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Summary 
In this study, a modified Fuzzy C-Means algorithm with 
Gaussian weights (MFCM_GW) is presented for the problem of 
nonlinear blind channel equalization. The proposed algorithm 
searches for the optimal channel output states of a nonlinear 
channel based on received symbols. In contrast to conventional 
Euclidean distance in Fuzzy C-Means (FCM), the use of the 
Bayesian likelihood fitness function and the Gaussian weighted 
partiton matrix is exploited in this method. In the search 
procedure, all of the possible desired channel states are 
constructed by considering the combinations of estimated 
channel output states. The desired state characterized by the 
maximal value of the Bayesian fitness is selected and updated by 
using the Gaussian weights. After this procedure, the final 
desired state is placed at the center of a Radial Basis Function 
(RBF) equalizer to reconstruct transmitted symbols. The 
performance of the proposed method is compared with those of a 
simplex genetic algorithm(GA), a hybrid genetic algorithm (GA 
merged with simulated annealing (SA):GASA), and a previously 
developed version of MFCM. In particular, the relatively high 
accuracy and fast search speed of the method are observed. 
Key words: 
Modified Fuzzy C-Means, Gaussian Weighted Partition Matrix, 
Bayesian Likelihood, Nonlinear Blind Channel Equalizer,  

1. Introduction 

Time dispersion caused by non-ideal channel frequency 
response characteristics, or by multipath transmission, may 
create inter-symbol interference (ISI) in digital 
communication systems. This has become a limiting factor 
in many communication environments. Furthermore, the 
nonlinear character of ISI that often arises in high speed 
communication channels degrades the performance of the 
overall communication system [1]. To overcome this 
detrimental ISI effects and to achieve high-speed and 
reliable communication, nonlinear channel equalization is 
necessary.  

The conventional approach to linear or nonlinear 
channel equalization requires an initial training period, 
with a known data sequence, to learn the channel 
characteristics. In contrast to standard equalization 
methods, the so-called blind (or self-recovering) 
equalization methods operate without a training sequence 

[2]. Because of its superiority, the blind equalization 
method has gained practical interest during the last few 
years. Most of the studies carried out so far are focused on 
linear channel equalization [3]-[4]. 

Only a few papers have dealt with nonlinear channel 
models. The blind estimation of Volterra kernels, which 
characterize nonlinear channels, was presented in [5] while 
a maximum likelihood (ML) method implemented via 
expectation-maximization (EM) was introduced in [6]. In 
spite of their advantages, these methods are not free from 
limitations. The Volterra approach suffers from enormous 
computational complexity. Furthermore the ML approach 
requires some prior knowledge of the nonlinear channel 
structure to estimate the channel parameters. The approach 
with a nonlinear structure such as multilayer perceptrons, 
being trained to minimize some cost function, has been 
investigated in [7]. However, in this method, the structure 
and the complexity of the nonlinear equalizer must be 
specified in advance. The support vector (SV) equalizer 
proposed by Santamaria et al. [8] can be a possible 
solution for both of linear and nonlinear blind channel 
equalization at the same time, but it still suffers from high 
computational cost of its iterative reweighted quadratic 
programming procedure. A unique approach to nonlinear 
channel blind equalization was offered by Lin et al. [9], in 
which they used the simplex GA method to estimate the 
optimal channel output states instead of estimating the 
channel parameters directly. The desired channel states 
were constructed from these estimated channel output 
states, and placed at the center of their RBF equalizer. 
With this method, the complex modeling of the nonlinear 
channel can be avoided. Recently this approach has been 
implemented with a hybrid genetic algorithm (that is a 
genetic algorithm, GA merged with simulated annealing 
(SA); GASA) [10] and a modified Fuzzy C-Means 
(MFCM) algorithm [11] instead of the simplex GA. The 
resulting better performances in terms of accuracy and 
speed have been reported. However, the estimation 
accuracy and the convergence speed in search of the 
optimal channel output states needs further improvement 
for the heavy noise environments such as real-time use. 

