
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

36

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

An Intelligent Framework For Distributed Query Optimization
Of Spatial Data In Geographic Information Systems

Prashanta Kumar Patra1 Chittaranjan Pradhan2 Animesh Tripathy2

1Department of Computer Science & Engineering, College of Engineering & Technology, BPUT, Bhubaneswar,
Orissa-751003 India 2Department of CSE, SOT, KIIT University, Bhubaneswar, Orissa, India 2Department of

CSE, SOT, KIIT University, Bhubaneswar, Orissa, India

Summary
The Geographic Information System (GIS) uses the spatial
database for its data storing purposes. As the spatial database
takes huge space, the size and data retrieval cost of database
increases. That’s why we have to use some optimized technique
to retrieve the data from the database. Also, we can apply the
distributed database concept to the spatial database to achieve
better performance. After using the optimization technique and
the distributed database concept we can achieve better query
processing at affordable cost.

Key words:
GIS, Distributed Database, Query Optimization, Spatial
Database, Fragments..

1. Introduction

A GIS is a system for capturing, storing, analyzing, and
managing data and associated attributes which are
spatially referenced to the earth. That means, it is a
computer system capable of integrating, storing, editing,
analyzing, sharing and displaying geographically-
referenced information. Geospatial data separate GIS from
other information Systems. For ex: Take the example of
roads. To describe a road, we refer to its location (i.e.
where it is) and its characteristics (e.g. length, name, speed
limit and direction). The location (or geometry or shape)
represents Spatial Data, where as the characteristics are
attribute data. Thus, any geospatial data has 2 components:
• Spatial data • Attribute data.

Spatial data: It describes the locations of spatial features,
which may be discrete or continuous. Discrete features are
individually distinguishable features that do not exist
between observations. This includes Points (e.g. wells),
lines (e.g. roads) and areas (e.g. land use types).
Continuous features are features that exist spatially
between observations. Examples of continuous features
are: elevation and precipitation. The data models used for
the spatial data are:
Vector Data Model: Data are composed of points, lines,
and polygons. These features are the basic features in a

vector-based GIS, such as ArcGIS9. The basic spatial data
model is known as "arc-node topology." One of the
strengths of the vector data model is that it can be used to
render geographic features with great precision. However,
this comes at the cost of greater complexity in data
structures, which sometimes translates to slow processing
speed.

Raster Data Model: Raster datasets are composed of
rectangular arrays of regularly spaced square grid cells.
Each cell has a value, representing a property or attribute
of interest. While any type of geographic data can be
stored in raster format, raster datasets are especially suited
to the representation of continuous, rather than discrete,
data.

Attribute Data: Attribute data describe the characteristics
of spatial features. For raster data, each cell has a value
that corresponds to the attribute of the spatial feature at
that location. A cell is tightly bound to its cell value. For
vector data, the amount of attribute data to be associated
with a spatial feature can vary significantly.

Data Layers: In most GIS software data is organized in
themes as data layers. This approach allows data to be
input as separate themes and overlaid based on analysis
requirements. This can conceptualized as vertical layering
the characteristics of the earth's surface. The overlay
concept is so natural to cartographers and natural resource
specialists that it has been built into the design of most
CAD vector systems as well.

2. GIS Data Management:

Traditionally map data have been recorded in the form of
lines and symbols on paper, and descriptive data or
attributes have been restored in written form on file cards
and various documents. These traditional data
documentations are organized in various systems of filing
cabinets and drawers, and each data repository may be
regarded as a “library” or “bank” from which users may
retrieve information. A data bank may either be available

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

37

to a wide range of users or restricted to only a few
authorized users. In addition, the data deposited may be in
the form of one or more files.
However, there is no single or a blue print to manage GIS
database, but a logically organized structure for the data
management system is clearly important. Ideally,
implementing GIS database management can be viewed as
a process that begins with needs assessment, continues
through data acquisition and analysis, interpretation, data
archiving and data sharing with various users and
organizations [Fig 1].

