
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

85

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

Bidirectional Clustering of Weights
for Finding Succinct Multivariate Polynomials

Yusuke Tanahashi and Ryohei Nakano

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555 Japan

Summary
We present a weight sharing method called BCW and evaluate
its effectiveness by applying it to find succinct multivariate
polynomials. In our framework, polynomials are obtained by
learning a three-layer perceptron for data having only numerical
variables. If data have both numerical and nominal variables, we
consider a set of nominally conditioned multivariate
polynomials. To obtain succinct polynomials, we focus on
weight sharing. Weight sharing constrains the freedom of weight
values such that weights are allowed to have one of common
weights. The BCW employs merge and split operations based on
2nd-order optimal criteria, and can escape local optima through
bidirectional clustering. Moreover, the BCW selects the optimal
model based on the Bayesian Information Criterion (BIC). Our
experiments showed that connectionist polynomial regressions
with the proposed BCW can restore succinct polynomials almost
equivalent to the original for artificial data sets, and obtained
readable results and satisfactory generalization performance
better than other methods for many real data sets.
Key words:
polynomial regression, multi-layer perceptron, weight sharing,
bidirectional clustering

1. Introduction

Polynomials are quite suitable for expressing
underlying regularities among multiple variates.
Previously, BACON system [1] was proposed by Langley,
which finds polynomials by a combinatorial searching
approach through a trial and error process. However, it
suffers from a combinatorial explosion in the case that
data have a lot of variables. As an alternative, a
connectionist numerical approach, such as RF5 [2], has
been investigated. The RF5 employs a three-layer
perceptron to discover the optimal polynomial which fits
multivariate data having only numerical variables, and it
worked well. For data having both numerical and nominal
variables, a set of nominally conditioned polynomials is
considered as a fitting model. In this model, each
polynomial is accompanied with the corresponding
nominal condition stating a subspace where the
polynomial is applied. A method called RF6.4 [3] was
proposed to find such a set of nominally conditioned
polynomials. The RF6.4 proceeds in two steps: learning of
a multi-layer perceptron, and rule restoration from the

learned perceptron.
These polynomial models have enough power to fit

nonlinear data well, but the readability of the final output
is not so good when data have many variables. For the
purpose of obtaining succinct polynomials, we focus on
weight sharing [4][5]. Weight sharing means constraining
the freedom of weight values such that weights in a
network are divided into several clusters and weights
within the same cluster have the same value called a
common weight. If a common weight value is very close to
zero, then all the corresponding weights can be removed
as irrelevant to result in disconnection, which is called
weight pruning. If we employ weight sharing and pruning,
we will obtain as simple polynomials as possible, which
greatly improves the readability in knowledge discovery
from data.

Weight sharing and pruning have been widely used to
reduce the effective complexity of a network. Nowlan and
Hinton proposed soft weight sharing [6][7], and soft
weight sharing was applied to multi-layer perceptrons for
efficient VLSI implementation [8]. LeCun el al. proposed
OBD (optimal brain damage) [9] for removing
unimportant weights from a network by using the Hessian
matrix. Moreover, weight sharing was used to learn
artificial neural network architectures for othello
evaluation [10] focusing its symmetries.

Since we pursue crisp readability, we have
investigated a hard weight sharing, and this paper
proposes BCW (bidirectional clustering of weights). The
BCW employs both cluster-merge and cluster-split
operations based on second-order optimal criteria, and can
escape local optima to find global optima or semi-optima
through bidirectional operations. When we apply the
BCW to RF5 or RF6.4, we should determine the vital
parameters: the numbers J, R of hidden units, the number I
of rules, and the number G of clusters for the weight
sharing. As a criterion to select the best model, the BCW
employs the information criterion called BIC [11] for
selecting optimal J*, R*, I* and G*. Since BIC doesn’t need
repetitive learning, the BCW can select the optimal model
very fast.

Section 2 explains the basic framework of the
connectionist polynomial regressions RF5 and RF6.4.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

86

Section 3 explains the proposed BCW in detail. Section 4
explains how to apply the BCW to connectionist
polynomial regressions. Section 5 evaluates how the BCW
worked for finding succinct multivariate polynomials
through our experiments.

2. Connectionist Polynomial Regression

2.1 Multivariate Polynomial Regression

We explain the basic framework of a connectionist
multivariate polynomial regression method RF5 [2]. We
consider a regression problem to find the following
polynomial made of multiple variables. Here x =

),,,,(1 Kk xxx KK is a vector of numerical explanatory
variables.

(1)

By assuming xk > 0, we rewrite it as follows.