In this study, a new modified Fuzzy C-Means algorithm 
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with Gaussian weights (MFCM_GW) to determine the 
optimal output states of a nonlinear channel is presented. 
In the proposed algorithm, the Gaussian weighted partition 
matrix is developed and applied to the previous version of 
MFCM [11] for the reduction of noise effect. Thus, even 
the received symbols are corrupted by a heavy noise, the 
MFCM_GW can estimate the optimal output states with 
the relatively high accuracy and fast convergence speed. 
Its performance is compared with those of a simplex GA, a 
GASA and a MFCM. In the experiments, the optimal 
output states are estimated by each of four search 
algorithms. Using the estimated channel output states, the 
desired channel states are derived and placed at the center 
of a RBF equalizer to reconstruct transmitted symbols. The 
RBF equalizer is an identical structure with the optimal 
Bayesian equalizer, and its important role is to place the 
optimal centers at the desired channel states [12].  

The organization of this paper is as follows: Section 2 
includes a brief introduction to the equalization of 
nonlinear channel using a RBF network; Section 3 shows 
the relation between the desired channel states and the 
channel output states. In Section 4, the proposed 
MFCM_GW is introduced. Simulation results including 
comparisons with three other algorithms are provided in 
Section 5. Conclusions are presented in Section 6.  

2. Equalization of Nonlinear Channel using a 
RBF Network 

 

 
Fig. 1 The structure of a nonlinear channel equalization system. 

 
A nonlinear channel equalization system is shown in Fig. 
1. A digital sequence s(k) is transmitted through the 
nonlinear channel, which is composed of a linear portion 
described by H(z) and a nonlinear component  N(z), 
governed by the following expressions, 
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where p is the channel order and Di is the coefficient of the 
ith nonlinear term. The transmitted symbol sequence s(k) is 
assumed to be an equiprobable and independent binary 

sequence taking values from a two-valued set{ }1± . It is 
assumed that the channel output is corrupted by an 
additive white Gaussian noise e(k). Given this the channel 
observation y(k) can be written as 
 

)()(ˆ)( kekyky +=  (3)

 
If q denotes the equalizer order (number of tap delay 
elements in the equalizer), then there exist 12 ++= qpM  
different input sequences 
 

)(ks = [ ])(,),1(),( qpksksks −−− L  (4)

 
that may be received (where each component is either 
equal to 1 or –1). For a specific channel order and 
equalizer order, the number of input patterns that influence 
the equalizer is equal to M, and the input vector of 
equalizer without noise is 
 

)(ˆ ky = [ ])(ˆ,),1(ˆ),(ˆ qkykyky −− L  (5)

 
The noise-free observation vector )(ˆ ky  is referred to as 
the desired channel states, and can be partitioned into two 
sets, 1

,
+
dqY  and 1

,
−
dqY , as shown in (6) and (7), depending on 

the value of s(k-d), where d is the desired time delay. 
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The task of the equalizer is to recover the transmitted 
symbols s(k-d) based on the observation vector y(k). 
Because of the additive white Gaussian noise, the 
observation vector y(k) is a random process having 
conditional Gaussian density functions centered at each of 
the desired channel states. The determination of the value 
of s(k-d) becomes a decision problem. Therefore Bayes 
decision theory [13] can be applied here to derive the 
optimal solution for the equalizer. The solution forming 
the optimal Bayesian equalizer is given as follows [14] 
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where 1+