Figure 1 Lifecycle of a GIS database

The processes of database management system can be
categorized into six components as follows: a) An
inventory of existing data and resources will have to be
compiled, and priorities for implementation set. b) Data
will have to be designed and organized by establishing
structure within and among data sets that will facilitate
their storage, retrieval and manipulation. c) Procedures
will be required for data acquisition and quality assurance
and quality control (QA/QC). d) Data set documentation
protocols, including the adoption or creation of metadata
content standards and procedure for recording metadata,
will need to be developed. e) Procedures for data archival
storage and maintenance of printed and electronic data
will have to be developed, and f) An administrative
structure and procedures will have to be developed so
responsibilities are clearly defined.
GIS Data are divided logically into two categories:
geometric data and attribute data. They can also be stored
physically different although the relationships between the
two categories of data must be preserved regardless of
whether the division is physical or logical. This can be
satisfied through one of the following four approaches:

• Two separate database systems, one for
geometrical data and one for attribute data;

• A single database system storing both categories
of data;

• One database for geometrical data connected to
several different databases for attribute data;

• Several databases for geometrical data and
attributes joined into one system.
A Hybrid system stores geometrical data and attribute
data in two separate databases [figure 2]. Commercially
available relational DBMS is generally employed for
attribute data for this purpose. The system may include
both raster and vector data. To increase the search and
record speed, the geometrical data are often split into
different layers and aerial units (i.e. map sheets, etc.) for
storage.

Figure 2 Hybrid system of database management

A spatial data structure is associated with each spatial
attribute in the schema and is used to store all data
instances of that spatial attribute over the set of
homogeneous objects. The spatial data structure is used as
an index for spatial objects as well as a medium for
performing spatially- related operations. Depending on the
attribute’s spatial data type (e.g. region, line, or point), a
spatial data structure is selected for handling.
The data instances of the set of non-spatial attributes are
stored in database relations. Each tuple in the relation
corresponds to one object. The following figure illustrates
how we link spatial and non-spatial attribute values of an
object. In particular we maintain two logical links between
the spatial and non-spatial data instances of an object:
forward and backward links.
Forward links are used to retrieve the spatial information
of an object given the object’s non-spatial information. On
the other hand, backward inks are used to retrieve the non-
spatial information of an object given the object’s spatial
information. Maintaining forward and backward links
between the spatial and non-spatial aspects of a set of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

38

objects facilitates browsing in the two parts as well as
permits efficiently query processing.
A commonly used view of data approach is the three-level
architecture suggested by ANSI/SPARC (American
National Standards Institute/Standards Planning and
Requirements Committee). The three views are:

• The external level is the view that the
individual user of the database has. This
view is often a restricted view of the
database and the same database may
provide a number of different views for
different classes of users.

• The conceptual view is the information
model of the enterprise and contains the
view of the whole enterprise without any
concern for the physical implementation.
This view is normally more stable than
the other two views.

• The internal view is the view about the
actual physical storage of data. It tells us
what data is stored in the database and
how. At least the following aspects are
considered at this level

The challenges in the standard database model are:
• Optimization is generally done on spatial data

and not on attribute data.
• Attribute data constitutes a major portion of a

spatial query. There fore, optimization on spatial
data takes more time as compared to RDBMS.

• Huge databases require proper optimization for
efficient search.

To cover the above challenges of the standard database
architecture, we proposed new database architecture
[figure 3] by introducing an extra schema “Intelligent
Schema” in between the External schema and the
Conceptual Schema.

Proposed Database Architecture

The advantages of the Model we have proposed are:
Intelligent preprocessing and Optimization of attribute
data, which are shown in the following model:

3. Query Optimization:

Query optimization is one of the most important tasks of a
relational DBMS. One of the strengths of relational query
languages is the wide variety of ways in which a user can
express and thus the system can evaluate a query. A given
query can be evaluated in many ways and the difference in
cost between the best and worst plans is our main theme of
discussion. Realistically, we cannot expect to always find
the best plan, but we expect to consistently find a plan that
is quite good.
Queries are parsed and then presented to a query optimizer,
which is responsible for identifying an efficient execution
plan. The optimizer generates alternative plans and
chooses the plan with the least estimated cost.
The space of plans considered by a typical relational query
optimizer can be understood by recognizing that a query is
essentially treated as a σ – Π - ∞ algebra expression, with
the remaining operations (if any) carried out in the result
of the σ – Π - ∞ expression. Optimizing such a relational
algebra expression involves two basic steps:

• Enumerating alternative plans for evaluating the
expressions. Typically, an optimizer considers a
subset of all possible plans because the number of
possible plans is very large.

• Estimating the cost of each enumerated plan and
choosing the plan with the lowest estimated cost.

A query evaluation plan (or simply plan) consists of an
extended relational algebra tree, with additional
annotations at each node indicating the access methods to
use for each table and the implementation method to use
for each relational operator.

