
integer) and i holds position in set of all distinct
blocks. Bi, we check i < 2 n-1 or not and assume
Replaced Code, RC = NULL.

 V = 2n – 1, P = V ÷ 2, Diff = 0
Step 3: If i < V, we put 0 at the right most position of RC

and then concatenate (n-1) bits representation of
(i – Diff) with recently generated Replaced Code

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

319

at right end and it is Replaced code, RC for Bi,
the Original Code of that blocks. Stop the
processing.
Else (means i ≥ 2 n-1)

we put 1 at the right most position of RC.
End if

Step 4: If V + P > N
We calculate required minimum number bit
for representing (N – V), say C bits. Then
concatenate C bits representation of binary
form of (i – V), with recently generated
incomplete Replaced Code, RC at right most
place.

 Else (means V + P ≤ N)
Diff =V
V = V + P
P = P ÷ 2
n = n – 1
Go to Step 3

 End if
Step 5: Like this way, set of Replaced Code of all distinct

blocks, occurred in source-bits-stream is formed.

 If N < (2L – 2), there are at least 2 blocks, of
which length of Replaced Code is less than length of
source block (i.e. L) [9].

The scheme for ciphering technique

At first, source file is convert into binary form i.e.
source bit stream which is decomposed into blocks of
equal length; say L bits where L is an integer and L ≥ 2. It
may be happened that after decomposition of total source-
bit-stream into some L bits blocks, a blocks, less than L
bits is left at last, say UB (=> length of UB < L) which is
totally unchanged during encryption.

Step 1: We are finding out all distinct bit-stream-blocks

of L bits length appeared in source bit stream
with their frequency of appearing.

 Say number of distinct block is N, So 0 ≤ N ≤ 2L
-1.

Step 2: We sort the distinct source-bit-stream blocks as
ascending order with their frequency of
appearing and keep set of distinct blocks with
recently arranged order.

Step 3: We are generating Replaced Code, discussed in
section 2.1. for each distinct block which are
already kept into key.

Step 5: Replace source bit stream with corresponding its
Replaced Code. Then generate an intermediate
cipher bit stream.

Step 6: Calculate required numbers of bits, say D0 for
which after concatenation of D0 dummy bits with

intermediate cipher bit stream and unchanged
block i.e. UB, its length will be multiple of 8.

Step 7: Finally to generate cipher bit stream concatenate
maintaining following sequence: UB, D0 numbers
of 0 (ZERO) as dummy bits and intermediate
cipher bits stream. Accordingly from cipher bit
stream, cipher text will be generated.

The scheme for deciphering technique

After receiving the target block and key, receiver
comes to know information for each block, which was
sending. After receiving the required information, the
decryption authority performs the task of decryption.

From key, receiver comes to know source block
length, say L, unchanged block length, say NUB, number
of dummy 0, say D0 and number of distinct blocks,
appeared in source bit stream, say N and obviously total
set of distinct blocks in source bit stream with their
sequence.

So 0 ≤ N ≤ 2L –1.

Step 1: Calculate minimum number of bits, required to

represent N, say n.
 0 ≤ N ≤ 2L –1 and n ≤ L.

Step 2: Calculate two integer C and P using following
way:

If N = 2L – 1 or N = 2L – 2 then
 C = 0 and P = L
Else
 C = 1, V = 2n – 1

 increment = V ÷ 2, P = 0
 While (V + increment <N)
 {
 V = V + increment
 increment = increment ÷ 2
 C = C + 1
 }
 While (2P < N – V)
 {
 P = P +1
 }
 P = P – 1

Step 3: Convert binary form of cipher text and get target
bits stream. Take NUB bit from beginning of
encrypted bits stream, say UB. Leave next D0 bits.

Step 4: Take next C bits stream from target bit stream.
Step 5: If there is at least one 0 (ZERO) in those C bits

stream then take next (n – C) bits and
append at last of those C bits steam, it is
treated as K, means K is bit stream block.

