
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

57

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

A Preemptive Utility Accrual Scheduling Algorithm for
Adaptive Real Time System

Idawaty Ahmad, S.Shamala, M.Othman† and Muhammad Fauzan Othman††

†Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 Serdang Malaysia
††Motorola Multimedia Sdn Bhd, 3507 Prima Avenue,Jalan Teknokrat 5, 63000 Cyberjaya Malaysia

Summary
In this paper, we propose a preemptive utility accrual scheduling
(or PUAS) algorithm as an enhancement to General Utility
Scheduling (or GUS) algorithm proposed by Peng Li [1]. These
scheduling algorithms are designed for adaptive real time system
environment where undesirable effects such as overload and
deadline misses are tolerable. We consider independent task
models that are subject to deadline constraints specified using
step time/utility functions (or TUFs). The basic idea of our
algorithm is to reduce the number of unnecessary abortion that
occurs in GUS by preemption instead of abortion. We consider
the scheduling objective of maximizing the utility that is accrued
by the completion of all tasks. Simulation results revealed that
the proposed algorithm outperforms GUS algorithm. By reducing
the total number of task aborted together with lower abortion
ratio, this in effect produced a higher utility and reduced the
average response time, making it more suitable and efficient in
time-critical application domain.
Key words:
Adaptive real time system, Utility Accrual Scheduling,
Time/Utility Functions (TUFs), Accrued Utility Ratio (AUR),
Abortion Ratio (AR).

1. Introduction

A real time system is a system where the time at which
events occur is important. Real-time scheduling is
fundamentally concerned with satisfying application time
constraints. While early research on real time scheduling
was primarily focused on complying avoidance of
undesirable effects such as overload and deadline misses,
adaptive real time systems are designed to handle such
effect dynamically by softly degrading performances. In
adaptive-soft real time system, an acceptable deadline
misses and delays are tolerable.

During resource overloads, meeting the deadlines of
all tasks is impossible as the demand exceed the supply.
The urgency of task is typically orthogonal to the relative
important of the task. The most urgency task can be least
important, and vice versa. When overloads occur, it is
often desirable to complete tasks that are more important
than those which are more urgent. Thus, a clear distinction
has to be made between the urgency and the importance of

a task. A deadline by itself cannot express both urgency
and importance. In this paper, we consider the time/utility
functions (or TUFs) that express the utility of completing
a task as an application-specific function of when a task
completes. This formulation was initially proposed by
Jensen in [2], [3]. In this paper we specify the deadline
constraint of a task as a binary-valued, downward step
shaped TUF. As illustrated in Fig 1, a TUF decouples
importance and urgency- i.e., urgency is measured as a
deadline on the X-axis and importance is denoted by
utility on the Y-axis.

Fig. 1 The Step TUF that specify deadline and importance [1].

The scheduling optimality criteria are based on
maximizing accrued utility from those tasks i.e.,
maximizing the sum of tasks’ attained utilities. These
criteria are named as Utility Accrual (or UA) criteria.
Scheduling algorithms that consider UA criteria are
classified as UA algorithms. A UA algorithm that
maximizes the sum of tasks’ attained utilities will seek to
meet all task deadlines when under loads and during
overloads it naturally tend to favor task that are more
important (from whom higher utility can be accrued) than
those that are more urgent.

As suggested in the recent overview of the UA real
time scheduling domain [4], the current algorithm that
provides general assurance on timeliness behavior is GUS
(Generic Utility Scheduling) algorithm that is presented in
Peng Li’s PhD thesis [1]. However, it is observed that this
algorithm is inefficient for independent task model in the
sense that it simply aborts any task with lower utility

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

58

without accounting that those tasks just need to be pre-
empted (i.e., suspended) instead of being aborted. Task
that has been aborted will not contribute any positive
utility to the system. Therefore, we speculate that more
unnecessary abortions occurred in GUS that could
possibly reduce the tasks’ attained utility.
 To overcome the unnecessary abortion characteristic of
GUS, we proposed a pre-emption enabled version of GUS
algorithm named as PUAS (Preemptive Utility Accrual
Scheduling) algorithm. Instead of abort, we suspend
(preempt) task with lower utility that currently holding a
resource and allow task with higher utility to execute and
hold the resource.