(2)

Here, w is composed of w0, wj and wjk. The right hand side
can be regarded as a feedforward computation of a three-
layer perceptron having J hidden units with w0 as a bias
term, which is shown in Fig. 1. Note that an activation
function of a hidden unit is exponential. A regression
problem requires us to estimate f(x; w) from training data

},,1:),{(Ny K=μμμx , where y denotes a numerical
target variable. The following mean squared error (MSE)
is employed as an error function.

(3)

To obtain good results efficiently in our learning, we use
the BPQ method [12], which has the quasi-Newton
framework with the BFGS update and calculates the step-
length by using the second-order approximation.

2.2 Nominally Conditioned Polynomial Regression

If data have both numerical and nominal variables, we can
consider a set of nominally conditioned multivariate
polynomials. RF6.4 [3] can find such a set of polynomials.
Let),,,,,,(

21 11 yxxqq KK KK or (q, x, y) be a vector of
variables, where qk and xk are nominal and numerical
explanatory variables respectively, and y is a numerical
target variable. For each qk we introduce a dummy
variable qkl defined as follows: qkl = 1 if qkl matches the l-
th category of qk, and qkl = 0 otherwise. Here, l = 1,…,Lk,
and Lk is the number of distinct categories appearing in qk.

As a true model governing data, we consider the
following set of I rules.

(4)

where i

kQ and wi denote a set of qkl and a parameter vector
of),(iwxφ respectively used in the i-th rule. As a class of
regression function),(iwxφ , we consider the following
multivariate polynomial. Thus, a rule is nothing but a
nominally conditioned polynomial.

(5)

Equation (5) can be represented by the following

single numerical function, which can be learned by using a
single four-layer perceptron as shown in Fig. 2.

(6)

Figure 1:Three-layer perceptron for RF5

Figure 2: Four-layer perceptron for RF6.4

h

1 exp exp

w0

wjk

wj

j

k

ln xk

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

87

Here, θ is composed of v0r, vjr, vrkl and wjk.
Now we assume we have finished learning the

perceptron. Then, a set of rules is extracted from the
learned perceptron. As the first step of rule restoration,
coefficient vectors for all samples

},...,1:),...,,({ 10 Nccc J == μμμμμc are quantized into I
representatives == iaaa i

J
iii :),...,,({ 10a },,1 IK . For vector

quantization we employ the K-means due to its simplicity,
to obtain I disjoint subsets {Gi : i = 1,…,I} where the
distortion dVQ is minimized.

(7)

As the second step, the final rules are obtained by

solving a simple classification problem whose training
samples are },,1:))(,{(Ni K=μμμ qq , where)(μqi
indicates the representative label of the μ -th sample. Here
we employ the C4.5 decision tree generation program [13]
due to its wide availability.

3 Proposed Method of Weight Sharing

3.1 Basic Definitions

Let E(w) be an error function to minimize, where w =
(w1, …, wd, …, wD) denotes a vector of D weights in a
multi-layer perceptron. Then, we define a set of G clusters
Ω (G) = {S1,…,Sg,…,SG}, where Sg denotes a set of
weights such that)(, ggSSS ggg ′≠=≠ ′ φφ I and

},...,1{...1 DSS G =UU . Also, we define a vector of G
common weights u = (u1,…, ug,…, uG) associated with a
cluster set Ω (G) such that wd = ug if gSd ∈ .

Now we consider a relation between w and u. Let D
de

be the D-dimensional unit vector whose elements are all
zero except for the d-th element, which is equal to unity.
Then the original weight vector w can be expressed by
using a D×G transformational matrix A as follows.

(8)

Note that we have a one-to-one mapping between the
matrix A and the cluster set Ω (G). Therefore, our goal is
to find Ω (G*) which minimizes E(Au), where G* denotes
the optimal number of clusters.

In our method, we employ the BPQ method to learn
the perceptron with clustered weights. So we need to
calculate a gradient vector)~(wg of clustered parameters
w~ . We can calculate)~(wg as follows by using
transformational matrix A and a gradient vector g(w) of
non-clustered parameters w.

(9)

By using equation (9), we can easily calculate)~(wg .
Below we outline the BCW (bidirectional clustering of

weights) method. Since a weight clustering problem will
have many local optima, the BCW is implemented as an
iterative method where cluster-merge and cluster-split
operations are repeated in turn until convergence. In order
to obtain good clustering results, the BCW must be
equipped with a reasonable criterion for each operation.
To this end, we derive the second-order optimal criteria
with respect to the error function.