Consider the following SQL query:
SELECT S.sname FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND R.bid=100 AND S.rating >5
This query can be expressed in relational algebra as
follows:
Π sname(σ bid=100 ^ rating >5 (Reserves ∞sid=sid Sailors))
This expression is shown in the form of a tree as:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

39

The algebra expression partially specifies how to evaluate
the query – we first compute the natural join of Reserves
and Sailors, then perform the selections, and finally
project the sname field.

4. Query Optimization in spatial data:

Consider the following two schemas for the further
discussion.

CREATE TABLE LAND_USE (NAME
CHAR(40), ADDRESS CHAR(100),
LOCATION REGION, USAGE CHAR(40), ZIP
NUMBER, IMPORTANCE NUMBER);
CREATE TABLE ROADS (ROAD_ID
NUMBER, ROAD_NAME CHAR(30),
ROAD_TRAFFICABILITY NUMBER,
ROAD_LANES NUMBER,
ROAD_COORDS LINE_SEGMENT);

Example 1: Find all roads other than “Route 1” that pass
through a given window w.

SELECT ALL FROM ROADS WHERE
IN_WINDOW (ROAD_COORDS, w) AND

ROAD_NAME! =“ROUTE 1”;
Below, we give several strategies for processing this query
as well as others.
Plan 1- Un-optimized:
<T1,S1> x_sp_window(<R,S>,w)
 <T2,S2> x_db_select(<T1,S1>,db_cond)
Plan 1 uses the notation of extended operators without any
further optimizations. We can rephrase plan 1 as:

S1 sp_window(S,w)
T1 db_extract(R,S1)
T2 db_select(T1,db_cond)
 S2 sp_extract(S1,T2)

This helps to clarify the optimization steps demonstrated
in the following plans. A reordering of the operations is
also possible as given by:

 T1’ db_select(R,db_cond)
S1’ sp_extract(S,T1’)

 S2’ sp_window(S1’,w)
 T2’ db_extract(T1’,S2’)

Plan 2- Further Reorderings:
 S1 sp_window(S,w)

T1 db_select(R,db_cond)
<T2, S2> merge(T1,S1)

This gives an alternative reordering of the operators in
plan 1. Here, the database process and the spatial process
each work independently on a different portion of the
input data. The results are merged at a later step. The
purpose of the merging step is to find the objects that exist
in both the input spatial data structure, say S1, and the
input relation, say T1, and generates an output pair, say
<T2, S2>, that contains all these common objects.
Basically, there are two ways of performing a merge:
spatial-driven (sp_merge) and relational-driven(db_merge).
sp_merge traverses the spatial data structure S and for
each spatial object that it encounters, say o, sp_merge tries
to retrieve o’s corresponding tuple, say t, through the
tuple-id stored with o. If t is found, then t and o are stored
in T and U, respectively. Otherwise, o is not part of the
result –i.e., it is skipped. A schemating listing of sp_merge
is given by:
sp_merge(R,S)
/* Merge relation R with spatial data structure S based on
the common objects in time. The results are stored in
relation T and spatial data structure U.*/
Begin
 initialize relation T,U;
 traverse S;
 for each spatial object o in S do
 begin
 tid:=get o’s tuple_id;
 if tid in R then
 begin
 retrieve tid’s tuple t from R;
 append t into T;
 insert o into U;
 end;
 end;
 end;
db_merge is the same as sp_merge except that the relation
R is traversed and the spatial objects(if any) that
correspond to the tuples in R are retrieved and stored into
the output spatial data structure U. Tuples with no
corresponding spatial objects are discarded, while tuples
with matching spatial objects are stored into the output
relation T. A schematic listing of db_merge is given by:
db_merge(R,S)
/* Merge relation R with spatial data structure S based on
the common objects in time. The results are stored in
relation T and spatial data structure U.*/
Begin
 initialize relation T,U;
 traverse R;
 for each tuple t in R do
 begin
 sid:=get t’s spatial_id;
 if sid in S then
 begin