2. The PUAS Algorithm

This section briefly describes the PUAS algorithm, and
extension of GUS algorithm. For comparison purposes,
most of the definition and assumptions of PUAS algorithm
are similar to the GUS model. We apply the Jensen’s
TUFs [3] to define the time constraints of a task. As
shown in Fig 1, each task Treq has an initial time ITreq
and a termination time TTreq. Initial time is the earliest
time for which the function is defined and termination
time is the latest time for which the function is defined. As
illustrated in Fig 1, UTreq is defined in the time interval of
[ITreq, TTreq]. Beyond that, UTreq is undefined. If the
termination time of a task is reached and the task has not
completed its execution, it will then be aborted. Aborting a
task will change the task from Normal to Abort mode.
Completion of a task before the deadline in Normal mode
accrues some uniform utility and accrues zero utility
otherwise. Thus, finishing a task in Abort mode will
accrues zero utility.

Following [1], our proposed algorithm measures the
metric called Potential Utility Density (or PUD) that was
originally developed in [3]. As shown in Fig 2, the PUD of
a task measures the amount of utility that can be gained
per unit time by executing the task. Thus, executing task in
Abort mode will accrues zero PUD. It is important to
observe that by reducing the number of tasks in Abort
mode, it is very likely that we would gain higher utility.

A description of PUAS after accepting a task request
is shown in Fig 3. When the scheduler accepts a request
from task Treq, it will first check the availability of the
requested resource. If the resource is in idle mode, task
Treq can be schedule immediately to use the resource. For
the case when the resource is in busy mode and currently
being used by the owner task Towner, we compare the
PUD for both tasks. If requesting task Treq produced
higher PUD, then the owner task Towner will stop

executing the resource and let the Treq to be scheduled for
execution and hold the resource.

Fig. 2 The calculation of Potential Utility Density (or PUD).

Fig. 3 The PUAS Algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

59

3. Experimental Model

As suggested in the overview of the performance analysis
technique used in UA real time scheduling domain [5], we
develop a discrete event simulation (or DES) to verify the
performance of our proposed algorithm. The rationale of
using DES lies in the fact that the previous work of GUS
algorithm was based on discrete event simulation tools
using OMNET++ [1]. The other UA scheduling
algorithms such as LBESA, DASA and EUA were also
built on DES based tools [3], [6], [7]. This is simplified in
Table 1. Thus, we believe that in order to precisely
remodel and further enhance the GUS algorithm, DES
written in C language is the best method to achieve this
objective. For comparison purpose, similar experimental
settings to Peng Li’s PhD thesis [1] are used.

Table 1: Performance analysis technique used in the UA scheduling
algorithms

UA
scheduling
 type

Simulation
technique

Underlying
Programming
 language

GUS OMNET++ (Tool) C/C++ (DES)
DASA SIMCRIPT C/C++ (DES)
LBESA SIMCRIPT C/C++ (DES)
EUA OMNET++(Tool) C/C++ (DES
PUAS

GPL (General
Public Language)

C (DES)

3.1 Simulation Model

Fig 4 shows the entities involve in our simulation study. It
consists of a stream of 1000s task that are exponentially
generated, an unordered task list, the proposed scheduler
and a set of resources. The Held_Resource entity denotes
the set of resources that is currently held by a task. These
tasks are assumed to be independent of each other.

Fig. 4 Simulation Model.

During the execution time of a task, it may request one or
more shared resources. Fig 5 shows the possibility of
having a nested requested time interval. In Fig 5, a task
request three resources, which are R1, R3 and R5. The

task requests resource R5, then request resource R3 before
it releases resource R5. Thus, the time interval of task
holding resource R5 and R3 are considered as nested.

Fig. 5 Task Model

Table 2 summarized the details task settings in our
simulation. Given the task execution time C_AVG and a
load factor load, the average task inter-arrival time iat can
be calculated as C_AVG/load. The iat is applied to
exponential distribution as depicted in Table 2. The
maximum utility of each task follows normal distribution.