3.2 Bottom-up Clustering

One-step bottom-up clustering is to transform Ω (G)
into)1(−Ω G by a cluster-merge operation; i.e., clusters Sg
and Sg' are merged into a single cluster

ggg SSS ′= U
~ .

Clearly, we want to select a suitable pair of clusters so as
to minimize the increase of the error function.

Given a pair of clusters Sg and Sg', we consider the
second-order optimal criterion for merging DisSim(Sg, Sg'),
which approximates to the increase of E(w) to the 2nd
order. We select a pair which minimizes DisSim(Sg, Sg')
defined below.

(10)

Here, g(w) and H(w) denote the gradient and Hessian of
E(w) respectively, û and w~ denote trained weight vectors.
Based on the above criterion, the one-step bottom-up
clustering with retraining selects a pair of clusters which
minimizes DisSim(Sg, Sg'), and merges these two clusters.
After the merge, the network with)1(−Ω G is retrained.

3.3 Top-down Clustering

One-step top-down clustering is to transform Ω (G)
into)1(+Ω G by a cluster-split operation; i.e., a cluster Sg
is split into two clusters

gS ′ and 1+′GS where
1+′= Ggg SSS U . In this case, we want to select a suitable

cluster and its partition so as to maximize the decrease of
the error function.

 Just after the splitting, we have a (G+1)-dimensional
common weight vector T

g
T u)ˆ,ˆ(~ uv = , and a new

D×(G+1) transformational matrix B defined as below.

 (11)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

88

Then, we define the second-order optimal criterion for

splitting GenUtil(Sg, SG+1), which approximates to the
decrease of E(w) to the 2nd order. The values are positive,
and the larger the better.

(12)

When a cluster has m elements, the number of
different splitting amounts to 122)22(1 −=− −mm . This
means an exhaustive search suffers from combinatorial
explosion. In order to avoid this problem, we consider
three kinds of splitting methods as shown next;

split1: Split a cluster into only one element and the
others.

split2: Sort the gradients of members of a cluster in
ascending order and split the cluster into two
groups having smaller gradients or larger
gradients.

split3: Perform the K-means to quantize the parameters
obtained by the learning of non-
clustered\network and split a cluster depend on
the result of the quantization.

Since the computational cost of performing these three
methods is much smaller than that of learning of the
perceptron, the BCW employs all of these three methods.
Examining all the clusters, the BCW selects a suitable
cluster to split and its splitting based on the criterion (12).
After the splitting, the network with Ω (G+1) is retrained.

3.4 Bidirectional Clustering of Weights (BCW)

In general there may exist many local optima for a
clustering problem. The single usage of either the bottom-
up or top-down clustering will get stuck at a local
optimum. Thus, we consider an iterative usage of both
clusterings to obtain bidirectional clustering of weights
(BCW).

The procedure of BCW is shown below. The BCW
always converges since the number of different A is finite.
Here h is the width of bidirectional clustering.

step1: Get the initial set Ω (D) through learning of a
multi-layer perceptron. Perform scalar
quantization for Ω (D) to get Ω 1(2). Keep the
matrix A(0) at Ω 1(2). 1←t .

step2: Perform repeatedly the one-step top-down
clustering with retraining from Ω 1(2) to Ω (2+h).
Update the best performance for each G
(=t2,3,…,2+h) if necessary.

step3: Perform repeatedly the one-step bottom-up
clustering with retraining from Ω (2+h) to Ω 2(2).

Update the best performance for each G if
necessary. Keep A(t) at Ω 2(2).

step4: If A(t) is equal to one of the previous ones
)0()1(, , AA K−t , then stop the iteration and output

the best performance of Ω (G) for each G as the
final result. Otherwise,)()(,1 21 GGtt Ω←Ω+←
and go to step 2.

4 Applying BCW to Connectionist Polynomial

Regression

The connectionist polynomial regression RF5 or RF6.4
can fit multivariate non-linear data with satisfiable
precision. However, if data have many input variables, the
readability of a polynomial gets worse. So it is important
to get as succinct a result as possible for crisp readability.
To this end, we consider applying the BCW to RF5 or
RF6.4. In this case, weight sharing is applied only to
weights wjk in Eq. (2) or Eq. (6) for simplicity. By
applying the BCW to RF5 or RF6.4, we expect not only
the readability of the results but also good generalization
performance avoiding the over-fitting.

Given data, we don’t know in advance the optimal
numbers J* and R* of hidden units, the optimal number I*
of rules, or the optimal number G* of clusters for the
BCW. Therefore, in order to find a model having excellent
performance, we need a criterion suitable for selecting J*,
R*, I* and G*. As the criterion for selecting the best model,
the BCW employs the Bayesian Information Criterion
(BIC) [11]. Compared to other means such as cross-
validation [14] or bootstrap method [15] which need
repetitive learning, BIC can select the optimal model in
much less time because we need only one learning for
each J, R, I and G.

