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Summary 
The Geographic Information System (GIS) uses the spatial 
database for its data storing purposes. As the spatial database 
takes huge space, the size and data retrieval cost of database 
increases. That’s why we have to use some optimized technique 
to retrieve the data from the database. Also, we can apply the 
distributed database concept to the spatial database to achieve 
better performance. After using the optimization technique and 
the distributed database concept we can achieve better query 
processing at affordable cost. 
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1. Introduction 

A GIS is a system for capturing, storing, analyzing, and 
managing data and associated attributes which are 
spatially referenced to the earth. That means, it is a 
computer system capable of integrating, storing, editing, 
analyzing, sharing and displaying geographically-
referenced information. Geospatial data separate GIS from 
other information Systems. For ex: Take the example of 
roads. To describe a road, we refer to its location (i.e. 
where it is) and its characteristics (e.g. length, name, speed 
limit and direction). The location (or geometry or shape) 
represents Spatial Data, where as the characteristics are 
attribute data. Thus, any geospatial data has 2 components:   
• Spatial data • Attribute data. 
 
Spatial data: It describes the locations of spatial features, 
which may be discrete or continuous. Discrete features are 
individually distinguishable features that do not exist 
between observations. This includes Points (e.g. wells), 
lines (e.g. roads) and areas (e.g. land use types). 
Continuous features are features that exist spatially 
between observations. Examples of continuous features 
are: elevation and precipitation. The data models used for 
the spatial data are: 
Vector Data Model: Data are composed of points, lines, 
and polygons. These features are the basic features in a 

vector-based GIS, such as ArcGIS9. The basic spatial data 
model is known as "arc-node topology." One of the 
strengths of the vector data model is that it can be used to 
render geographic features with great precision. However, 
this comes at the cost of greater complexity in data 
structures, which sometimes translates to slow processing 
speed.  
 
Raster Data Model: Raster datasets are composed of 
rectangular arrays of regularly spaced square grid cells. 
Each cell has a value, representing a property or attribute 
of interest. While any type of geographic data can be 
stored in raster format, raster datasets are especially suited 
to the representation of continuous, rather than discrete, 
data. 
 
Attribute Data: Attribute data describe the characteristics 
of spatial features. For raster data, each cell has a value 
that corresponds to the attribute of the spatial feature at 
that location. A cell is tightly bound to its cell value. For 
vector data, the amount of attribute data to be associated 
with a spatial feature can vary significantly. 
 
Data Layers: In most GIS software data is organized in 
themes as data layers. This approach allows data to be 
input as separate themes and overlaid based on analysis 
requirements. This can conceptualized as vertical layering 
the characteristics of the earth's surface. The overlay 
concept is so natural to cartographers and natural resource 
specialists that it has been built into the design of most 
CAD vector systems as well.  
 
2. GIS Data Management: 
 
Traditionally map data have been recorded in the form of 
lines and symbols on paper, and descriptive data or 
attributes have been restored in written form on file cards 
and various documents. These traditional data 
documentations are organized in various systems of filing 
cabinets and drawers, and each data repository may be 
regarded as a “library” or “bank” from which users may 
retrieve information. A data bank may either be available 
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to a wide range of users or restricted to only a few 
authorized users. In addition, the data deposited may be in 
the form of one or more files.  
However, there is no single or a blue print to manage GIS 
database, but a logically organized structure for the data 
management system is clearly important. Ideally, 
implementing GIS database management can be viewed as 
a process that begins with needs assessment, continues 
through data acquisition and analysis, interpretation, data 
archiving and data sharing with various users and 
organizations [Fig 1]. 
 