Else (means all C bits are 1 or C = 0)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

320

 Take P next bits and append at last of those
C bits steam, it is treated as K, means K is
bit a stream block.

Step 6: Replace the Replaced Code K with Original
Code, discussed into section 2.1.

Step 7: Take next C bit unprocessed blocks from target
bit stream. Reaching end of the target bit stream
exit from this process and getting incomplete
deciphering bit stream, otherwise go to Step 4.

Step 6: Finally, concatenate UB with incomplete
deciphering bit stream at end and generate
complete deciphering bits stream as well as also
generate deciphering text.

Key generation

For correct decryption for cipher text, correct
Key is essential. For this algorithm key contents 5
segments. 1st segment denotes length of the blocks, while
2nd segment contents number of distinct blocks appeared
in source bits stream. 3rd segment holds number of
unchanged bits during encryption. How many dummy bits
(i.e. 0) are been added to make length of encrypted bit
stream as multiple of 8, is kept in 4th segment and last
segment, means 5th segment holds set of all distinct bits

blocks with their proper length and sequence, occurred in
source bits stream.

If L bit blocks is taken for encrypting source bit

stream. Find out an integer; say d for which 2d – 1 < L ≤ 2d

– 1. Key structure is shown in figure 2.4.1.

3. An Implementation

We consider the plaintext P as “Encrypt”. The
stream of bits, S, representing P is as follows:
0100010101101110011000110111001001111001011100
0001110100.
 Now S is decomposed into some block with 4
bits length. These are 0100, 0101, 0110, 1110, 0110, 0011,
0111, 0010, 0111, 1001, 0111, 0000, 0111 and 0100.
Section 3.1 shows generation of Replaced Code of
decomposed blocks. In section 3.2, encryption is been
discussed while section 3.3 is used to discuss about key
formation and at last, how correct decryption is been done,
discussed in section 3.4.

3.1 Generation of Replaced Code

There are 9 distinct blocks in set of all

decomposed blocks. Replaced Code for each distinct
block is shown in table 3.1.1. by using the algorithm,
discussed in section 2.1.

Table 3.1.1

Replaced Code for distinct blocks

Serial No.
(Counting

starting
with 0)

Distinct
Block in
sorted

ordered
on their

frequency

Frequency
of the

distinct
blocks

Replaced
Code

0 0101 1 0000
1 1110 1 0001
2 0011 1 0010
3 0010 1 0011
4 1001 1 0100
5 0000 1 0101
6 0100 2 0110
7 0110 2 0111
8 0111 4 1

 Segment

1st

Description

Binary form of L – 1 with d
bits representation.

2nd L bits binary form of the
number of distinct blocks
appeared in source-bit-
stream counting starting
from 0.

3rd d bits binary form of
number of unprocessed bits

4th d bits binary form of
number of dummy 0
(ZERO) to be added for
making total encrypted
string length as multiple of
8.

5th All distinct blocks with
their proper sequence and
length, i.e. L

Size

d

L

d

3

L × 2L

Total Size of Key: 2d + (2L + 1) × L + 3

Picture 2.4.1
Key Structure

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

321

3.2 Encryption

For the encryption Replaced Code, is very
essential. Total encryption process has been shown in
table 3.2.1.

Table 3.2.1
Encryption Process

Source Bit
Block

Encrypted
bit Block by

Replaced
Code

Incomplete
Encrypted
bit Stream

0100 0110
0101 0000
0110 0111
1110 0001
0110 0111
0011 0010
0111 1
0010 0011
0111 1
1001 0100
0111 1
0000 0101
0111 1
0100 0110

01100000
01110001
01110010
10011101
00101011
0110

After generating encrypted bit stream, unchanged block
and dummy bits will be added of with the incomplete
encrypted bits stream at beginning. Here is no unchanged
block and 4 dummy bits would be required for making
length of encrypted bits stream, multiple of 8. So
encrypted bits stream is
0000011000000111000101110010100111010010101101
10, from which cipher text, “♠•↨)╥╢” is been generated.