The whole procedures of RF5 or RF6.4 with the BCW,
including the procedure of model selection, are
summarized below:

RF5+BCW:

step1: Learn the three-layer perceptron without weight
sharing for each J = 1,2,…, and select the J
which minimizes Eq. (13) as J*.

(13)

step2: Learn the perceptron under the condition of J*

with weight sharing, and select the G which
minimizes Eq. (14) as G*.

(14)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

89

step3: Learn the perceptron under the condition of J*

and G* with pruning of a near-zero common
weight, and get the final result.

RF6.4+BCW:

step1: Learn the four-layer perceptron without weight
sharing for each J = 1,2,…, R = 1,2,…, and select
the J and R which minimize Eq. (15) as J* and
R*.

(15)

step2: Learn the perceptron under the condition of J*

and R* with weight sharing, and select the G
which minimizes Eq. (14) as G*.

step3: Learn the perceptron under the condition of J*, R*
and G* with pruning of a near-zero common
weight.

step4: Quantize the coefficient vectors by the K-means
for each I = 1,2,…, and select the I which
minimizes Eq. (16) as I*. As for BIC(I), we adopt
Pelleg's X-means approach [16]. Here, Σ̂ is a
covariance matrix calculated by Eq. (17).

(16)

 (17)

step5: Solve the classification problem by using the

C4.5 program [13] and get the final result.

5 Experiments for Evaluation

5.1 Experiments for applying BCW to RF5 using an
Artificial Data Set

We consider the following multivariate polynomial:

(18)

Here we introduce ten irrelevant explanatory variables
156 ,, xx K . For each sample, each xk value is randomly

generated in the range of (1,2), while the corresponding

value of y is calculated by Eq. (18) with small Gaussian
noise N(0, 0.3) added. The size of training data is 300 (N =
300).

The initial values for weights wjk are independently
generated according to a uniform distribution with a range
of (-1, 1); weights wj are initially set equal to zero, but the

bias w0 is initially set to the average output over all
training samples. The iteration is terminated when the
gradient vector is sufficiently small, i.e., each element of
the vector is less than 105. Weight sharing was applied
only to weights wjk in a three-layer perceptron. Here we
set the width of bidirectional clustering as h=10.

The number of hidden units was changed from one
(J=1) to five (J=5). We performed 100 times of learning of
a perceptron with different initial values of parameters.
Note that J*=2 and G*=4 for our artificial data. Table 1
compares the frequency with which BIC(J) was
minimized. We can see that BIC(J) was minimized at J=2
for most trials. When BIC(J) was minimized at J=3,
learning with J=2 converged to local optima. So we can
say the optimal number J* of hidden units is 2, which is
correct.

Now that we have the optimal number J*=2, Table 2
compares the frequency with which BIC(G) was
minimized under J=2. BIC(G) was minimized most

Table 1: Frequency with which BIC(J) is minimized
(RF5+BCW, Artificial Data 1)

models J = 1 J = 2 J = 3 J = 4 J = 5 total
Freq. 0 93 7 0 0 100

Table 2: Frequency with which BIC(G) is minimized
(RF5+BCW, Artificial Data 1)

models G = 2 G = 3 G = 4 G = 5 G = 6 G = 7
Freq. 0 0 89 11 0 0

G = 8 G = 9 G = 10 G = 11 G = 12 total 0 0 0 0 0 100

0 10 20
400

500

600

700

800

900

1000

1100

iteration

BI
C(
G
)

0

0.5

1

1.5

2

2.5

3

3.5

M
SE

BIC(G)

MSE

Fig. 3: Bidirectional clustering for Artificial Data 1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

90

frequently at G=4, so we can say the optimal number G* of
clusters is 4, which is correct again. When BIC(G) was
minimized at G=5, the cluster having a near-zero value
was split and G was incremented from the optimal value.
We can obtain the same optimal model by applying the
weight pruning.

Figure 3 shows how training error MSE and BIC(G)
changed through BCW learning in a certain trial with J=2.
Training error MSE got smaller as the number G of
clusters increased. Although we couldn’t get a good
performance of BIC(4) at the beginning of the
bidirectional clustering, the second BIC(4) (iteration = 19
in the figure) was the best.

Then we pruned the near-zero common weight, and
retrained the network again. The pruning means changing
a very small common weight (|u| < 0.01) to zero and
performing retraining after that. Then we have the
following function, almost equivalent to the original Eq.
(18).