iy  and 1−
iy  are the desired channel states 

belonging to sets 1
,
+
dqY  and 1

,
−
dqY , respectively, and their 

number of elements in these sets are denoted by 1+
sn  and 

1−
sn . Furthermore 2

eσ  is the noise variance. The desired 
channel states, 1+

iy  and 1−
iy , are derived by considering 

their relationship with the channel output states (as it will 
be explained in the next section). In this study, the optimal 
Bayesian decision probability (8) is implemented with the 
use of a RBF network. The structure of this network is 
shown in Fig. 2 [12], and its output is given as 
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where n is the number of hidden units, ci are the centers of 
the receptive fields, iρ  is the width of the ith units and iω  
is the corresponding weight. The RBF network is a 
suitable processing structure to implement the optimal 
Bayesian equalizer when the nonlinear function φ  is 
chosen as the exponential function xex −=)(φ  and all of 
the widths of the receptive fields are the same and equal to 
ρ , which is twice as large as the noise variance 2

eσ . For 
the case of equiprobable symbols, the RBF network can be 
simplified by setting a half of the weights to 1 and the 
other half to -1. Thus the output of this RBF equalizer is 
the same as the optimal Bayesian decision probability in 
(8). 
 

 
Fig. 2 The structure of a RBF network. 

3. Desired Channel States and Channel 
Output States  

 
The desired channel states, 1+

iy  and 1−
iy , are used as the 

centers of the hidden units in the RBF equalizer to 
reconstruct the transmitted symbols. If the channel order is 
taken as p=1 with 10.15.0)( −+= zzH , the equalizer order 
q is equal to 1, the time delay d is also set to 1, and the 
nonlinear portion is described by 

0020101 4321 .D,.D,.D,D =−=== (see Fig. 1), then the 
eight different channel states ( 82 1 =++qp ) may be observed 
at the receiver in the noise-free case. Here the output of the 
equalizer should be )1(ˆ −ks , as shown in Table 1. From 
this table, it can be seen that the desired channel states 
[ ])1(ˆ),(ˆ −kyky  can be constructed from the elements of the 
dataset, called “channel output states”,{ }4321 ,,, aaaa , where 
for this particular channel we have 

60000500004500005001 4321 .a ,.a ,.a ,.a −==−== . The 
length of dataset, n~ , is determined by the channel order, p, 
such as .42 1 =+p  In general, if q=1 and d=1, the desired 
channel states for 1

1,1
+Y  and 1

1,1
−Y  are (a1,a1), (a1,a2), (a3,a1), 

(a3,a2), and (a2,a3), (a2,a4), (a4,a3), (a4,a4), respectively. In 
the case of d=0, the channel states, (a1,a1), (a1,a2), (a2,a3), 
(a2,a4), belong to 1

1,1
+Y , and (a3,a1), (a3,a2), (a4,a3), (a4,a4) 

belong to 1
1,1
−Y . This relation is valid for the channel that 

has a one-to-one mapping between the channel inputs and 
outputs [9]. Thus the desired channel states can be derived 
from the channel output states if we assume p is known, 
and the main problem of blind equalization can be changed 
to focus on finding the optimal channel output states from 
the received patterns. 

It is known that the Bayesian likelihood (BL), given by 
(11), is maximized with the desired channel states derived 
from the optimal channel output states [14]. 
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received sequences. Therefore, the BL is utilized as the 
fitness function (FF) of the proposed algorithm to find the 
optimal channel output states. Being more specific, the 
fitness function is taken as the logarithm of the BL, that is 
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Table 1: The relation between desired channel states and channel output states 

Nonlinear channel with 10.15.0)( −+= zzH , 0.0,2.0,1.0,1 4321 =−=== DDDD , and d=1 