 

 
 
 
Figure 1 Lifecycle of a GIS database 
 
The processes of database management system can be 
categorized into six components as follows: a) An 
inventory of existing data and resources will have to be 
compiled, and priorities for implementation set. b) Data 
will have to be designed and organized by establishing 
structure within and among data sets that will facilitate 
their storage, retrieval and manipulation. c) Procedures 
will be required for data acquisition and quality assurance 
and quality control (QA/QC). d) Data set documentation 
protocols, including the adoption or creation of metadata 
content standards and procedure for recording metadata, 
will need to be developed. e) Procedures for data archival 
storage and maintenance of printed and electronic data 
will have to be developed, and f) An administrative 
structure and procedures will have to be developed so 
responsibilities are clearly defined. 
GIS Data are divided logically into two categories: 
geometric data and attribute data. They can also be stored 
physically different although the relationships between the 
two categories of data must be preserved regardless of 
whether the division is physical or logical. This can be 
satisfied through one of the following four approaches:  
 

• Two separate database systems, one for 
geometrical data and one for attribute data;  

• A single database system storing both categories 
of data;  

• One database for geometrical data connected to 
several different databases for attribute data;  

• Several databases for geometrical data and 
attributes joined into one system.  
A  Hybrid system stores geometrical data and attribute 
data in two separate databases [figure 2].  Commercially 
available relational DBMS is generally employed for 
attribute data for this purpose. The system may include 
both raster and vector data. To increase the search and 
record speed, the geometrical data are often split into 
different layers and aerial units (i.e. map sheets, etc.) for 
storage.  
 

 
 
 
Figure 2 Hybrid system of database management 
 
A spatial data structure is associated with each spatial 
attribute in the schema and is used to store all data 
instances of that spatial attribute over the set of 
homogeneous objects. The spatial data structure is used as 
an index for spatial objects as well as a medium for 
performing spatially- related operations. Depending on the 
attribute’s spatial data type (e.g. region, line, or point), a 
spatial data structure is selected for handling. 
The data instances of the set of non-spatial attributes are 
stored in database relations. Each tuple in the relation 
corresponds to one object. The following figure illustrates 
how we link spatial and non-spatial attribute values of an 
object. In particular we maintain two logical links between 
the spatial and non-spatial data instances of an object: 
forward and backward links. 
Forward links are used to retrieve the spatial information 
of an object given the object’s non-spatial information. On 
the other hand, backward inks are used to retrieve the non-
spatial information of an object given the object’s spatial 
information. Maintaining forward and backward links 
between the spatial and non-spatial aspects of a set of 
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objects facilitates browsing in the two parts as well as 
permits efficiently query processing. 
A commonly used view of data approach is the three-level 
architecture suggested by ANSI/SPARC (American 
National Standards Institute/Standards Planning and 
Requirements Committee). The three views are: 

• The external level is the view that the 
individual user of the database has. This 
view is often a restricted view of the 
database and the same database may 
provide a number of different views for 
different classes of users.  

• The conceptual view is the information 
model of the enterprise and contains the 
view of the whole enterprise without any 
concern for the physical implementation. 
This view is normally more stable than 
the other two views.  

• The internal view is the view about the 
actual physical storage of data. It tells us 
what data is stored in the database and 
how. At least the following aspects are 
considered at this level 

The challenges in the standard database model are: 
• Optimization is generally done on spatial data 

and not on attribute data. 
• Attribute data constitutes a major portion of a 

spatial query. There fore, optimization on spatial 
data takes more time as compared to RDBMS. 

• Huge databases require proper optimization for 
efficient search. 

To cover the above challenges of the standard database 
architecture, we proposed new database architecture 
[figure 3] by introducing an extra schema “Intelligent 
Schema” in between the External schema and the 
Conceptual Schema. 
 
  
 
 
 
 
 
 
 
 
 
 
Proposed Database Architecture 

The advantages of the Model we have proposed are: 
Intelligent preprocessing and Optimization of attribute 
data, which are shown in the following model: 
 
 

 
 