(19)

Note that we have exactly the same result as the above for
a model of J=2 and G=5 if the pruning is applied. This
means our method has some robustness for model
selection.

The whole elapsed cpu time per trial required for
applying the BCW to RF5 is about 3 minutes in our
experiment. We can select the best model and find almost
equivalent to the original multivariate polynomial in
reasonable cpu time.

5.2 Experiments for applying BCW to RF6.4 using
an Artificial Data Set

We consider the following set of nominally
conditioned multivariate polynomials:

(20)

Here we have 15 numerical and 4 nominal explanatory
variables with L1 = 3, L2 = L3 = 2 and L4 = 5. Obviously,
variables q4, x6, …, x15 are irrelevant. For each sample,
values of xk and qk are randomly taken from the interval
(1,2) and from its categories respectively, while the
corresponding value of y is calculated by Eq. (20) with
small Gaussian noise N(0, 0.3) added. The size of training
data is 500 (N = 500).

The initial values for weights wjk, v0r, vjr and vrkl are
independently generated according to a uniform
distribution with a range of (-1, 1); The iteration is
terminated when each element of the gradient vector gets
smaller than 105. We set the width of bidirectional
clustering as h=10. The numbers of hidden units was
changed from one (J=1, R=1) to five (J=5, R=5), and the
number of rules was changed from one (I=1) to ten (I=10).
Note that J*=2, G*=4 and I*=4 for our artificial data.

Table 3 compares the frequency with which BIC(J, R)
was minimized. BIC(J, R) was minimized at J=2 for all
trials, so the optimal number J* is 2, which is correct. In
this experiment, R=3 is selected most frequently. By
previous experiments, we brought out the fact that original

Fig. 4: Bidirectional clustering for Artificial Data 2

0 5 10 15 20 25 30 35 40 45
800

1100

1400

1700

2000

2300

iteration

BI
C(
G
)

0

2.5

5

7.5

10

12.5

M
SE

MSE

BIC(G)

Table 3: Frequency with which BIC(J, R) is minimized
(RF6.4+BCW, Artificial Data 2)

models J = 1 J = 2 J = 3 J = 4 J = 5
R = 1
R = 2
R = 3
R = 4
R = 5

0
0
0
0
0

0
0
86
14
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

Table 4: Frequency with which BIC(G) is minimized
(RF6.4+BCW, Artificial Data 2)

models G = 2 G = 3 G = 4 G = 5 G = 6 G = 7
Freq. 0 0 83 12 5 0

G = 8 G = 9 G = 10 G = 11 G = 12 total 0 0 0 0 0 100

Table 5: Frequency with which BIC(I) is minimized
(RF6.4+BCW, Artificial Data 2)

models I = 1 I = 2 I = 3 I = 4 I = 5
Freq. 0 0 0 82 10

I = 6 I = 7 I = 8 I = 9 I = 10 total 5 0 0 0 3 100

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

91

Table 6: Real data sets used in our experiment

data set contents of criterion variable N K2 Kall
cpu

boston
college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

performance of CPU
housing price in Boston

instructional expenditure of colleges
amount of cholesterol

amount of beta-carotene
fuel cost of cars

survival time of lung cancer patients
wage of workers per hour

housing price in Yokohama
annual salary of baseball players

205
486
1129
297
315
388
126
534
558
219

6
12
11
5
10
5
3
2
4
10

26
76
51
13
6
28
6
14
23
14

Table 7: J* of RF5 and J*, R* of RF6.4 (Real Data)

RF5 RF6.4
 J* J* R*

cpu
boston
college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

3
1
3
2
1
2
4
5
3
3

3
2
2
2
1
2
3
4
5
3

3
1
2
3
4
3
5
3
2
4

Table 8: Frequency with which BIC(G) is minimized
(RF5+BCW, Real Data)

G 2 3 4 5 6 7 8 9 10 11 12 total
cpu

boston
college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
4
0
0
0

0
65
0
0
0

52
31
0
0
0

83
21
0

12
0

10
9

37
0

70

15
13
0

52
61
22
13
14
0
3

2
0
0

11
21
10
11
14
4
2

0
1
1
8
8
0
7
8
8
6

0
0

57
7
3
0
6
2

47
5

0
0

21
10
7
6
6

25
21
4

0
0

13
0
0
0
3
0
2
5

0
0
8
0
0
0

10
0

18
5

100
100
100
100
100
100
100
100
100
100

rules can be restored with satisfactory accuracy if R is
set to the value greater than or equal to the rank(C), where
C denotes the coefficient matrix composed of the
coefficient vectors c0 and cj. So R=3 is enough to restore
the original rules written in Eq. (21). However, we can
restore the original rules if R is 4. Thus, it is no problem
that R=4 is selected as the best model for a few trials.