Transmitted symbols Desired channel states Output of equalizer 

)2( )1( )( −− ksksks )1(ˆ           )(ˆ −kyky  
By channel output 

states,{ }4321 ,,, aaaa  )1(ˆ −ks  

1          1          1   1.0500   1.0500 ),( 11 aa   1  

1       1          1  −  1.0500  -0.4500 ),( 21 aa   1  

1          1          1−  0.5000   1.0500 ),( 13 aa   1  

1        1          1 −−  0.5000  -0.4500 ),( 23 aa   1  

1          1       1   −  -0.4500   0.5000 ),( 32 aa  1−  

1       1       1   −−  -0.4500  -0.6000 ),( 42 aa  1−  

1          1       1 −−  -0.6000   0.5000 ),( 34 aa  1−  

1        1       1 −−−  -0.6000  -0.6000 ),( 44 aa  1−  
 
 
The optimal channel output states, which maximize the 
fitness function FF, cannot be obtained with the use of the 
conventional gradient-based methods given the fact that 
the channel structure is not known in advance [9]. For 
carrying out search of these optimal channel output states, 
the proposed MFCM_GW is utilized in this study, and its 
performance is compared with those of three other search 
algorithms introduced in [9]-[11].  

4. A Modified Fuzzy C-Means with Gaussian 
Weights (MFCM_GW) 

 
The previous version of MFCM introduced in [11] comes 
with two additional stages in comparison with the standard 
Fuzzy C-Means [15]. One of them concerns the 
construction stage of possible data set of desired channel 
states with the derived elements of channel output states. 
The other is the selection stage for the optimal desired 
channel states among them based on the Bayesian 
likelihood fitness function. For the channel shown in Table 
1, the four elements of channel output states are required 
to construct the optimal desired channel states. If the 
candidates, { }4321 ,,, cccc , for the elements of optimal 
channel output states { }4321 ,,, aaaa , are extracted from the 
centers of a conventional FCM algorithm (or randomly 
initialized at first), twelve (4!/2) different possible data set 
of desired channel states can be constructed by completing 
matching between { }4321 ,,, cccc and { }4321 ,,, aaaa . To 
facilitate fast matching, the arrangements of { }4321 ,,, cccc  
are saved to the mapping set C such as C(1)=1,2,3,4, 
C(2)=1,2,4,3, …,C(12)=3,2,1,4 before the search process 
starts. For example, C(2)=1,2,4,3 means the desired 
channel states are constructed with c1 for a1, c2 for a2, c4 

for a3, and c3 for a4 in Table 1. At the next stage, a data set 
of desired channel states, which has a maximum Bayesian 
fitness value as described by (12), is selected. This data set 
is utilized as a center set used in the FCM algorithm. 
Subsequently the partition matrix U is updated and a new 
center set is sequentially derived with the use of this 
updated matrix U. The new four candidates for the 
elements of optimal output states are extracted from this 
new center set based on the relation presented in Table 1 
(The eight centers in the new center set are treated as the 
desired channel states constructed by the elements of 
channel output states shown in Table 1. Thus each value of 
the new { }4321 ,,, cccc  is replaced with those of the 

{ }4321 ,,, aaaa  in the new center set, respectively). These 
steps are repeated until the Bayesian likelihood fitness 
function has not been changed or the maximum number of 
iteration has been reached. More details about MFCM can 
be found in [11]. 
 However, the performance of MFCM is easily affected by 
a heavy noise, because its partition matrix U and center set 
are updated based on Euclidean distance measure in the 
standard FCM algorithm. As mentioned in section 2, the 
received symbol y(k) is a random process having 
conditional Gaussian density functions centered at each of 
the desired channel states because of the additive white 
Gaussian noise. Thus to avoid this noise effect, the 
proposed MFCM_GW utilizes the Gaussian density 
function to derive the membership matrix U and a new 
center set such as shown in equation (13) and (14). It has a 
more robust characteristic to the noise than MFCM does, 
and it will be clearly shown in the experiments. 
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where (m)

iy  is the estimated center set of MFCM_GW at 
the mth iteration, utilized as the desired channel states 
shown in Table 1, and sn  is the total number of center 

vectors( sn =8 for the channel in Table 1). The proposed 
MFCM_GW algorithm can be concisely described in its 
flowchart shown in Fig. 3. 
 

 
Fig. 3 The flowchart for MFCM_GW. 