3. Query Optimization: 
 
Query optimization is one of the most important tasks of a 
relational DBMS. One of the strengths of relational query 
languages is the wide variety of ways in which a user can 
express and thus the system can evaluate a query. A given 
query can be evaluated in many ways and the difference in 
cost between the best and worst plans is our main theme of 
discussion. Realistically, we cannot expect to always find 
the best plan, but we expect to consistently find a plan that 
is quite good.  
Queries are parsed and then presented to a query optimizer, 
which is responsible for identifying an efficient execution 
plan. The optimizer generates alternative plans and 
chooses the plan with the least estimated cost. 
The space of plans considered by a typical relational query 
optimizer can be understood by recognizing that a query is 
essentially treated as a σ – Π - ∞ algebra expression, with 
the remaining operations (if any) carried out in the result 
of the σ – Π - ∞ expression. Optimizing such a relational 
algebra expression involves two basic steps: 

• Enumerating alternative plans for evaluating the 
expressions. Typically, an optimizer considers a 
subset of all possible plans because the number of 
possible plans is very large. 

• Estimating the cost of each enumerated plan and 
choosing the plan with the lowest estimated cost. 

A query evaluation plan (or simply plan) consists of an 
extended relational algebra tree, with additional 
annotations at each node indicating the access methods to 
use for each table and the implementation method to use 
for each relational operator. 

Consider the following SQL query: 
SELECT S.sname FROM Reserves R, Sailors S 

WHERE R.sid=S.sid AND R.bid=100 AND S.rating >5 
This query can be expressed in relational algebra as 
follows: 
Π sname(σ bid=100 ^ rating >5 (Reserves ∞sid=sid Sailors)) 
This expression is shown in the form of a tree as: 
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The algebra expression partially specifies how to evaluate 
the query – we first compute the natural join of Reserves 
and Sailors, then perform the selections, and finally 
project the sname field. 
 
4. Query Optimization in spatial data: 
 
Consider the following two schemas for the further 
discussion. 

CREATE TABLE LAND_USE ( NAME 
CHAR(40), ADDRESS CHAR(100),  
LOCATION REGION, USAGE CHAR(40), ZIP 
NUMBER, IMPORTANCE NUMBER); 
CREATE TABLE ROADS (ROAD_ID 
NUMBER, ROAD_NAME CHAR(30),  
ROAD_TRAFFICABILITY NUMBER, 
ROAD_LANES NUMBER,  
ROAD_COORDS LINE_SEGMENT); 

Example 1: Find all roads other than “Route 1” that pass 
through a given window w. 

SELECT ALL FROM ROADS WHERE  
IN_WINDOW (ROAD_COORDS, w) AND 

ROAD_NAME! =“ROUTE 1”; 
Below, we give several strategies for processing this query 
as well as others. 
Plan 1- Un-optimized:    
<T1,S1>  x_sp_window(<R,S>,w)    
 <T2,S2>  x_db_select(<T1,S1>,db_cond) 
Plan 1 uses the notation of extended operators without any 
further optimizations. We can rephrase plan 1 as:          
  

S1 sp_window(S,w) 
T1 db_extract(R,S1)     
T2 db_select(T1,db_cond) 
 S2 sp_extract(S1,T2) 

This helps to clarify the optimization steps demonstrated 
in the following plans.  A reordering of the operations is 
also possible as given by: 

      T1’ db_select(R,db_cond) 
S1’ sp_extract(S,T1’) 

 S2’ sp_window(S1’,w) 
  T2’ db_extract(T1’,S2’) 

Plan 2- Further Reorderings:     
          S1 sp_window(S,w) 

T1 db_select(R,db_cond) 
<T2, S2> merge(T1,S1) 