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

40

 retrieve sid’s spatial object o from S;
 insert o into U;
 append t into T;
 end;
 end;
 end;
Plan 3- Interaction of pointers:
A third method of merging the results of conjunctive
selections, in addition to the spatial-based merging and
relation- based merging described in plan 2 above, is by
intersection of pointers.
This is a well-known technique for answering conjunctive
selections where the tuple-ids resulting from each
selection are intersected. Intersecting pointers is possible if
the selections that are performed generate tuple-ids. This
situation can arise when the attributes that comprise the
selection condition can be accessed via a secondary index
that contains the associated tuple-ids.
We have two types of object-ids, namely tuple-ids and
spatial-ids. In addition, the conjunctive selections may be
spatial, relational, or both. Incorporating the intersection
of pointers technique can be done in two different ways,
depending on whether we intersect the tuple-ids or the
spatial-ids. This is illustrated by the following example.
Example 2: Find all 4-lane roads that are within r miles of
point (x, y).
 SELECT ROAD_NAME FROM ROADS,
LAND_USE WHERE IN_CIRCLE
(ROAD_COORDS,x,y,r) AND ROAD_LANES=4;
1- Intersection of tuple-ids: If a secondary index is

present on the attribute road_lanes, then when
performing the selection based on road_lanes (i.e.
road_lanes=4) would generate a set of tuple-ids. The
spatial selection in_circle generates the spatial objects
that lie inside the specified circle and stores them in a
temporary spatial data structure. The result of the
intersection is then materialized both from the
relational as well as the spatial side. Note that the
operation in_circle can generate the list of tuple-ids
directly without the need of an extra traversal of the
spatial data structure. The resulting plan is given by:

Lsp sp_in_circle_tid(S,c)
Ldb db_select_tid(R,db_cond)

<T2, S2> list_intersect_tid(Ldb,Lsp,R,S)
Operator sp_in_circle_tid is a simplified version of
the operator in_circle which returns just the backward
link information (tuple-ids) of the selected spatial
objects. db_select_tid is a secondary index selection
that returns the tuple-ids. Operation list_intersect_tid
is given by:
list_intersect_tid(Lo,Lr,R,S)

/*Intersect lists Lo and Lr where each list contain
tuple_ids and retrieve the tuples and spatial objects

corresponding to the common tuple_ids. The results
are stored in relation T and spatial data structure U.*/

begin
 initialize T,U;
 I:=intersect Lr and Lo;
 for each tuple_ids tid in I do
 begin
 retrieve tid’s tuple t from R;
 append t into T;
 sid:=get t’s spatial_id;
 retrieve sid’s spatial object o from S;
 insert o into U;
 end;
 end;

2- Intersection of spatial-ids: The same strategy can
be applied when we consider intersecting spatial-
ids instead of tuple-ids. The corresponding plan
is:

Lsp sp_in_circle_sid(S,c)
Ldb db_select_sid(R,db_cond)

<T2, S2> list_intersect_sid(Ldb,Lsp,R,S)
Operation sp_in_circle_sid(S,c) is a simplified
version of operation sp_in_circle which returns
just the spatial-ids of the qualified objects(i.e., the
ones lying inside the circle c). In order to return
the spatial-ids as a result of the database selection,
we need to return the value of the spatial attribute
for each qualifying tuple in the selection. The
operation list_intersect_sid(Ldb,Lsp,R,S) intersects
the two spatial-ids lists resulting from the spatial
and relational selections. Then, it retrieves the
spatial and non-spatial description of the objects
in the intersection. Operation list_intersect_sid is
given by:
list_intersect_sid(Lo,Lr,R,S)
/*Intersect lists Lo and Lr where each list contain
spatial_ids and retrieve the tuples and spatial
objects corresponding to the common spatial_ids.
The results are stored in relation T and spatial
data structure U.*/
begin
 initialize T,U;
 I:=intersect Lr and Lo;
 for each spatial_ids sid in I do
 begin
 retrieve sid’s spatial object o from S;
 insert o into U;
 tid:=get o’s tuple_id;
 retrieve tid’s tuple t from R;
 append t into T;
 end;
 end;

Plan 4 - Pushing spatial operations into sp_extract:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

41

Consider the plan 1 again. In this plan, spatial data
structure S1’ is written by operator sp_extract and then
read by operator sp_window. To avoid an extra traversal
of S1’ as well as the read/write overhead, we can perform
some spatial conditions on the fly along with operator
sp_extract. This technique may be desirable under some
but not all circumstances. For example, if the cardinality
of the spatial objects is low and if the spatial test to be
performed is relatively simple, then it is indeed more
economical to perform this spatial test on the fly along
with the sp_extract operator instead of storing the result
and then retraversing the whole structure. The resulting
plan is: T1’ db_select(R,db_cond)

