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Summary 
We present a weight sharing method called BCW and evaluate 
its effectiveness by applying it to find succinct multivariate 
polynomials. In our framework, polynomials are obtained by 
learning a three-layer perceptron for data having only numerical 
variables. If data have both numerical and nominal variables, we 
consider a set of nominally conditioned multivariate 
polynomials. To obtain succinct polynomials, we focus on 
weight sharing. Weight sharing constrains the freedom of weight 
values such that weights are allowed to have one of common 
weights. The BCW employs merge and split operations based on 
2nd-order optimal criteria, and can escape local optima through 
bidirectional clustering. Moreover, the BCW selects the optimal 
model based on the Bayesian Information Criterion (BIC). Our 
experiments showed that connectionist polynomial regressions 
with the proposed BCW can restore succinct polynomials almost 
equivalent to the original for artificial data sets, and obtained 
readable results and satisfactory generalization performance 
better than other methods for many real data sets. 
Key words: 
polynomial regression, multi-layer perceptron, weight sharing, 
bidirectional clustering 

1. Introduction 

Polynomials are quite suitable for expressing 
underlying regularities among multiple variates. 
Previously, BACON system [1] was proposed by Langley, 
which finds polynomials by a combinatorial searching 
approach through a trial and error process. However, it 
suffers from a combinatorial explosion in the case that 
data have a lot of variables. As an alternative, a 
connectionist numerical approach, such as RF5 [2], has 
been investigated. The RF5 employs a three-layer 
perceptron to discover the optimal polynomial which fits 
multivariate data having only numerical variables, and it 
worked well. For data having both numerical and nominal 
variables, a set of nominally conditioned polynomials is 
considered as a fitting model. In this model, each 
polynomial is accompanied with the corresponding 
nominal condition stating a subspace where the 
polynomial is applied. A method called RF6.4 [3] was 
proposed to find such a set of nominally conditioned 
polynomials. The RF6.4 proceeds in two steps: learning of 
a multi-layer perceptron, and rule restoration from the 

learned perceptron. 
These polynomial models have enough power to fit 

nonlinear data well, but the readability of the final output 
is not so good when data have many variables. For the 
purpose of obtaining succinct polynomials, we focus on 
weight sharing [4][5]. Weight sharing means constraining 
the freedom of weight values such that weights in a 
network are divided into several clusters and weights 
within the same cluster have the same value called a 
common weight. If a common weight value is very close to 
zero, then all the corresponding weights can be removed 
as irrelevant to result in disconnection, which is called 
weight pruning. If we employ weight sharing and pruning, 
we will obtain as simple polynomials as possible, which 
greatly improves the readability in knowledge discovery 
from data. 

Weight sharing and pruning have been widely used to 
reduce the effective complexity of a network. Nowlan and 
Hinton proposed soft weight sharing [6][7], and soft 
weight sharing was applied to multi-layer perceptrons for 
efficient VLSI implementation [8]. LeCun el al. proposed 
OBD (optimal brain damage) [9] for removing 
unimportant weights from a network by using the Hessian 
matrix. Moreover, weight sharing was used to learn 
artificial neural network architectures for othello 
evaluation [10] focusing its symmetries. 

Since we pursue crisp readability, we have 
investigated a hard weight sharing, and this paper 
proposes BCW (bidirectional clustering of weights). The 
BCW employs both cluster-merge and cluster-split 
operations based on second-order optimal criteria, and can 
escape local optima to find global optima or semi-optima 
through bidirectional operations. When we apply the 
BCW to  RF5 or RF6.4, we should determine the vital 
parameters: the numbers J, R of hidden units, the number I 
of rules, and the number G of clusters for the weight 
sharing. As a criterion to select the best model, the BCW 
employs the information criterion called BIC [11] for 
selecting optimal J*, R*, I* and G*. Since BIC doesn’t need 
repetitive learning, the BCW can select the optimal model 
very fast. 

Section 2 explains the basic framework of the 
connectionist polynomial regressions RF5 and RF6.4. 
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Section 3 explains the proposed BCW in detail. Section 4 
explains how to apply the BCW to connectionist 
polynomial regressions. Section 5 evaluates how the BCW 
worked for finding succinct multivariate polynomials 
through our experiments.  