Table 2: Simulation Parameters
Parameters Descriptions Range
C_AVG Task average

execution time
0.5 sec

load Range of load 0.2 to 1.5
iat Task inter arrival

time
Exponential
(C_AVG/load)

holdtime Time for holding a
resource

Normal
(0.25,0.25)

max_au Task’s Maximum
Utility

Normal(10,10)

MAX_TASKS Number of task in
the system

1000

MAX_
RESOURCES

Number of
available resource

5

ABORTABILITY Percentage of
abortable tasks

95%

3.2 Performance Metrics

It has been stated in [8], that the performance of real time
scheduling algorithm is measured by the metrics that relies
on the application specs. For UA scheduling domain, the
Accrued Utility Ratio (or AUR) metric defined in [2] has
been used in many algorithms in [1], [6], [7] and can be
considered as standard metric in this domain. AUR is
defined as the ratio of accrued aggregate utility to the
maximum possibly attained utility.
In addition, we proposed three new metrics that known as
Success Ratio, Abortion Ratio and Average Response
Time to precisely evaluate the performances of the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

60

proposed algorithm. These performance metrics enable us
to determine whether the proposed algorithm is efficient
and robust in overloads situation. The Success Ratio (or
SR) is the ratio of task attained positive utility to the total
of task executed in the system. The SR supports the result
of AUR in the sense that it measures the exact number of
tasks that has contributed to AUR produced utility to the
system. The Abortion Ratio (or AR) is defined as the ratio
of aborted task to the total of executed task. As mentioned
in the first section, we speculate that the existing algorithm
GUS produced higher number of aborted task that we
believed can be resurrected in our proposed algorithm.
The AR metric verified the speculation. The Average
Response Time (or ART) measures the average time taken
for a task to complete its execution time after fulfilled its
entire requests. The ART metric shows the timing effect of
the proposed algorithm.

4. Results and Discussions

Fig 6 and Fig 7 show the AUR and SR under an increasing
load respectively. As Fig 6 shows, the proposed algorithm
has better performance by producing higher utility than in
GUS for the entire load range. Fig 7 denoted the total
number of tasks that contribute to AUR. From these
figures, we observe that in underloads both algorithms
performed better i.e., more than 90% of the tasks accrued
utility to the system. The gap between GUS and PUAS are
relatively small and insignificant (i.e., ≈3%). However, as
the load increases, the AUR and SR gap increased
significantly. In overloads, almost 81% of the task
executed in PUAS algorithm gained utility compare to
59% in GUS. The gap between these algorithms is high
(i.e., ≈22%) in overloads condition. We speculate that, the
AUR and SR gap exist between GUS and PUAS is
because GUS has more aborted task than PUAS. Since the
aborted task produced zero utility, consequently GUS
produced more zero utility tasks than in the proposed
algorithm. In higher load, the numbers of preempted task
are higher, which means higher number of aborted tasks
can be avoided that in ultimately broaden the gap. Fig. 8
verifies our assumption, which proves that the abortion
ratio in GUS is higher than in PUAS, which in turn leads
to lower utility accrued. From Fig 9, we further observe
that, by reducing the percentage of aborted tasks, together
with the reduction of abortion ratio, this is in turn not only
contribute to higher utility but also reduce the average
response time making it more suitable and efficient in time
critical application domain.

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1 1.2 1.4

Average Load

A
cc

ru
ed

 U
til

ity
 R

at
io

:A
U

R
(%

)

PUAS

GUS

Fig. 6 Accrued Utility Ratio

40

50

60

70

80

90

100

0.2 0.5 1 1.5

A verage Load

Su
cc

es
s

R
at

io
(%

)

PUAS
GUS

Fig. 7 Success Ratio

0
5

10
15
20
25
30
35
40
45

0.2 0.4 0.6 0.8 1 1.2 1.4

Average Load

A
bo

rt
io

n
R

at
io

(%
)

PUAS

GUS

Fig. 8 Abortion Ratio

0.4

0.42

0.44

0.46

0.48

0.5

0.2 0.5 1 1.5

Average Load

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

se
cs

)

PUAS

GUS

Fig. 9 Average Response Time

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

61

5. Conclusion

This paper presents an efficient UA real time scheduling
algorithm called PUAS that considers tasks subjected to
deadlines expressed using step TUFs. We developed a
discrete event simulator to evaluate the performance of
PUAS algorithm that target to maximize the accrued utility.
We compared our proposed algorithm with the current
existing UA algorithm named GUS algorithm. The PUAS
algorithm outperforms the GUS with higher accrued utility,
less abortion ratio and smaller average response time,
making it more suitable and efficient in real time
application domain.