3.3 Key Generation

For this particular example, source bit stream is
decomposed into some blocks, having equal length i.e. 4
bits. So 3 bits are required to represent binary form of 4.
Key generation is been shown table 3.3.1 As there 9
distinct 4 bits blocks, but for this example 5th segment
contains 4 × 24 = 64, so after 4 × 9 = 36 bits, add 64 – 36
= 28 numbers of 0 (ZERO) as 28 bits.

Table 3.3.1
Key Formation of the 6-bit block

Segment
Description

of the
segment

Number
of

required
bits

Significant
Bits

1st Length of the
blocks – 1 3 100

2nd
Number of

distinct
blocks

4
1000

(counting
starting from 0)

3rd
Number of
unchanged

blocks
3 000

4th Numbers of
dummy bits 3 100

5th
Set of all
distinct
blocks

4 × 24
= 64

0101111001110
0101001000001
0001100011000
0000000000000
000000000000

So for this particular example, 77 bits private key will be
100100000010001011110011100101001000
00100011000110000000000000000000000000000.

3.4 Decryption

After receiving encrypted text, ♠•↨)╥╢” and
key which is very essential for decryption such that
original text will back.
Step 1: From 1st, 2nd, 3rd and 4th segment of key, block

length (say L), number of distinct blocks in target
bits stream (say N), number unchanged bits (say
NUB) and number of added dummy bits (say D0)
are come to know. Here L = 4, N = 9, NUB = 0,
D0 = 4.

Step 2: From 5th segment of key, first N numbers of L bits
blocks are taken to generate Replaced Code table
which same as table 3.1.1.

Step 3: Using step 2 of decryption process, discussed in
section 2.3, calculate value of C and P.
Here C = 1 and P = 0

Step 4: Keep NUB bits from beginning of target blocks into
UB which is unchanged blocks and leave next D0
bits from target bits stream.

 Here UB = NULL
Then total decryption process for the target blocks,
01100000011100010111001010011101001010110110 is
shown in table 3.4.1.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

322

Table 3.4.1
Decryption Process

R
O
U
N
D

Take
next

C
(=1)
bits

If all C bits
are 1, take
next P (=0)

bits else
next
L-C

(4-1=3)
bits.

Replaced
Code

(Adding
previous

two
columns)

Distinct
Blocks

code from
table 3.1.1

Decrypted
bits

stream

1 0 110 0110 0100
2 0 000 0000 0101
3 0 111 0111 0110
4 0 001 0001 1110
5 0 111 0111 0110
6 0 010 0010 0011
7 1 1 0111
8 0 011 0011 0010
9 1 1 0111

10 0 100 0100 1001
11 1 1 0111
12 0 101 0101 0000
13 1 1 0111
14 0 110 0110 0100

0100
0101
0110
1110
0110
0011
0111
0010
0111
1001
0111
0000
0111
0100

From table 3.4.1, received decrypted bits stream,

01000101011011100110001101
110010011110010111000001110100 is same as source
bits stream so obviously decrypted text “Encrypt” is
same as plane text.

4. Results

 Here we have compared BSSPSDF with
International Data Encryption Algorithm (IDEA) to
establish a comparative analytical report that is helpful to
understand strength and weakness of BSSPSDF. A brief
idea on IDEA is discussed in section on 4.1 whereas
section 4.2 describes comparative reports with IDEA on
the basic of different parameters.