2. Connectionist Polynomial Regression 

2.1 Multivariate Polynomial Regression 

We explain the basic framework of a connectionist 
multivariate polynomial regression method RF5 [2]. We 
consider a regression problem to find the following 
polynomial made of multiple variables. Here x = 

),,,,( 1 Kk xxx KK  is a vector of numerical explanatory 
variables. 

 
(1) 

 
By assuming xk > 0, we rewrite it as follows.  

 
(2) 

 
Here, w is composed of w0, wj and wjk. The right hand side 
can be regarded as a feedforward computation of a three-
layer perceptron having J hidden units with w0 as a bias 
term, which is shown in Fig. 1. Note that an activation 
function of a hidden unit is exponential. A regression 
problem requires us to estimate f(x; w) from training data  

},,1:),{( Ny K=μμμx , where y denotes a numerical 
target variable. The following mean squared error (MSE) 
is employed as an error function.  

 
(3) 

 
To obtain good results efficiently in our learning, we use 
the BPQ method [12], which has the quasi-Newton 
framework with the BFGS update and calculates the step-
length by using the second-order approximation. 

2.2 Nominally Conditioned Polynomial Regression 

If data have both numerical and nominal variables, we can 
consider a set of nominally conditioned multivariate 
polynomials. RF6.4 [3] can find such a set of polynomials. 
Let ),,,,,,(

21 11 yxxqq KK KK  or (q, x, y) be a vector of 
variables, where qk and xk are nominal and numerical 
explanatory variables respectively, and y is a numerical 
target variable. For each qk we introduce a dummy 
variable qkl defined as follows: qkl = 1 if qkl matches the l-
th category of qk, and qkl = 0 otherwise. Here, l = 1,…,Lk, 
and Lk is the number of distinct categories appearing in qk. 

As a true model governing data, we consider the 
following set of I rules. 

 
(4) 

 
where i

kQ  and wi denote a set of qkl and a parameter vector 
of ),( iwxφ  respectively used in the i-th rule. As a class of 
regression function ),( iwxφ , we consider the following 
multivariate polynomial. Thus, a rule is nothing but a 
nominally conditioned polynomial. 

 
(5) 

 
Equation (5) can be represented by the following 

single numerical function, which can be learned by using a 
single four-layer perceptron as shown in Fig. 2. 

 
 
 
 

(6) 
 

Figure 1:Three-layer perceptron for RF5 

Figure 2: Four-layer perceptron for RF6.4 
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Here, θ  is composed of  v0r, vjr, vrkl and wjk.  
Now we assume we have finished learning the 

perceptron. Then, a set of rules is extracted from the 
learned perceptron. As the first step of rule restoration, 
coefficient vectors for all samples 

},...,1:),...,,({ 10 Nccc J == μμμμμc  are quantized into I 
representatives == iaaa i

J
iii :),...,,({ 10a  },,1 IK . For vector 

quantization we employ the K-means due to its simplicity, 
to obtain I disjoint subsets {Gi : i = 1,…,I} where the 
distortion dVQ is minimized.  

 
(7) 
 

 
As the second step, the final rules are obtained by 

solving a simple classification problem whose training 
samples are },,1:))(,{( Ni K=μμμ qq , where )( μqi  
indicates the representative label of the μ -th sample. Here 
we employ the C4.5 decision tree generation program [13] 
due to its wide availability.  

3 Proposed Method of Weight Sharing 

3.1 Basic Definitions 

Let E(w) be an error function to minimize, where w = 
(w1, …, wd, …, wD) denotes a vector of D weights in a 
multi-layer perceptron. Then, we define a set of G clusters 
Ω (G) = {S1,…,Sg,…,SG}, where Sg denotes a set of 
weights such that )(   , ggSSS ggg ′≠=≠ ′ φφ I  and 

},...,1{...1 DSS G =UU . Also, we define a vector of G 
common weights u = (u1,…, ug,…, uG) associated with a 
cluster set Ω (G) such that wd = ug if gSd ∈ . 

Now we consider a relation between w and u. Let D
de  

be the D-dimensional unit vector whose elements are all 
zero except for the d-th element, which is equal to unity. 
Then the original weight vector w can be expressed by 
using a D×G transformational matrix A as follows.  

 
(8) 

 
Note that we have a one-to-one mapping between the 
matrix A and the cluster set Ω (G). Therefore, our goal is 
to find Ω (G*) which minimizes E(Au), where G* denotes 
the optimal number of clusters.  