This gives an alternative reordering of the operators in 
plan 1. Here, the database process and the spatial process 
each work independently on a different portion of the 
input data. The results are merged at a later step. The 
purpose of the merging step is to find the objects that exist 
in both the input spatial data structure, say S1, and the 
input relation, say T1, and generates an output pair, say 
<T2, S2>, that contains all these common objects.  
Basically, there are two ways of performing a merge: 
spatial-driven (sp_merge) and relational-driven(db_merge). 
sp_merge traverses the spatial data structure S and for 
each spatial object that it encounters, say o, sp_merge tries 
to retrieve o’s corresponding tuple, say t, through the 
tuple-id stored with o. If t is found, then t and o are  stored 
in T and U, respectively. Otherwise, o is not part of the 
result –i.e., it is skipped. A schemating listing of sp_merge 
is given by: 
sp_merge(R,S) 
/* Merge relation R with spatial data structure S based on 
the common objects in time. The results are stored in 
relation T and spatial data structure U.*/ 
Begin 
  initialize relation T,U; 
  traverse S; 
  for each spatial object o in S do 
   begin 
    tid:=get o’s tuple_id; 
    if tid in R then 
     begin 
       retrieve tid’s tuple t from R; 
       append t into T; 
       insert o into U; 
     end; 
    end; 
 end; 
db_merge is the same as sp_merge except that the relation 
R is traversed and the spatial objects( if any) that 
correspond to the tuples in R  are retrieved and stored into 
the output spatial data structure U. Tuples with no 
corresponding spatial objects are discarded, while tuples 
with matching spatial objects are stored into the output 
relation  T. A schematic listing of db_merge is given by: 
db_merge(R,S) 
/* Merge relation R with spatial data structure S based on 
the common objects in time. The results are stored in 
relation T and spatial data structure U.*/ 
Begin 
  initialize relation T,U; 
  traverse R; 
  for each tuple t in R do 
   begin 
    sid:=get t’s spatial_id; 
    if sid in S then 
     begin 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 

 

40 

       retrieve sid’s spatial object o from S; 
       insert o into U; 
       append t into T; 
     end; 
    end; 
 end; 
Plan 3- Interaction of pointers: 
A third method of merging the results of conjunctive 
selections, in addition to the spatial-based merging and 
relation- based merging  described in plan 2 above, is by 
intersection of pointers. 
This is a well-known technique for answering conjunctive 
selections where the tuple-ids resulting from each 
selection are intersected. Intersecting pointers is possible if 
the selections that are performed generate tuple-ids. This 
situation can arise when the attributes that comprise the 
selection condition can be accessed via a secondary index 
that contains the associated tuple-ids. 
We have two types of object-ids, namely tuple-ids and 
spatial-ids. In addition, the conjunctive selections may be 
spatial, relational, or both. Incorporating the intersection 
of pointers technique can be done in two different ways, 
depending on whether we intersect the tuple-ids or the 
spatial-ids. This is illustrated by the following example. 
Example 2: Find all 4-lane roads that are within r miles of 
point (x, y). 
      SELECT ROAD_NAME FROM ROADS, 
LAND_USE WHERE IN_CIRCLE 
(ROAD_COORDS,x,y,r)  AND ROAD_LANES=4; 
1- Intersection of tuple-ids: If a secondary index is 

present on the attribute road_lanes, then when 
performing the selection based on road_lanes (i.e. 
road_lanes=4) would generate a set of tuple-ids. The 
spatial selection in_circle generates the spatial objects 
that lie inside the specified circle and stores them in a 
temporary spatial data structure. The result of the 
intersection is then materialized both from the 
relational as well as the spatial side. Note that the 
operation in_circle can generate the list of tuple-ids 
directly without the need of an extra traversal of the 
spatial data structure. The resulting plan is given by: 

Lsp sp_in_circle_tid(S,c) 
Ldb db_select_tid(R,db_cond) 

<T2, S2> list_intersect_tid(Ldb,Lsp,R,S) 
Operator sp_in_circle_tid is a simplified version of 
the operator in_circle which returns just the backward 
link information (tuple-ids) of the selected spatial 
objects. db_select_tid is a secondary index selection 
that returns the tuple-ids. Operation list_intersect_tid 
is given by: 
list_intersect_tid(Lo,Lr,R,S) 

/*Intersect lists Lo and Lr where each list contain 
tuple_ids and retrieve the tuples and spatial objects 

corresponding to the common tuple_ids. The results 
are stored in relation T and spatial data structure U.*/ 

begin 
  initialize T,U; 
  I:=intersect Lr and Lo; 
  for each tuple_ids tid in I do 
   begin 
     retrieve tid’s tuple t from R; 
     append t into T; 
     sid:=get t’s spatial_id; 
     retrieve sid’s spatial object o from S; 
     insert o into U; 
    end; 
 end; 