4.1 International Data Encryption Algorithm

(IDEA)
 International Data Encryption Algorithm is a
128-bit private key cipher, which is implemented in bit
level with equally decomposed 64 bit blocks of plain text
depending on modular arithmetic. There are regenerated
16-bit 52 sub keys from 128 bits key based on rotational
replacement and some particular rules, say k1, k2, k3 … k52.
A 64-bit block of plain text is decomposed into 4 16-bit
sub blocks; say P1, P2, P3 and P4. In IDEA, there are 8

rounds which have being followed same procedure. Each
round takes output of previous blocks and 6 sub keys,
according to the number of round, except 1st round, takes
4 sub blocks. Entire process of encryption through IDEA
is shown in figure 4.1.1. After completing the total
process we get a 64-bit block which is an encrypted block
of that 64 bit block of plain text. Same things will be done
on each and every generated blocks of plain text and
finally we get encrypted text which is same in size of the
plain text [7] [8].

………

 .

k50

k1
 .

+

 .
+

P1 P2

k2

k3
 . +

P3 P4

k6

+ +

 .k5 +

+

+
+ +

Round 1

Round 2
k7
k8
k11

k9

k10
k12

k4

k49
 .

+

k51 +
 .

Round 8 k43

k44

k45

k46

k47

k48

k52

E1 E2 E3 E4

64-bit blocks from Plain Text

64-bit block of Encrypted Text
+ Exclusive OR (XOR) operation

 Multiplicative Modulo
 i.e. a b = (a × b) Mod (216+1) .

 Additive Modulo
 i.e. a b = (a + b) Mod 216

+
+

Figure 4.1.1
Process of Encryption through IDEA

………

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

323

4.2 Comparative Report
Both the proposed BSSPSDF protocol (with 6-bit

block size in this paper) and exiting IDEA have been
implemented on a number of data files varying types of
content and sizes of a wide range, shown in table 4.2.1.

Table 4.2.1

Set of Files with Size
Sl. No. Source File Name Original File Size

1 a.txt 14337
2 b.txt 73710
3 c.txt 131776
4 Des_56.cpp 14983
5 M.txt 48430
6 Calc.exe 114688
7 hh.exe 10752
8 Win.com 18432
9 Ansi.sys 9029
10 Watch.sys 14592
11 Blue.bmp 1272
12 ZAPO.BMP 9522

Accordingly the observations on the following
points have been made:

1. Compression achieved in Percentage:

To prove, this technique is performed as
encryption technique as well as compressed original file
in size, table 4.2.2 shows the compression between
proposed technique BSSPSDF and IDEA on the basis of
rate of compression in size. No compression in encrypted
file size is accorded during encryption for IDEA. Due to
the dependency on context of source file, compression is
achieved for some source files and some encrypted files
are remained same in size during the implementation of
BSSPSDF. Serial numbers for table 4.2.1 and table 4.2.2
are same for corresponding files.

Table 4.2.2

Relationship between Source and Encrypted File
Size

For BSSPSDF For IDEA Sl.
No. Encrypted

File Size
Rate of

Compression
Encrypted
File Size

Rate of
Compression

1 11009 23.214% 14337
2 55280 25.004% 73710
3 102489 22.225% 131776
4 13368 10.781% 14983
5 36754 24.108% 48430
6 114688 0.000% 114688
7 10752 0.000% 10752
8 18432 0.000% 18432
9 8306 8.011% 9029

10 14592 0.000% 14592
11 1201 5.550% 1272
12 9149 3.9021% 9522

0.000%

2. Encryption and Decryption Time* :
In Table 4.2.3, a comparison on basis of

encryption time with their file size between BSSPSDF
and IDEA has been shown here on the same set of files,
used in Table 4.2.1 for evaluating the computational
overhead.

Table 4.2.3
Encryption Time for BSSPSDF and IDEA

Sl.
No.