In our method, we employ the BPQ method to learn 
the perceptron with clustered weights. So we need to 
calculate a gradient vector )~(wg  of clustered parameters 
w~ . We can calculate )~(wg  as follows by using 
transformational matrix A and a gradient vector g(w) of 
non-clustered parameters w. 
 

(9) 
 

 
 
 

By using equation (9), we can easily calculate )~(wg . 
Below we outline the BCW (bidirectional clustering of 

weights) method. Since a weight clustering problem will 
have many local optima, the BCW is implemented as an 
iterative method where cluster-merge and cluster-split 
operations are repeated in turn until convergence. In order 
to obtain good clustering results, the BCW must be 
equipped with a reasonable criterion for each operation. 
To this end, we derive the second-order optimal criteria 
with respect to the error function.  

3.2 Bottom-up Clustering 

One-step bottom-up clustering is to transform Ω (G) 
into )1( −Ω G  by a cluster-merge operation; i.e., clusters Sg 
and Sg' are merged into a single cluster 

ggg SSS ′= U
~ . 

Clearly, we want to select a suitable pair of clusters so as 
to minimize the increase of the error function.  

Given a pair of clusters Sg and Sg', we consider the 
second-order optimal criterion for merging DisSim(Sg, Sg'), 
which approximates to the increase of E(w) to the 2nd 
order. We select a pair which minimizes DisSim(Sg, Sg') 
defined below. 
 
 
 

(10) 
 
 
Here, g(w) and H(w) denote the gradient and Hessian of 
E(w) respectively, û  and w~  denote trained weight vectors. 
Based on the above criterion, the one-step bottom-up 
clustering with retraining selects a pair of clusters which 
minimizes DisSim(Sg, Sg'), and merges these two clusters. 
After the merge, the network with )1( −Ω G  is retrained. 

3.3 Top-down Clustering 

One-step top-down clustering is to transform Ω (G) 
into )1( +Ω G  by a cluster-split operation; i.e., a cluster Sg 
is split into two clusters 

gS ′  and 1+′GS  where 
1+′= Ggg SSS U . In this case, we want to select a suitable 

cluster and its partition so as to maximize the decrease of 
the error function.  

 Just after the splitting, we have a (G+1)-dimensional 
common weight vector T

g
T u )ˆ,ˆ(~ uv = , and a new 

D×(G+1) transformational matrix B defined as below. 
 

 
 

 (11) 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 

 

88 

 
Then, we define the second-order optimal criterion for 

splitting GenUtil(Sg, SG+1), which approximates to the 
decrease of E(w) to the 2nd order. The values are positive, 
and the larger the better. 

 
(12) 

 
 

When a cluster has m elements, the number of 
different splitting amounts to 122)22( 1 −=− −mm . This 
means an exhaustive search suffers from combinatorial 
explosion. In order to avoid this problem, we consider 
three kinds of splitting methods as shown next; 

split1: Split a cluster into only one element and the 
others. 

split2: Sort the gradients of members of a cluster in 
ascending order and split the cluster into two 
groups having smaller gradients or larger 
gradients. 

split3: Perform the K-means to quantize the  parameters 
obtained by the learning of non-
clustered\network and split a cluster depend on 
the result of the quantization. 

Since the computational cost of performing these three 
methods is much smaller than that of learning of the 
perceptron, the BCW employs all of these three methods. 
Examining all the clusters, the BCW selects a suitable 
cluster to split and its splitting based on the criterion (12). 
After the splitting, the network with Ω (G+1) is retrained. 

3.4 Bidirectional Clustering of Weights (BCW) 

In general there may exist many local optima for a 
clustering problem. The single usage of either the bottom-
up or top-down clustering will get stuck at a local 
optimum. Thus, we consider an iterative usage of both 
clusterings to obtain bidirectional clustering of weights 
(BCW). 

The procedure of BCW is shown below. The BCW 
always converges since the number of different A is finite. 
Here h is the width of bidirectional clustering. 

step1: Get the initial set Ω (D) through learning of a  
multi-layer perceptron. Perform scalar 
quantization for Ω (D) to get Ω 1(2). Keep the 
matrix A(0) at Ω 1(2). 1←t . 

step2: Perform repeatedly the one-step top-down 
clustering with retraining from Ω 1(2) to Ω (2+h). 
Update the best performance for each G 
(=t2,3,…,2+h) if necessary. 

step3: Perform repeatedly the one-step bottom-up 
clustering with retraining from Ω (2+h) to Ω 2(2). 