 S2’ sp_extract_f(S,T1’,in_window(w))
T2’ db_extract(T1’,S2’)

Note that the use of the new operator sp_extract_f (f
denotes filter) which has one additional argument over
sp_extract. This argument serves as a spatial selection
condition. All the spatial objects extracted should satisfy
this condition. Also note that plan 4 uses only one
temporary spatial data structure, namely S2’, which is also
the output data structure while plan 1 uses two temporary
data structures, namely S1 and S2 is also the output data
structure.
Plan 5 - Pushing database selection into db_extract:
Consider the plan 1again. The relation T1 is written by
operator db_extract and then read by operator db_select.
This is one form of the use of the pipelining technique to
save from creating needless temporary relations and to
save on traversal time. The modified plan is:

S1 sp_window(S,w)
 T2 db_extract_f(R,S1,db_cond)

S2 sp_extract(S1,T2)
Note the new operator db_extract_f (f denotes filter)
which has one additional argument over db_extract. This
argument serves as a relational selection condition. Also
this plan uses only one temporary relation, namely T2,
which is also the output relation while plan 1 uses two
temporary relations, namely T1 and T2, where T2 is also
the output relation.

5. Distributed Database:

A distributed database is a collection of data which belong
logically to the same system, but are spread over the sites
of a computer network. There are two important aspects of
a distributed database:

• Distribution: The data are not resident at the same
site or processor.

• Logical Correlation: The data have some
properties which tie them together so that, we can
distinguish a distributed database from a set of
local databases which are resident at different
sites of a computer network.

The main issues of distributed database we have
considered are:
Fragment: It means we are dividing the whole
database into different groups called fragments. As a
result our database size at one site reduces.
Replicas: It means we putting copies of the fragments
at different sites so that if any one fails to work, then
its replica works for it.
Concurrency: It means as we are storing the replicas,
any modification done at one site that should be
reflected at all the replicas present.

A fragment can be defined by an expression in a relational
language which takes global relations as operands and
produces the fragment as result.
The rules which must be followed when defining
fragments are:

• Completeness Condition: All the data of the
global relation must be mapped into the
fragments.

• Reconstruction Condition: It must always be
possible to reconstruct each global relation from
its fragments.

• Disjointness Condition: The fragments should be
disjoint so that the replication of data can be
controlled explicitly at the allocation level. This
condition is useful mainly with horizontal
fragmentation.

Fragmentation is of three types. They are discussed below
as:
Horizontal Fragmentation: It consists of partitioning the
tuples of a global relation into subsets; this is clearly
useful in distributed databases, where each subset can
contain data which have common geographical properties.
It can be defined by expressing each fragment as a
selection operation on the global relation.
Vertical Fragmentation: It is the subdivision of the
attributes of the global relation into groups; fragments are
obtained by projecting the global relation over each group.
This can be useful in distributed databases where each
group of attributes can contain data which have common
geographical properties.
Mixed Fragmentation: It is of two types:

• Horizontal followed by Vertical
• Vertical followed by Horizontal

6. Distributed Spatial Query Optimization:

There are four rules for converting a global query into a
fragment query and there by optimizing the query. Query
optimization uses the Natural Join. For example, take the
following query:
Query: Find the roads other than “Route1” that pass
through a given window ‘w’
Solution:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

42

SELECT ROAD_NAME FROM ROADS WHERE
IN_WINDOW(ROAD_COORDS,W) AND
ROAD_NAME!=“ROUTE1”;
 The operator tree for this query is shown as:

Rule 1: Use Idempotence of the fragment queries using
Selection and Projection to generate the fragment queries.
Applying this rule, we get the modified operator tree as:

Rule 2: Push Selection and Projections down in the tree
as far as possible, i.e. push joins up in the tree as far as
possible. Applying this rule, we get the operator tree as:

Rule 3: Use appropriate Selection and Projection for
generating equivalence of fragment relations, i.e. create
fragments of each table.