File
Size

Encryption time
for BSSPSDF

Encryption
time for IDEA

1 14337 1.10989011 2.4725274725
2 73710 4.50149011 12.6923076923
3 131776 10.3736264 22.5274725275
4 14983 1.39989011 2.5824175824
5 48430 3.39989011 8.3516483516
6 114688 6.18468112 17.5274725275
7 10752 1.10989011 1.6483516484
8 18432 1.89989011 2.8021978022
9 9029 1.00890115 1.3736263736

10 14592 1.39989011 2.2527472527
11 1272 0.05494505 0.2197802198
12 9522 1.10989011 1.4835164835

A graphical representation for the table 4.2.3 is
shown in figure 4.2.1 with continues line and dotted line
for encryption time of BSSPSDF and IDEA, respectively.
According to the graph, there is a tendency that
encryption time for BSSPSDF and IDEA increases with
file size. But required time for the encryption through
BSSPSDF is much smaller than encryption time for IDEA.

0

5

10

15

20

25

12
72

95
22

14
33

7
14

98
3

48
43

0

11
46

88

File Size

B
SS

PS
D

F
(C

on
tin

uo
us

 L
in

e)
ID

EA
 (D

ot
te

d
Li

ne
)

Figure 4.2.1

Relationship between Encryption Time of
BSSPSDF and IDEA

*The observations were made using personal computer
with specifications of 128 MB SD RAM, 1.5 GHz.
processor and with Windows XP as the platform.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

324

3. Pearsonian Chi-Square Value:
We check the non-homogeneity of the source file

and the corresponding encrypted file through the
“Pearsonian Chi-Square Value”, also being termed as
“Goodness-of-fit chi-square test”, with the formula λ2 = Σ
{(fo – fe)2 / fe}, where fe and fo respectively being
frequency of a character in source file and that of the
same in the corresponding encrypted file

Table 5.1

Chi-Square Value for BSSPSDF and IDEA
Sl.
No.

Chi-Square Value
for BSSPSDF

Chi-Square
Value for IDEA

1 12703.404583 11954.841494
2 65300.567094 61455.579243
3 118001.859896 111446.333333
4 35156.146845 33284.270177
5 43600.152096 40947.847106
6 42017959.919497 21150819.758794
7 328456.244148 229908.574337
8 658661.149455 477534.450116
9 624586.280769 14823.865385

10 246783.852664 204617.010065
11 1395.301800 1334.211477
12 214286.063093 15698.555711

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 7 8 9 10 11 12
Sequence Number of Files

B
SS

PS
D

F
(W

hi
te

 B
ar

)
ID

EA
 (B

la
ck

 B
ar

)

Figure 4.2.2

Comparison between Chi-Square value BSSPSDF (White
Bar) and IDEA (Black Bar)

Chi-square value of BSSPSDF and IDEA for the set of
same files which are used in table 4.2.1 with maintaining
the Sl. No. for the respective files, have been compared in
table 4.2.4. Among them figure 4.2.2 shows comparison
of eleven files, except Calc.exe. As chi-square values of
BSSPSDF and IDEA for Calc.exe are respectively
42017959.919497, 21150819.758794 which are very high
with respect to other files, so for clear display of figure

4.2.2 comparisons on calc.exe file is not in the figure.
White bar shows chi-square value of BSSPSDF of those
eleven files, while black bar are been used for chi-square
value of IDEA. That indicates chi-square value for the
technique is generally higher than IDEA.

Apart form these there comparative observations;

observation also on the following was made:

Graphical Test for Frequency Distribution :

We check the degree of security of the proposed

protocol against the cryptanalytic attack using frequency
distribution, where the frequency of the all 256 characters
in source file and their corresponding encrypted file are
compared graphically and we want to observe whether the
exists any fixed relation ship between of the a character in
both source and encrypted file.

To established this relationship between plain
text and cipher text, figure 4.2.3 shows the distribution of
the frequency (along Y axis) of the set of characters with
their ASCII value (along X axis) of arbitrarily chosen a
filer from table 4.2.1, ansi.sys and its encrypted file. Blue
pillar represents the frequency of characters appeared in
source file or plain text whereas red pillar is measured the
frequency of characters in encrypted file or cipher text.
From the figure 4.2.3 it is clearly shown that frequency of
characters in plain text and cipher text are well distributed.