Update the best performance for each G if 
necessary. Keep A(t) at Ω 2(2). 

step4: If A(t) is equal to one of the previous ones 
)0()1( , , AA K−t , then stop the iteration and output 

the best performance of Ω (G) for each G as the 
final result. Otherwise, )()(  ,1 21 GGtt Ω←Ω+←  
and go to step 2.  

 
4 Applying BCW to Connectionist Polynomial 

Regression 

The connectionist polynomial regression RF5 or RF6.4 
can fit multivariate non-linear data with satisfiable 
precision. However, if data have many input variables, the 
readability of a polynomial gets worse. So it is important 
to get as succinct a result as possible for crisp readability. 
To this end, we consider applying the BCW to RF5 or 
RF6.4. In this case, weight sharing is applied only to 
weights wjk in Eq. (2) or Eq. (6) for simplicity. By 
applying the BCW to RF5 or RF6.4, we expect not only 
the readability of the results but also good generalization 
performance avoiding the over-fitting. 

Given data, we don’t know in advance the optimal 
numbers J* and R* of hidden units, the optimal number I* 
of rules, or the optimal number G* of clusters for the 
BCW. Therefore, in order to find a model having excellent 
performance, we need a criterion suitable for selecting J*, 
R*, I* and G*. As the criterion for selecting the best model, 
the BCW employs the Bayesian Information Criterion 
(BIC) [11]. Compared to other means such as cross-
validation [14] or bootstrap method [15] which need 
repetitive learning, BIC can select the optimal model in 
much less time because we need only one learning for 
each J, R, I and G. 

The whole procedures of RF5 or RF6.4 with the BCW, 
including the procedure of model selection, are 
summarized below: 

 
RF5+BCW: 

step1: Learn the three-layer perceptron without weight 
sharing for each J = 1,2,…, and select the J 
which minimizes Eq. (13) as J*. 

 
 

(13) 
 
 
step2: Learn the perceptron under the condition of J* 

with weight sharing, and select the G which 
minimizes Eq. (14) as G*. 

 
 

(14) 
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step3: Learn the perceptron under the condition of J* 

and G* with pruning of a near-zero common 
weight, and get the final result. 

 
RF6.4+BCW: 

step1: Learn the four-layer perceptron without weight 
sharing for each J = 1,2,…, R = 1,2,…, and select 
the J and R which minimize Eq. (15) as J* and 
R*. 

 
 

(15) 
 
 
step2: Learn the perceptron under the condition of J* 

and R* with weight sharing, and select the G 
which minimizes Eq. (14) as G*. 

step3: Learn the perceptron under the condition of J*, R* 
and G* with pruning of a near-zero common 
weight. 

step4: Quantize the coefficient vectors by the K-means 
for each I = 1,2,…, and select the I which 
minimizes Eq. (16) as I*. As for BIC(I), we adopt 
Pelleg's X-means approach [16]. Here, Σ̂  is a 
covariance matrix calculated by Eq. (17). 

 
 
 
 

(16) 
 
 
 
 

   (17)              
 
step5: Solve the classification problem by using the 

C4.5 program [13] and get the final result. 

5 Experiments for Evaluation 

5.1 Experiments for applying BCW to RF5 using an 
Artificial Data Set 

We consider the following multivariate polynomial:  
 

(18) 
 

Here we introduce ten irrelevant explanatory variables 
156 ,, xx K . For each sample, each xk value is randomly 

generated in the range of (1,2), while the corresponding 

value of y is calculated by Eq. (18) with small Gaussian 
noise N(0, 0.3) added. The size of training data is 300 (N = 
300).  

The initial values for weights wjk are independently 
generated according to a uniform distribution with a range 
of (-1, 1); weights wj are initially set equal to zero, but the 

bias w0 is initially set to the average output over all 
training samples. The iteration is terminated when the 
gradient vector is sufficiently small, i.e., each element of 
the vector is less than 105. Weight sharing was applied 
only to weights wjk in a three-layer perceptron. Here we 
set the width of bidirectional clustering as h=10.  

The number of hidden units was changed from one 
(J=1) to five (J=5). We performed 100 times of learning of 
a perceptron with different initial values of parameters. 
Note that J*=2 and G*=4 for our artificial data. Table 1 
compares the frequency with which BIC(J) was 
minimized. We can see that BIC(J) was minimized at J=2 
for most trials. When BIC(J) was minimized at J=3, 
learning with J=2 converged to local optima. So we can 
say the optimal number J* of hidden units is 2, which is 
correct. 