5. Experimental Studies  

In this section, the nonlinear blind equalizations realized 
with the use of the simplex GA, GASA, MFCM and 
MFCM_GW are taken into account to demostrate the 
effectiveness of the proposed method. Two nonlinear 
channels in [9] and [16] with different channel order are 
discussed. Channel 1(channel order=1) is shown in Table 
1 while Channel 2 is described as follows. 
 
Channel 2: 

21 3482.08704.03482.0)( −− ++= zzzH , 
0.0,0.0,2.0,1 4321 ==== DDDD , and d=1 

 
In channel 2, the channel order p, the equalizer order q, 
and the time delay d are 2, 1, 1, respectively. Thus the 
output of the equalizer should be )1(ˆ −ks , and the sixteen 
desired channel states ( 162 1 =++qp ) composed of the eight 
channel output states (

8321
1 ,,,,  ,82 aaaap L=+ )  may be 

observed at the receiver in the noise-free case. The desired 
channel states, (a1,a1), (a1,a2), (a2,a3), (a2,a4), (a5,a1), 
(a5,a2), (a6,a3), (a6,a4), belong to 1

1,1
+Y , and (a3,a5), (a3,a6), 

(a4,a7), (a4,a8), (a7,a5), (a7,a6), (a8,a7), (a8,a8) belong to 
1

1,1
−Y , where 

8321 ,,,, aaaa L  are 2.0578, 1.0219, -0.1679, 
-0.7189, 1.0219, 0.1801, -0.7189 and -1.0758, 
respectively. These sixteen desired channel states for 
channel 2 are summarized in [11]. 

In the experiments, 10 independent simulations for each 
of two channels with six different noise levels 
(SNR=0,5,10,15,20 and 25db) are performed with 1,000 
randomly generated transmitted symbols. Afterwards the 
obtained results are averaged. The four search algorithms, 
simplex GA, GASA, MFCM and MFCM_GW, have been 
implemented in a batch mode to facilitate comparative 
analysis. With this regard, we determine the normalized 
root mean squared errors (NRMSE)  
 

NRMSE = ∑
=

−
N

i
iN 1

211 âa
a

 (15)

 
where a is the dataset of optimal channel output states, 

iâ  
is the dataset of estimated channel output states, and N is 
the number of experiments (N=10). As shown in Fig. 4, the 
proposed MFCM_GW comes with the lowest NRMSE for 
both two channels, and the performance differences are 
more severe under the high noise levels such as 
SNR=0,5,10db. It is caused by the fact that the 
MFCM_GW uses the Gaussian weights shown in equation 
(13) and (14) to reduce the noise interference as mentioned 
in section 4. A sample of 1,000 received symbols under 
5db SNR for channel 1, and its desired channel states 
constructed from the estimated channel output states by 
each of four search algorithms are shown in Fig. 5. 
 

 
(a) channel 1 
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(b) channel 2 

Fig. 4. NRMSE for channel 1 and 2. 
 
 

 
 (a) 1000 received symbols under 5db SNR (b) optimal desired channel states 

 

 
(c) estimated by simplex GA      (d) estimated by GASA 

 

 
(e) estimated by MFCM       (f) estimated by MFCM_GW 

 
Fig. 5. A sample of received symbols for channel 1 and its desired 
channel states 
 
 
In addition, we compared the search time of the 
algorithms. The search times for each of four algorithms 
are included in Table 2; notably, the MFCM and 
MFCM_GW offer much higher search speed for both 
channels and this could be attributed to their simple 
structures. The basic architecture of MFCM_GW is shared 
with the one of MFCM introduced in [11]. However, the 
search speed for the proposed MFCM_GW is much faster 

where the noise level is going up (SNR=0,5,10db) as 
shown in the performance of NRMSE. Finally, we 
investigated the bit error rates (BER) when using the RBF 
equalizer; refer to Table 3. It becomes apparent that the 
BER with the estimated channel output states realized by 
the MFCM_GW is almost the same as the one with the 
optimal output states for both channels. 
 