5. Analysis and Conclusion

Using this BSSPSDF private key technique, we
can encrypt any size of file, as well as any kind of file, as
BSSPSDF protocol is implemented in bit-level. This
protocol not only encrypts the source bit-stream but the
protocol is storage efficient also. Obviously the rate of

Character
Figure 4.2.3

Frequency Distribution of Characters in
“ansi.sys” and Corresponding Encrypted File

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

325

compression will depend on the content of file. If number
of distinct blocks appeared in source file is at least 2 less
than number of all possible combinations of blocks, with
that particular block size, there are at least 2 blocks for
which compression will occur for 1 bit. Necessity of
insertion of a few dummy bits to make the target file of
size as the multiple of 8 bits makes the practical rate of
compression as lesser than the rate of compression to be
achieved theoretically.

Encryption with compression can also be
achieved without sorting the distinct appeared blocks in
plaintext with their frequency. But in an attempt to
increase the rate of compression during encryption
without hampering the level of security, we sort the
distinct appeared blocks with their frequency in ascending
order. There is a probability of having lesser number of
bits in replaced codes for those original codes, which
appear at the bottom of the sequence of the set of distinct
appeared blocks from the plaintext. So for sorting in
ascending order of distinct blocks with frequency of
appearing, more frequently appeared blocks come in
bottom of the sequence. Accordingly, in encrypted text
more original blocks are replaced by the corresponding
Replaced Codes which contain lesser bits than respective
Original Codes. Obviously the rate of compression during
encryption will be higher.

If difference of number of all possible
combinations of blocks of particular block-size and
number of distinct blocks occurred in source bit- stream is
very high, it will result in a higher rate of compression
during encryption. For large block size, probability of
getting that difference is also very high. So compression
during encryption is highly probable. Accordingly, it
requires a larger key space. A set of sizes for the key with
the respective block sizes is shown in table 5.1.

Table 5.1

Key Size for different blocks
Block
Size

(L)

Minimum
Number bits to
represent block

size (d)

Number of
Possible
different
blocks

Key size
2d + (2L + 1) ×

L + 3

4 3 16 77
6 3 64 399
8 4 256 2067

Additionally, if we use X-bit key, 2X number of

possible keys may be generated, from which only one
option is used for correct decryption. So, complexity of
key breaking increases with increasing value of X. A
processor, capable of doing 106 encryptions per
millisecond, requires 5.9 × 1030 years to break a 168-bit
key. Encryption time is not also increasing with increased
key size, shown in table 5.1. So, 399-bit or more than

399-bit key is recommended for correct implementation
of the technique [11].

 For large block size, probability of rate of
compression at the time of encryption is high. For bigger
block size, more compression is achieved and key
breaking is practically impossible. Due to that large block
size is recommended for increasing complexity and
getting more efficient effect. So this algorithm ensures
high security during minimum overhead through network
[2] [3] [5] [11].

Acknowledgement:

Let us express our heartiest gratitude to
respective authorities of Dr. B. C. Roy Engineering
College, Durgapur, West Bengal, INDIA and National
Institute of Technology (NIT), Durgapur, West Bengal,
INDIA for providing resources used during the entire
development process.

References

[1] J. K. Mandal, S. Dutta, “A 256-bit recursive pair parity

encoder for encryption”, Advances D -2004, Vol. 9 nº1,
Association for the Advancement of Modelling and
Simulation Techniques in Enterprises (AMSE, France),
www. AMSE-Modeling.org, pp. 1-14

[2] Pranam Paul, Saurabh Dutta, “A Private-Key Storage-

Efficient Ciphering Protocol for Information
Communication Technology”, National Seminar on
Research Issues in Technical Education (RITE), March 08-
09, 2006, National Institute of Technical Teachers’ Training
and Research, Kolkata, India