Now that we have the optimal number J*=2, Table 2 
compares the frequency with which BIC(G) was 
minimized under J=2. BIC(G) was minimized most 

Table 1: Frequency with which BIC(J) is minimized 
(RF5+BCW, Artificial Data 1) 

 

models J = 1 J = 2 J = 3 J = 4 J = 5 total
Freq. 0 93 7 0 0 100

Table 2: Frequency with which BIC(G) is minimized 
(RF5+BCW, Artificial Data 1) 

 

models G = 2 G = 3 G = 4 G = 5 G = 6 G = 7
Freq. 0 0 89 11 0 0 

G = 8 G = 9 G = 10 G = 11 G = 12 total 0 0 0 0 0 100
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Fig. 3: Bidirectional clustering for Artificial Data 1 
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frequently at G=4, so we can say the optimal number G* of 
clusters is 4, which is correct again. When BIC(G) was 
minimized at G=5, the cluster having a near-zero value 
was split and G was incremented from the optimal value. 
We can obtain the same optimal model by applying the 
weight pruning. 

Figure 3 shows how training error MSE and BIC(G) 
changed through BCW learning in a certain trial with J=2. 
Training error MSE got smaller as the number G of 
clusters increased. Although we couldn’t get a good 
performance of BIC(4) at the beginning of the 
bidirectional clustering, the second BIC(4) (iteration = 19 
in the figure) was the best. 

Then we pruned the near-zero common weight, and 
retrained the network again. The pruning means changing 
a very small common weight (|u| < 0.01) to zero and 
performing retraining after that. Then we have the 
following function, almost equivalent to the original Eq. 
(18).   

(19) 
 
Note that we have exactly the same result as the above for 
a model of J=2 and G=5 if the pruning is applied. This 
means our method has some robustness for model 
selection. 

The whole elapsed cpu time per trial required for 
applying the BCW to RF5 is about 3 minutes in our 
experiment. We can select the best model and find almost 
equivalent to the original multivariate polynomial in 
reasonable cpu time. 

5.2 Experiments for applying BCW to RF6.4 using 
an Artificial Data Set 

We consider the following set of nominally 
conditioned multivariate polynomials:  
 
 
 
 

(20) 
 
 
 
 
Here we have 15 numerical and 4 nominal explanatory 
variables with L1 = 3, L2 = L3 = 2 and L4 = 5. Obviously, 
variables q4, x6, …, x15 are irrelevant. For each sample, 
values of xk and qk are randomly taken from the interval 
(1,2) and from its categories respectively, while the 
corresponding value of y is calculated by Eq. (20) with 
small Gaussian noise N(0, 0.3) added. The size of training 
data is 500 (N = 500).  

The initial values for weights wjk, v0r, vjr and vrkl are 
independently generated according to a uniform 
distribution with  a  range of (-1, 1); The iteration is 
terminated when each element of the gradient vector gets 
smaller than 105. We set the width of bidirectional 
clustering as h=10. The numbers of hidden units was 
changed from one (J=1, R=1) to five (J=5, R=5), and the 
number of rules was changed from one (I=1) to ten (I=10). 
Note that J*=2, G*=4 and I*=4 for our artificial data. 

Table 3 compares the frequency with which BIC(J, R) 
was minimized. BIC(J, R) was minimized at J=2 for all 
trials, so the optimal number J* is 2, which is correct. In 
this experiment, R=3 is selected most frequently. By 
previous experiments, we brought out the fact that original 

Fig. 4: Bidirectional clustering for Artificial Data 2 
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Table 3: Frequency with which BIC(J, R) is minimized 
(RF6.4+BCW, Artificial Data 2) 

 

models J = 1 J = 2 J = 3 J = 4 J = 5
R = 1 
R = 2 
R = 3 
R = 4 
R = 5 

0 
0 
0 
0 
0 

0 
0 
86 
14 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

Table 4: Frequency with which BIC(G) is minimized 
(RF6.4+BCW, Artificial Data 2) 

 

models G = 2 G = 3 G = 4 G = 5 G = 6 G = 7
Freq. 0 0 83 12 5 0 

G = 8 G = 9 G = 10 G = 11 G = 12 total 0 0 0 0 0 100

Table 5: Frequency with which BIC(I) is minimized 
(RF6.4+BCW, Artificial Data 2) 