2- Intersection of spatial-ids: The same strategy can 
be applied when we consider intersecting spatial-
ids instead of tuple-ids. The corresponding plan 
is: 

Lsp sp_in_circle_sid(S,c) 
Ldb db_select_sid(R,db_cond) 

<T2, S2> list_intersect_sid(Ldb,Lsp,R,S) 
Operation sp_in_circle_sid(S,c) is a simplified 
version of operation sp_in_circle which returns 
just the spatial-ids of the qualified objects(i.e., the 
ones lying inside the circle c). In order to return 
the spatial-ids as a result of the database selection, 
we need to return the value of the spatial attribute 
for each qualifying tuple in the selection. The 
operation list_intersect_sid(Ldb,Lsp,R,S) intersects 
the two spatial-ids lists resulting from the spatial 
and relational selections. Then, it retrieves the 
spatial and non-spatial description of the objects 
in the intersection. Operation list_intersect_sid is 
given by: 
list_intersect_sid(Lo,Lr,R,S) 
/*Intersect lists Lo and Lr where each list contain 
spatial_ids and retrieve the tuples and spatial 
objects corresponding to the common spatial_ids. 
The results are stored in relation T and spatial 
data structure U.*/ 
begin 
  initialize T,U; 
  I:=intersect Lr and Lo; 
  for each spatial_ids sid in I do 
   begin 
     retrieve sid’s spatial object o from S; 
     insert o into U; 
     tid:=get o’s tuple_id; 
     retrieve tid’s tuple t from R; 
     append t into T; 
    end; 
 end; 

Plan 4 - Pushing spatial operations into sp_extract: 
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Consider the plan 1 again. In this plan, spatial data 
structure S1’ is written by operator sp_extract and then 
read by operator sp_window. To avoid an extra traversal 
of  S1’ as well as the read/write overhead, we can perform 
some spatial conditions on the fly along with operator 
sp_extract. This technique may be desirable under some 
but not all circumstances. For example, if the cardinality 
of the spatial objects is low and if the spatial test to be 
performed is relatively simple, then it is indeed more 
economical to perform this spatial test on the fly along 
with the sp_extract operator instead of storing the result 
and then retraversing the whole structure. The resulting 
plan is: T1’ db_select(R,db_cond) 

          S2’ sp_extract_f(S,T1’,in_window(w)) 
T2’ db_extract(T1’,S2’) 

Note that the use of the new operator sp_extract_f (f 
denotes filter) which has one additional argument over 
sp_extract. This argument serves as a spatial selection 
condition. All the spatial objects extracted should satisfy 
this condition. Also note that plan 4 uses only one 
temporary spatial data structure, namely S2’, which is also 
the output data structure while plan 1 uses two temporary 
data structures, namely S1 and S2 is also the output data 
structure. 
Plan 5 - Pushing database selection into db_extract: 
Consider the plan 1again. The relation T1 is written by 
operator db_extract and then read by operator db_select. 
This is one form of the use of the pipelining technique to 
save from creating needless temporary relations and to 
save on traversal time. The modified plan is: 

S1 sp_window(S,w) 
              T2 db_extract_f(R,S1,db_cond) 

S2 sp_extract(S1,T2) 
Note the new operator db_extract_f (f denotes filter) 
which has one additional argument over db_extract. This 
argument serves as a relational selection condition. Also 
this plan uses only one temporary relation, namely T2, 
which is also the output relation while plan 1 uses two 
temporary relations, namely T1 and T2, where T2 is also 
the output relation.  
 
5. Distributed Database: 
 
A distributed database is a collection of data which belong 
logically to the same system, but are spread over the sites 
of a computer network. There are two important aspects of 
a distributed database: 

• Distribution: The data are not resident at the same 
site or processor. 

• Logical Correlation: The data have some 
properties which tie them together so that, we can 
distinguish a distributed database from a set of 
local databases which are resident at different 
sites of a computer network. 