Now that we have the optimal numbers J*=2 and R*=3,
Table 4 compares the frequency with which BIC(G) was
minimized under J=2 and R=3. We can see that BIC(G)
was minimized at G=4, so we can select the optimal
number of common weights, G*=4.

Figure 4 shows how training error MSE and BIC(G)
changed through BCW learning in a certain trial with J=2
and R=3. In this trial, bidirectional clustering was repeated
two times until convergence.

We have learned the perceptron with J=2, R=3 and
G=4. Then, we pruned the near-zero common weight, and
retrained the network again. Then, we obtained the
coefficient vectors c0 and cj, and quantized them for rule
restoring. Table 5 compares the frequency with which
BIC(I) was minimized through the vector quantization
using the K-means. BIC(I) was minimized most frequently
at I=4, so the optimal number I* of rules is 4. However, I
larger than 4 was selected as the best model in some trials.
This is because we added noise to the data.

By applying the C4.5 program, we have the following
rule set, almost equivalent to the original Eq. (20).

(21)

The whole elapsed cpu time required for applying the
BCW to RF6.4 is about 11 minutes in our experiment.

5.3 Experiments using Real Data Sets

We evaluated the performance of applying the BCW to
RF5 or RF6.4 by using 10 real data sets 1 . Table 6

1The cpu and boston data sets were taken from the UCI Repository of
Machine Learning Databases. The college, cholesterol, b-carotene, mpg,
lung-cancer and wage data sets were taken from the StatLib. The
yokohama data set was taken from the official web page of Kanagawa
prefecture, Japan. The baseball data set was taken from the directory of
Japanese professional baseball player in 2006.

describes these real data sets. Here, K2 and Kall denote the
total numbers of numerical explanatory variables and
dummy variables respectively. The initial values of
parameters and termination condition are set in the same
way as before. All numerical variables are normalized as
follows.

(22)

First, we performed 100 times of learning of the
perceptron of RF5 or RF6.4 without weight sharing. We
varied J or R from 1 to 5. Table 7 shows the best J and R
which minimized BIC(J) of RF5 or BIC(J,R) of RF6.4
most frequently.

Next, we performed 100 times of learning of the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

92

bidirectional clustering with different initial values of
parameters. The numbers J and R are set to the values
showed in Table 7. The optimal number J* of hidden units
in RF5 was the same as J* in RF6.4 for five data sets out
of ten. Overall, two J* are very similar. Tables 8 and 9
compare the frequency with which BIC(G) was minimized

in RF5 and RF6.4 respectively. The optimal number G* of
common weights in RF5 was the same as G* in RF6.4 for
only three data sets out of ten. In most data sets, two G*
are similar, but there are a few cases where two G* are
rather different.

In RF6.4, we quantized the coefficient vectors c0, cj for
rule restoring. We performed 100 times learning of the
perceptron with weight sharing under the condition of J*,
R* and G* showed in Tables 7 and 9. We varied the
number I of rules from 1 to 10. Table 10 compares the

frequency with which BIC(I) was minimized.
Table 11 shows the final polynomials obtained by

RF5+BCW after the weight pruning. We found very
simple polynomials across the board.

Tables 12 and 13 show the final sets of rules obtained

Table 9: Frequency with which BIC(G) is minimized
(RF6.4+BCW, Real Data)

G 2 3 4 5 6 7 8 9 10 11 12 total
cpu

boston
college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
4
0
0
0

0
0
0
0
0
0
52
0
0
0

0
0
0
0
0
6
4
62
0
0

83
0
0
41
0
72
8
21
50
0

10
0
0
16
7
7
14
2
3
6

4
0
0
5
67
7
8
15
17
61

0
6
17
17
21
5
10
0
12
31

0
20
63
21
5
3
0
0
12
0

0
21
15
0
0
0
0
0
0
2

3
53
5
0
0
0
0
0
6
0

100
100
100
100
100
100
100
100
100
100

Table 10: Frequency with which BIC(I) is minimized (RF6.4+BCW,
Real Data)