 

models I = 1 I = 2 I = 3 I = 4 I = 5 
Freq. 0 0 0 82 10  

I = 6 I = 7 I = 8 I = 9 I = 10 total 5 0 0 0 3 100
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Table 6: Real data sets used in our experiment 
 

data set contents of criterion variable N K2 Kall
cpu 

boston 
college 

cholesterol
b-carotene

mpg 
lung-cancer

wage 
yokohama
baseball 

performance of CPU 
housing price in Boston 

instructional expenditure of colleges 
amount of cholesterol 

amount of beta-carotene 
fuel cost of cars 

survival time of lung cancer patients 
wage of workers per hour 

housing price in Yokohama 
annual salary of baseball players 

205
486
1129
297
315
388
126
534
558
219

6
12
11
5
10
5
3
2
4
10

26
76
51
13
6
28
6
14
23
14

Table 7: J* of RF5 and J*, R* of RF6.4 (Real Data) 
 

RF5 RF6.4  
 J* J* R* 

cpu 
boston 
college 

cholesterol 
b-carotene 

mpg 
lung-cancer 

wage 
yokohama 
baseball 

3 
1 
3 
2 
1 
2 
4 
5 
3 
3 

3 
2 
2 
2 
1 
2 
3 
4 
5 
3 

3 
1 
2 
3 
4 
3 
5 
3 
2 
4 

Table 8: Frequency with which BIC(G) is minimized 
(RF5+BCW, Real Data) 

 

G 2 3 4 5 6 7 8 9 10 11 12 total
cpu 

boston 
college 

cholesterol
b-carotene

mpg 
lung-cancer

wage 
yokohama
baseball 

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
4
0
0
0

0
65
0
0
0

52
31
0
0
0

83
21
0

12
0

10
9

37
0

70

15
13
0

52
61
22
13
14
0
3

2 
0 
0 

11 
21 
10 
11 
14 
4 
2 

0 
1 
1 
8 
8 
0 
7 
8 
8 
6 

0 
0 

57 
7 
3 
0 
6 
2 

47 
5 

0 
0 

21 
10 
7 
6 
6 

25 
21 
4 

0 
0 

13 
0 
0 
0 
3 
0 
2 
5 

0
0
8
0
0
0

10
0

18
5

100
100
100
100
100
100
100
100
100
100

 

rules can be restored with satisfactory accuracy  if R is 
set to the value greater than or equal to the rank(C), where 
C denotes the coefficient matrix composed of the 
coefficient vectors c0 and cj. So R=3 is enough to restore 
the original rules written in Eq. (21). However, we can 
restore the original rules if R is 4. Thus, it is no problem 
that R=4 is selected as the best model for a few trials. 

Now that we have the optimal numbers J*=2 and R*=3, 
Table 4 compares the frequency with which BIC(G) was 
minimized under J=2 and R=3. We can see that BIC(G) 
was minimized at G=4, so we can select the optimal 
number of common weights, G*=4. 

Figure 4 shows how training error MSE and BIC(G) 
changed through BCW learning in a certain trial with J=2 
and R=3. In this trial, bidirectional clustering was repeated 
two times until convergence. 

We have learned the perceptron with J=2, R=3 and 
G=4. Then, we pruned the near-zero common weight, and 
retrained the network again. Then, we obtained the 
coefficient vectors c0 and cj, and quantized them for rule 
restoring. Table 5 compares the frequency with which 
BIC(I) was minimized through the vector quantization 
using the K-means. BIC(I) was minimized most frequently 
at I=4, so the optimal number I* of rules is 4. However, I 
larger than 4 was selected as the best model in some trials. 
This is because we added noise to the data. 

By applying the C4.5 program, we have the following 
rule set, almost equivalent to the original Eq. (20). 
 
 
 
 
 
 

(21) 
 
 
 
 
 
 

The whole elapsed cpu time required for applying the 
BCW to RF6.4 is about 11 minutes in our experiment. 