The main issues of distributed database we have 
considered are: 
Fragment: It means we are dividing the whole 
database into different groups called fragments. As a 
result our database size at one site reduces. 
Replicas: It means we putting copies of the fragments 
at different sites so that if any one fails to work, then 
its replica works for it. 
Concurrency: It means as we are storing the replicas, 
any modification done at one site that should be 
reflected at all the replicas present. 

A fragment can be defined by an expression in a relational 
language which takes global relations as operands and 
produces the fragment as result. 
The rules which must be followed when defining 
fragments are: 

• Completeness Condition: All the data of the 
global relation must be mapped into the 
fragments. 

• Reconstruction Condition: It must always be 
possible to reconstruct each global relation from 
its fragments. 

• Disjointness Condition: The fragments should be 
disjoint so that the replication of data can be 
controlled explicitly at the allocation level. This 
condition is useful mainly with horizontal 
fragmentation. 

Fragmentation is of three types. They are discussed below 
as: 
Horizontal Fragmentation: It consists of partitioning the 
tuples of a global relation into subsets; this is clearly 
useful in distributed databases, where each subset can 
contain data which have common geographical properties. 
It can be defined by expressing each fragment as a 
selection operation on the global relation. 
Vertical Fragmentation: It is the subdivision of the 
attributes of the global relation into groups; fragments are 
obtained by projecting the global relation over each group. 
This can be useful in distributed databases where each 
group of attributes can contain data which have common 
geographical properties. 
Mixed Fragmentation: It is of two types: 

• Horizontal followed by Vertical 
• Vertical followed by Horizontal 

 
6. Distributed Spatial Query Optimization: 
 
There are four rules for converting a global query into a 
fragment query and there by optimizing the query. Query 
optimization uses the Natural Join. For example, take the 
following query: 
Query: Find the roads other than “Route1” that pass 
through a given window ‘w’ 
Solution:   
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SELECT ROAD_NAME FROM ROADS WHERE 
IN_WINDOW(ROAD_COORDS,W) AND 
ROAD_NAME!=“ROUTE1”; 
 The operator tree for this query is shown as: 
 

 
 
 
Rule 1: Use Idempotence of the fragment queries using 
Selection and Projection to generate the fragment queries. 
Applying this rule, we get the modified operator tree as: 
 

 
 
 
Rule 2: Push Selection and Projections down in the tree 
as far as possible, i.e. push joins up in the tree as far as 
possible. Applying this rule, we get the operator tree as: 
 
 

 
 
 
Rule 3: Use appropriate Selection and Projection for 
generating equivalence of fragment relations, i.e. create 
fragments of each table. 
 
Let we have made the horizontal fragments. 
ROADS_REL=ROADS_REL1+ROADS_REL2+ROADS
_REL3 
ROADS_REL1=SL ROAD_NAME=“ROUTE1” 
ROADS_REL 
ROADS_REL2=SL ROAD_NAME=“ROUTE2” 
ROADS_REL 

ROADS_REL3=SL ROAD_NAME=“ROUTE3” 
ROADS_REL 
ROADS_SPA=ROADS_SPA1+ROADS_SPA2+ROADS
_SPA3 
ROADS_SPA1=SL REGIONS=“NORTH” ROADS_SPA 
ROADS_SPA2=SL REGIONS=“SOUTH” ROADS_SPA 
ROADS_SPA3=SL REGIONS=“CENTRE” 
ROADS_SPA 
 The modified operator tree after applying rule 3 is shown 
as: 
 

 
 
Rule 4: Replace the branch with an empty relation for the 
appropriate Selection and Projection if the condition is 
contradictory, i.e. if the result of a fragment is null, then 
remove it.  Applying the rule 4, we get the modified tree 
as: 
 

 
 
 
 
7. Future Work: 
 
When this proposed model with the distributed database 
concept will be applied in the general spatial database, 
then the people can access the spatial data all over the 
world at an affordable cost. There are so many researchers 
are working on the management of spatial data. In the near 
future, this proposed model will be validated. 
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