I 1 2 3 4 5 6 7 8 9 10 total
cpu

boston
college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
11
25
0
0
0

0
0
0
0
0
15
62
0
20
0

26
0
0
0
4
46
13
0
52
0

62
0
0
0
59
21
0
31
9
71

4
0
2
8
18
7
0
51
7
29

0
0
10
81
4
0
0
10
2
0

0
29
68
4
1
0
0
2
1
0

8
71
20
7
14
0
0
6
9
0

100
100
100
100
100
100
100
100
100
100

Table 11: Final polynomials obtained by RF5+BCW (Real Data)

data set polynomial
cpu

boston

college

cholesterol
b-carotene

mpg
lung-cancer

wage
yokohama
baseball

Table 12: Final rules obtained by RF6.4+BCW (CPU Data)

rule nominal variable q1 Polynomial
rule1 26
rule2 7

rule3 2, 3, 12, 13, 14,
17, 19, 21, 22, 23

rule4 1, 4, 5, 11, 15,
16, 18, 20, 24, 25

rule5 8,9,10
rule6 6

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

93

by RF6.4+BCW for two data sets. Since there is not
enough space for showing all the rule sets, we show only
the results for cpu and lung-cancer data sets. The tables
show we found very simple rule sets.

We compared the generalization performance of
several regression methods by 10-fold cross validation.
We considered four kinds of regression methods (linear
regression, HME, three-layer perceptron, and polynomial
regression). As linear regression models, we use multiple
regression (MR) for the data having only numerical
variables, and quantification theory type I (QT) for the
data having both numerical and nominal variables. The
simplest regression form of the HME (Hierarchical
Mixtures of Experts) [17][18] is piecewise linear
regression, which constructs subspaces by using gating

variables and applies linear regression in each subspace.
We use the HME in two ways: using numerical variables
as gating variables (HMEx), or using nominal variables as
gating (HMEq). We varied the number I of experts from 1
to 8. For a three-layer perceptron, we learn the perceptron
in four ways: using only numerical variables (NNx), using
both numerical and nominal variables (NNqx), or applying
the BCW to NNx or NNqx (NNx+BCW, NNqx+BCW).
We varied the number J of hidden units of the perceptron
from 1 to 5, and the number G of clusters from 2 to 12. As
connectionist polynomial regression models, we compare
four models (RF5, RF6.4, RF5+BCW, RF6.4+BCW).

Tables 14 and 15 compare the generalization
performances by 10-fold cross validation errors. Table 14
shows the results using only numerical variables, and

Table 13: Final rules obtained by RF6.4+BCW (Lung-cancer Data)

nominal variables
rule q1 q2 q3

Polynomial

rule1 2 1 2
1 1 2

rule2
2 4 2
1 3,4 2
2 1,2,3,4 1 rule3
2 2,3 2
1 1, 2, 3, 4 1

rule4
1 2 2

Table 14: Comparison of 10-fold cross validation errors (Real Data having only numerical variables)

data set MR HMEx NNx NNx+BCW RF5 RF5+BCW
cpu 4.609E+03 1.569E+03 1.625E+03 1.595E+03 2.206E+03 1.627E+03

boston 2.355E+01 1.060E+01 9.740E+00 1.054E+01 9.500E+00 8.206E+00
college 9.570E+06 9.495E+06 9.230E+06 9.090E+06 9.659E+06 9.342E+06

cholesterol 2.641E+03 2.476E+03 2.579E+03 2.606E+03 2.511E+03 2.369E+03
b-carotene 2.989E+04 2.887E+04 2.923E+04 2.850E+04 2.886E+04 2.923E+04

mpg 1.809E+01 1.588E+01 1.541E+01 1.676E+01 1.711E+01 1.696E+01
lung-cancer 2.284E+04 2.183E+04 2.090E+04 1.988E+04 2.186E+04 1.954E+04

wage 2.124E+01 1.924E+01 1.925E+01 1.897E+01 2.029E+01 1.976E+01
yokohama 1.232E+09 4.014E+08 4.250E+08 4.410E+08 4.493E+08 3.887E+08

baseball-2006 1.755E+07 1.602E+07 1.656E+07 1.626E+07 1.668E+07 1.521E+07

Table 15: Comparison of 10-fold cross validation errors (Real Data having both numerical and nominal variables)

data set QT HMEq NNqx NNqx+BCW RF6.4 RF6.4+BCW
cpu 4.301E+03 1.453E+03 1.566E+03 1.498E+03 2.021E+03 1.363E+03

boston 1.350E+01 1.209E+01 9.450E+00 1.025E+01 9.262E+00 7.533E+00
college 9.703E+06 8.661E+06 6.910E+06 7.331E+06 6.330E+06 8.283E+06

cholesterol 2.584E+03 2.502E+03 2.577E+03 2.517E+03 2.446E+03 2.418E+03
b-carotene 2.928E+04 2.895E+04 2.893E+04 2.786E+04 2.958E+04 2.646E+04