However, this research is still at its early stage of
study. There still remain several issues to be resolved such
as:
(i) Applying the proposed PUAS algorithm to various
shape of TUF scheduling such as soft-step, linear,
parabolic, multimodal and arbitrary shapes.
(ii) Designing an error recovery algorithm to measure the
proposed PUAS algorithm in error-prone environment. (In
progress)
(iii) Implementing in Real Time Operating System
(RTOS) to observe the actual behavior of PUAS algorithm.

Acknowledgments

The authors would like to express their cordial thanks to
Dr. Zuriati Ahmad Zulkarnain for her valuable advice.

References
[1] Peng Li, “Utility Accrual Real Time Scheduling: Models

and Algorithms”, Ph.D. dissertation, Virginia Polytechnic
Institute and State University, 2004.

[2] E.D.Jensen, C.D.Locke and H.Tokuda, ”A time driven
scheduling model for real time systems,” in Proceeding of
IEEE Real-Time System Symposium, pp.112-212,
December 1985.

[3] C.D.Locke, “Best-effort decision making for real time
scheduling,”Ph.D. dissertation, Carnegie Mellon University
CMU-CS-86-134, 1986.

[4] B.Ravindran, E.D.Jensen, P.Li, “On Recent Advances in
Time/Utility Function Real-Time Scheduling and Resource
Management,” in Proceeding of the Eighth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), pp.55-60, 2005.

[5] Idawaty Ahmad, “Real-Time Task Scheduling Algorithms
in Multiprocessor Environment,”in Proceeding of the
National Information Communication Technology
(NaICT’06), ISBN-983-42570-1-5, pp.142-150, 2006.

[6] R.K.Clark, “Scheduling Dependent Real-time
Activities,”Ph.D. dissertation, Carnegie Mellon University
CMU-CS-90-155, 1990.

[7] H.Wu, B. Ravindran, P.Li, “CPU Scheduling for
Statistically- Assured Real-Time Performance and

Improved Energy Efficiency,” in Proceeding of the 2nd
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES/ISSS), pp.110-115, September 2004.

[8] J.A.Stankovic, K.Ramamitham,” Advanced in Real-Time
Systems”,Computer Society Press, Los-
Alamitos,California,1993.

Idawaty Ahmad received theB.Sc. and
M.Sc. degrees in Computer Science
from Saga University (Japan), in 1998
and 2000, respectively. She is a full-
time lecturer at the Department of
Communication Technology and
Network, University Putra Malaysia,
pursuing her PhD at the same institution.
Her current research interest includes

real time system and simulation modeling. She is also an
associate researcher for High Performance Computing at the
Institute of Mathematical Research (INSPEM), University Putra
Malaysia.

Shamala Subramaniam completed
PhD from University Putra Malaysia in
2002. She is a lecturer at the
Department of Communication
Technology and Network, Faculty of
Computer Science and Information
Technology, University Putra Malaysia.
Her current research interest includes
wireless and mobile network,

simulation and modeling. She is an associate researcher for High
Performance Computing at the Institute of Mathematical
Research (INSPEM), University Putra Malaysia.

Mohammad Othman completed PhD
from University Kebangsaan Malaysia in
1999 (with best PhD thesis awarded by
Sime Darby Malaysia and Malaysian
Mathematical Science Society). Currently
he is Associate Professor at the Department
of Communication Technology and
Network, Faculty of Computer Science and

Information Technology, University Putra Malaysia. His
research interest includes parallel and distributed algorithms,
high-speed computer network, and multiprocessor system on
chip.

Muhammad Fauzan Othman
received the B.Sc in Computer Science
from University Putra Malaysia in 2003.
Currently as a senior principal engineer at
Motorola Technology Sdn Bhd, his research
interest includes clustering, virtualization
and distributed computing.