 
Table 2. The averaged search time( in sec) for each of four algorithms. 

(Simulation environment : Pentium4 2.8Ghz, 2G RAM, code written in Matlab 7.1) 

Channel       SNR Simplex 
GA GASA MFCM MFCM_

GW 
0db 40.8609 41.2141 0.5391 0.3188 
5db 41.9953 42.2703 0.3016 0.2594 
10db 42.2578 42.1203 0.1750 0.1688 
15db 42.0000 42.1953 0.1532 0.1609 
20db 42.3781 42.3860 0.1516 0.1531 

Channel 1 

25db 42.0125 41.8531 0.1547 0.1781 
0db 56.8953 56.7391 2.9844 2.6000 
5db 59.2610 59.6953 3.3172 1.3187 
10db 59.9703 59.7000 2.0844 0.9750 
15db 60.6172 59.8954 1.6891 0.7063 
20db 60.2391 60.0985 3.4547 0.8922 

Channel 2 
 

25db 58.3188 58.0703 1.6969 1.4969 
 
 
Table 3. Averaged BER(%)(no. of errors/no. of transmitted symbols) for 
channel 1 and 2 

Channel  SNR 
with 

optimal 
states 

Simplex 
GA GASA MFCM MFCM

_GW 

0db 27.94 28.10 28.01 28.50 28.19 
5db 15.18 15.21 15.39 15.70 15.21 
10db 4.52 4.98 4.71 4.69 4.49 
15db 0.20 0.24 0.25 0.23 0.23 
20db 0.00 0.00 0.00 0.00 0.00 

Chan
nel 1

25db 0.00 0.00 0.00 0.00 0.00 
0db 21.03 21.19 21.65 21.51 21.49 
5db 11.93 12.24 12.49 11.98 11.91 
10db 4.11 4.68 4.87 4.65 4.86 
15db 1.01 1.57 1.34 1.00 1.00 
20db 0.09 2.42 2.28 0.09 0.09 

Chan
nel 2

 

25db 0.00 1.22 1.13 0.00 0.00 
 

6. Conclusion 

In this paper, a new modified Fuzzy C-Means clustering 
algorithm with Gaussian weights for nonlinear channel 
blind equalization has been introduced. In this approach, 
the highly demanding modeling of an unknown nonlinear 
channel becomes unnecessary as the construction of the 
desired channel states is accomplished directly on a basis  
of the estimated channel output states. It has been shown 
that the proposed MFCM_GW offers better performance 
in comparison with the solutions provided by the simplex 
GA, GASA, and the previous version of MFCM approach. 
In particular, MFCM_GW successfully estimates the 
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channel output states with relatively high speed and 
substantial accuracy even when the received symbols are 
significantly corrupted by a heavy noise. Therefore an 
RBF equalizer, based on MFCM_GW, can constitute a 
viable solution for various problems of nonlinear blind 
channel equalization. Our future research pursuits are 
oriented towards the use of the MFCM_GW under heavy 
noise communication environments.  
 
 
References 
[1] E. Biglieri, A. Gersho, R.D. Gitlin and T.L. Lim, “Adaptive 

cancellation of nonlinear intersymbol interference for 
voiceband data transmission,” IEEE J. Selected Areas 
Commun. SAC-2(5), pp.765-777, 1984. 

[2] J.G. Proakis, Digital Communications, Fourth Edition, 
McGraw-Hill , New York, 2001. 

[3] E. Serpedin and G.B. Giannakis, “Blind channel 
identification and equalization with modulation-induced 
cyclostationarity,” IEEE Trans. Signal Processing, vol.46, 
pp.1930-1944, 1998. 