mpg 1.622E+01 1.392E+01 1.373E+01 1.569E+01 1.283E+01 1.495E+01
lung-cancer 2.136E+04 2.154E+04 2.156E+04 1.801E+04 2.172E+04 1.857E+04

wage 1.884E+01 1.925E+01 1.864E+01 1.818E+01 1.849E+01 1.830E+01
yokohama 4.151E+08 3.790E+08 3.462E+08 4.064E+08 3.911E+08 4.667E+08

baseball-2006 1.849E+07 1.406E+07 1.670E+07 1.680E+07 1.732E+07 1.620E+07

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

94

Table 15 shows the results using both numerical and
nominal variables. We can see that the performance of
RF5+BCW or RF6.4+BCW was better than plain RF5 or
RF6.4 in most data sets, and showed the best performance
in many data sets. So we can say that applying the BCW
to connectionist polynomial regressions is valuable for
finding succinct polynomials and fitting better the data.
Although NN or NN+BCW showed the best performance
in some data sets, they are rather poor in terms of the
readability.

6 Conclusion

This paper proposed a weight sharing method called
BCW and applied it to connectionist polynomial
regression methods called RF5 and RF6.4 for finding
succinct multivariate polynomials. In our experiments
using artificial data, our method selected the original
model by BIC and found polynomials almost equivalent to
the original. In our experiments using 10 real data sets, our
method found polynomials having crisp readability with
satisfactory generalization performance. In the future we
plan to apply the BCW to other models and evaluate its
usefulness.

References
[1] P. Langley, “Bacon.1: a general discovery system,” Proc.

2nd National Conf. of the Canadian Society for
Computational Studies of Intelligence, pp.173-180, 1978.

[2] K. Saito and R. Nakano, “Law discovery using neural
networks,” Proc. 15th Int. Joint Conf. on Artificial
Intelligence, pp.1078–1083, 1997.

[3] Y. Tanahashi, K. Saito and R. Nakano, “Piecewise
multivariate polynomials using a four-layer perceptron,”
Proc. 8th Int. Conf. on Knowledge-based Intelligent
Information & Engineering Systems, pp.602-608, 2004.

[4] C. M. Bishop, “Neural networks for pattern recognition,”
Clarendon Press, 1995.

[5] S. Haykin, “Neural networks - a comprehensive foundation,
2nd edition,” Prentice-Hall, 1999.

[6] S. J. Nowlan and G. E. Hinton, “Simplifying neural
networks by soft weight sharing,” Neural Computation,
vol.4, no.4, pp.473-493, 1992.

[7] C. M. Bishop, “Pattern recognition and machine learning,”
Springer, 2006.

[8] F. Koksal, E. Alpaydin and G. Dundar, “Weight
quantization for multi-layer perceptrons using soft weight
sharing,” Proc. of Int. Conf. on Artificial Neural Networks,
pp.211-216, 2001.

[9] Y. LeCun, J. S. Denker and S. A. Solla, “Optimal brain
damage,” Advances in Neural Information Processing
Systems, vol.2, ppl598-605, 1990.

[10] K. J. Binkley, K. Seehart and M. Hagiwara, “A study of
artificial neural network architectures for othello evaluation
functions,” Trans. of the Japanese Society for Artificial
Intelligence 22(5), pp.461-471, 2007.

[11] G. Schwarz, “Estimating the dimension of a model,” Annals
of Statistics 6, pp.461-464, 1987.

[12] K. Saito, R. Nakano, “Partial BFGS update and efficient
step-length calculation for three-layer neural networks,”
Neural Computation 9(1), pp.239-257, 1997.

[13] J. R. Quinlan, “C4.5: programs for machine learning,”
Morgan Kaufmann, 1993.

[14] M. Stone, “Cross-validatory choice and assessment of
statistical predictions,” Journal of the Royal Statistical
Society B, vol.64, pp.111–147, 1974.

[15] B. Efron, “Bootstrap methods: Another look at the
jackknife,” Ann. Statist, vol.7, pp.1-26, 1979.

[16] D. Pelleg and A. Moore, “X-means: Extracting K-means
with efficient estimation of the number of clusters,” Proc.
17th Int. Conf. on Machine Learning, pp.727-734, 2000.

[17] R.A. Jacobs, M.I. Jordan, S.J. Nowlan and G.E. Hinton,
“Adaptive mixtures of local experts,” Neural Computation,
vol.3, no.1, pp.79-87, 1991.

[18] M.I. Jordan and R.A. Jacobs, “Hierarchical mixtures of
experts and EM algorithm,” Neural Computation, vol.6,
no.2, pp.181-214, 1994.