Let we have made the horizontal fragments.
ROADS_REL=ROADS_REL1+ROADS_REL2+ROADS
_REL3
ROADS_REL1=SL ROAD_NAME=“ROUTE1”
ROADS_REL
ROADS_REL2=SL ROAD_NAME=“ROUTE2”
ROADS_REL

ROADS_REL3=SL ROAD_NAME=“ROUTE3”
ROADS_REL
ROADS_SPA=ROADS_SPA1+ROADS_SPA2+ROADS
_SPA3
ROADS_SPA1=SL REGIONS=“NORTH” ROADS_SPA
ROADS_SPA2=SL REGIONS=“SOUTH” ROADS_SPA
ROADS_SPA3=SL REGIONS=“CENTRE”
ROADS_SPA
 The modified operator tree after applying rule 3 is shown
as:

Rule 4: Replace the branch with an empty relation for the
appropriate Selection and Projection if the condition is
contradictory, i.e. if the result of a fragment is null, then
remove it. Applying the rule 4, we get the modified tree
as:

7. Future Work:

When this proposed model with the distributed database
concept will be applied in the general spatial database,
then the people can access the spatial data all over the
world at an affordable cost. There are so many researchers
are working on the management of spatial data. In the near
future, this proposed model will be validated.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

43

8. References:

[1] J. Ronald Eastman, Michele Fulk, and James

Toledano: The GIS Handbook. Clark University,
1993

[2] ESRI White Paper: GIS Topology, July 2005
[3] Ralf Hartmut Güting: An Introduction to Spatial

Database Systems, FernUniversität Hagen,
Special Issue on Spatial Database Systems of the
VLDB Journal (Vol. 3, No. 4), Germany 1994

[4] Hanan Samet: Spatial Data Structures, Institute
of Advanced Computer Studies And Center for
Automatic Research, University of Maryland

[5] Petr Kuba: Data structures for spatial data
mining, Masaryk

[6] University Brno, Czech Republic, September
2001

[7] Shashi Shekhar, Pusheng Zhang, Yan Huang,
Ranga Raju Vatsavai: Trends in Spatial Data
Mining, Department of Computer Science and
Engineering, University of Minnesota

[8] THE NATIONAL SPATIAL DATA
INFRASTRUCTURE, Jerzy Albin,SURVEYOR
GENERAL OF POLAND, 10th EC GI & GIS
Workshop, ESDI State of the Art, Warsaw,
Poland, 23-25 June 2004

[9] Database Management Systems(COP
725),Markus SchneiderDepartment of Computer
and Information Science and Engineering,CSE
Building, Room E450,University of Florida

[10] Spatial SQL: A Query and Presentation
Language; Max J. Egenhofer, National Center
for Geographic Information and Analysis and
Department of Surveying Engineering, University
of Maine, Orono, ME 04469, USA,
MAX@MECAN1.bitnet; IEEE Transactions on
Knowledge and Data Engineering 6(1):85-
95,1994

[11] Spatial SQL: A Query and Presentation
Language, Max J. Egenhofer, Member, IEEE

[12] Distributed Database Management Systems in
the Modern Enterprise, Jason C. Stollings, Bowie
State University, Distributed Database
Management Systems in the Modern Enterprise

[13] Query Optimization, Yannis E. Ioannidis,
Computer Sciences Department, University of
Wisconsin, Madison, WI 53706.

Prashanta Kumar Patra received
Bachelor degree in Engineering. in
Electronics from SVRCET (NIT),
Surat, India M.Tech in Computer
Engg from I.I.T., Kharagpur and
Ph. D. in Computer Science from
Utkal University, India. He is
presently working as Professor &
Head of the Department of

Computer Science & Engg , College of Engg & Tech, a
constituent college of Biju Patnaik University of
Technology, Orissa, India. He has published many papers
at National/International journals/ Conferences in the
areas of Soft Computing, Image processing, Pattern
recognition and Bioinformatics which are the subjects of
his research interest.

Animesh Tripathy is currently
pursing his Research in Intelligent
Database Systems. He has
completed his Bachelor of
Engineering in Computer
Engineering and Master of
Technology in Computer Science
& Engineering from University of
Calcutta. Presently he is working as

Asst. Professor in Computer Science Department, KIIT
UNIVERSITY, Bhubaneswar, Orissa, India. He has
published some innovative research papers in International
Journals & Conferences. His major strength lies in GIS,
Image Analysis & Intelligent Database Systems.

Chittaranjan Pradhan is a Research Student in
Computer Science Engineering at KIIT University, India.
His Mater Thesis in Intelligent Information Retrieval
Systems. He has published his work in various National
Level Conferences and was highly acclaimed. He has
completed his B.Tech in Computer Science Engineering.
He is currently the Top Rank Holder of the University in
his discipline.