[4] Y. Fang, W.S. Chow and K.T. Ng, “Linear neural network 
based blind equalization,” Signal Processing, vol.76, pp 
37-42, 1999. 

[5] T. Stathaki and A. Scohyers, “A constrained optimization 
approach to the blind estimation of Volterra kernels,” Proc. 
IEEE Int. Conf. on ASSP 3, pp.2373-2376, 1997. 

[6] G.K. Kaleh and R. Vallet, “Joint parameter estimation and 
symbol detection for linear or nonlinear unknown channels,” 
IEEE Trans. Commun., vol.42, pp.2406-2413, 1994. 

[7] D. Erdogmus, D. Rende, J.C. Principe and T.F. Wong, 
“Nonlinear channel equalization using multilayer 
perceptrons with information theoretic criterion,” Proc. of 
IEEE workshop Neural Networks and Signal Processing, 
pp.443-451, MA, U.S.A., 2001. 

[8] I. Santamaria, C. Pantaleon, L. Vielva and J. Ibanez, “Blind 
Equalization of Constant Modulus Signals Using Support 
Vector Machines,” IEEE Trans. Signal Processing, vol.52, 
pp.1773-1782, 2004. 

[9] H. Lin and K. Yamashita, “Hybrid simplex genetic algorithm 
for blind equalization using RBF networks,” Mathematics 
and Computers in Simulation, vol.59, pp.293-304, 2002. 

[10] S. Han, W. Pedrycz and C. Han, “Nonlinear Channel Blind 
Equalization Using Hybrid Genetic Algorithm with 
Simulated Annealing,” Mathematical and Computer 
Modeling, vol.41, pp.697-709, 2005. 

[11] S. Han, I. Lee and W. Pedrycz, “Nonlinear Blind Channel 
Equalization using A Modified Fuzzy C-Means,” 
International Journal of Computer Science and Network 
Security, vol.7, pp.200-207, 2007. 

[12] S. Chen, B. Mulgrew and P.M. Grant, “A Clustering 
Technique for Digital Communications Channel Equalization 
Using Radial Basis Function Networks,” IEEE Trans. Neural 
Networks, vol.4, pp.570-579, 1993. 

[13] R.O. Duda and P.E. Hart, Pattern Classification and Scene 
Analysis, Wiley, New York, 1973. 

[14] H. Lin and K. Yamashita, “Blind equalization using parallel 
Bayesian decision feedback equalizer,” Mathematics and 
Computers in Simulation , vol.56, pp.247-257, 2001. 

[15] J.C. Bezdek, Pattern Recognition with Fuzzy Objective 
Function Algorithms, Plenum Press, New York, 1981. 

[16] S.K. patra and B. Mulgrew, “Fuzzy techniques for adaptive 
nonlinear equalization,” Signal Process, vol.80, 
pp.985-1000, 2000. 

 
 
 
 

Soowhan Han received B.S. degree in 
electronics, Yonsei University, Korea, in 
1986, and M.S. and Ph.D. degree in 
Electrical & Computer Eng., Florida 
Institute of Technology, U.S.A. in 1990 and 
1993, respectively. From 1994 to 1996, he 
was an assistant professor of the Dept. of 
Computer Eng., Kwandong University, 
Korea. In 1997, he joined the Dept. of 

Multimedia Eng., Dongeui University, Korea, where he is 
currently a professor. His major interests of research include 
digital signal & image processing, pattern recognition and neural 
networks. He is a member of IEEE, KIMICS, KMS, KISPS and 
KFLISS.  

 
Sungdae Park received B.S., M.S. and 
Ph.D. degree in Multimedia Eng., 
Dong-eui University, Korea, in 2002, 2005 
and 2008, respectively. Since Feb. of 
2008, he has joined the Dept. of Digital 
Content Eng., Dong-eui  University, 
where he is currently a fulltime lecture. His 
research interests are digital design & 
nonlinear editing, neural networks, pattern 

recognition and image processing.  