[3] Pranam Paul, Saurabh Dutta, “An Enhancement of

Information Security Using Substitution of Bits Through
Prime Detection in Blocks”, Proceedings of National
Conference on Recent Trends in Information Systems
(ReTIS-06), July 14-15, 2006, Organized by IEEE Gold
Affinity Group, IEEE Calcutta Section, Computer Science
& Engineering Department, CMATER & SRUVM Project-
Jadavpur University and Computer Jagat

[4] Dutta S. and Mandal J. K., “A Space-Efficient Universal

Encoder for Secured Transmission”, International
Conference on Modelling and Simulation (MS’ 2000 –
Egypt, Cairo, April 11-14, 2000

[5] Mandal J. K., Mal S., Dutta S., A 256 Bit Recursive Pair

Parity Encoder for Encryption, accepted for publication in
AMSE Journal, France, 2003

[6] Dutta S., Mal S., “A Multiplexing Triangular Encryption

Technique – A move towards enhancing security in E-
Commerce”, Proceedings of IT Conference (organized by
Computer Association of Nepal), 26 and 27 January, 2002,
BICC, Kathmandu

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

326

[7] William Stallings, Cryptography and Network security:

Principles and practice (Second Edition), Pearson
Education Asia, Sixth Indian Reprint 2002.

[8] Atul Kahate (Manager, i-flex solution limited, Pune, India),

Cryptography and Network security, Tata McGraw-Hill
Publishing Company Limited.

[9] Mark Nelson, Jean-Loup Gailly, The Data Compression

Book. BPB Publication

[10] S Mal, J K Mandal and S Dutta, “A Microprocessor Based

Encoder for Secured Transmission”, Conference on
Intelligent Computing on VLSI, Kalyani Govt. Engineering
College, 1-17 Feb, 2001, pp 164-169

[11] Saurabh Dutta, “An Approch Towords Development of

Efficient Encryption Technique”, A Doctoral thesis
submitted to the university of North Bengal for the Degree
of Ph.D., 2004

[12] Pranam Paul, Saurabh Dutta, A. K. Bhattacherjee, “An

Approach to ensure Security through Bit-level Encryption
with Possible Lossless Compression”, International Journal
of Computer Science and Network Security, Vol. 8 No. 2,
pp 291 – 299.

Pranam Paul is a Lecturer of Dr.
B. C. Roy Engineering College,
Durgapur, West Bengal, INDIA in
the department of Master in
Computer Application. He had
completed his master degree in
Computer Application in 2005
under West Bengal University of
Technology, INDIA. He was
lecturer in IT department of

MCKV Institute of Engineering College, Liluah, West
Bengal, INDIA. Then he had joined in MCA department
in Bengal College of Engineering and Technology,
Durgapur in same post. Now he is a registered Ph.D.
scholar in Electronic and Communication Engineering
department of National Institute of Technology, Durgapur
in the field of Cryptography and Network Security.
He has total 11 publications in conference proceedings
and journals of national and international level except this
one.

Saurabh Dutta is Ph.D.
(Computer Science) form
University of North Bengal,
India. His doctoral work was
related to the cryptography. He
was awarded Ph.D. 2006 for his
dissertation entitled “An
Approach Towards Development
of Efficient Encryption
Techniques”. Having around 30
publications in conference

proceedings and journal of national and international
levels, he is involved in supervising scholars in
cryptography-related areas. Having been in teaching
profession for last 9 years, currently he is Associate
Professor and Head in Department of Computer
Application in Dr. B. C. Roy Engineering College,
Durgapur-06, INDIA.

A. K. Bhattacharjee did his Ph.D.
in Engineering from Jadavpur
University, Kolkata, India in 1989.
Presently he is associated with
Department of Electronics and
Communication Engineering in
National Institute of Technology
(NIT), Durgapur, INDIA as
Professor. A B. E. (1983) from the
then Shibpur B. E. College, INDIA,

he did his M. E. from Jadavpur University, INDIA. Senior
academicians, having been involved in teaching and
research for last 20 years, his current areas of research are
Microstrip Antenna and cryptography.