5.3 Experiments using Real Data Sets 

We evaluated the performance of applying the BCW to 
RF5 or RF6.4 by using 10 real data sets 1 . Table 6 
                                                           
1The cpu and boston data sets were taken from the UCI Repository of 
Machine Learning Databases. The college, cholesterol, b-carotene, mpg, 
lung-cancer and wage data sets were taken from the StatLib. The 
yokohama data set was taken from the official web page of Kanagawa 
prefecture, Japan. The baseball data set was taken from the directory of 
Japanese professional baseball player in 2006. 

describes these real data sets. Here, K2 and Kall denote the 
total numbers of numerical explanatory variables and 
dummy variables respectively. The initial values of 
parameters and termination condition are set in the same 
way as before. All numerical variables are normalized as 
follows. 
 

(22) 
 

First, we performed 100 times of learning of the 
perceptron of RF5 or RF6.4 without weight sharing. We 
varied J or R from 1 to 5. Table 7 shows the best J and R 
which minimized BIC(J) of RF5 or BIC(J,R) of RF6.4 
most frequently. 

Next, we performed 100 times of learning of the 
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bidirectional clustering with different initial values of 
parameters. The numbers J and R are set to the values 
showed in Table 7. The optimal number J* of hidden units 
in RF5 was the same as J* in RF6.4 for five data sets out 
of ten. Overall, two J* are very similar. Tables 8 and 9 
compare the frequency with which BIC(G) was minimized 

in RF5 and RF6.4 respectively. The optimal number G* of 
common weights in RF5 was the same as G* in RF6.4 for 
only three data sets out of ten. In most data sets, two G* 
are similar, but there are a few cases where two G* are 
rather different.

In RF6.4, we quantized the coefficient vectors c0, cj for 
rule restoring. We performed 100 times learning of the 
perceptron with weight sharing under the condition of J*, 
R* and G* showed in Tables 7 and 9. We varied the 
number I of rules from 1 to 10. Table 10 compares the 

frequency with which BIC(I) was minimized. 
Table 11 shows the final polynomials obtained by 

RF5+BCW after the weight pruning. We found very 
simple polynomials across the board. 

Tables 12 and 13 show the final sets of rules obtained 

Table 9: Frequency with which BIC(G) is minimized 
(RF6.4+BCW, Real Data) 

 

G 2 3 4 5 6 7 8 9 10 11 12 total
cpu 

boston 
college 

cholesterol 
b-carotene 

mpg 
lung-cancer 

wage 
yokohama 
baseball 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
4 
0 
0 
0 

0 
0 
0 
0 
0 
0 
52 
0 
0 
0 

0 
0 
0 
0 
0 
6 
4 
62 
0 
0 

83 
0 
0 
41 
0 
72 
8 
21 
50 
0 

10
0
0
16
7
7
14
2
3
6

4 
0 
0 
5 
67 
7 
8 
15 
17 
61 

0 
6 
17 
17 
21 
5 
10 
0 
12 
31 

0 
20 
63 
21 
5 
3 
0 
0 
12 
0 

0 
21 
15 
0 
0 
0 
0 
0 
0 
2 

3
53
5
0
0
0
0
0
6
0

100
100
100
100
100
100
100
100
100
100

Table 10: Frequency with which BIC(I) is minimized (RF6.4+BCW, 
Real Data) 

 

I 1 2 3 4 5 6 7 8 9 10 total
cpu 

boston 
college 

cholesterol
b-carotene

mpg 
lung-cancer

wage 
yokohama
baseball 

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
11
25
0
0
0

0 
0 
0 
0 
0 
15 
62 
0 
20 
0 

26 
0 
0 
0 
4 
46 
13 
0 
52 
0 

62 
0 
0 
0 
59 
21 
0 
31 
9 
71 

4 
0 
2 
8 
18 
7 
0 
51 
7 
29 

0 
0 
10 
81 
4 
0 
0 
10 
2 
0 

0 
29
68
4 
1 
0 
0 
2 
1 
0 

8
71
20
7
14
0
0
6
9
0

100
100
100
100
100
100
100
100
100
100

Table 11: Final polynomials obtained by RF5+BCW (Real Data) 
 

data set polynomial 
cpu  

boston  

college 

cholesterol  
b-carotene  

mpg  
lung-cancer 

wage  
yokohama 
baseball 

Table 12: Final rules obtained by RF6.4+BCW (CPU Data) 
 

rule nominal variable q1 Polynomial 
rule1 26 
rule2 7 

rule3 2, 3, 12, 13, 14, 
17, 19, 21, 22, 23 

rule4 1, 4, 5, 11, 15, 
16, 18, 20, 24, 25 

rule5 8,9,10 
rule6 6 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 

 

93

by RF6.4+BCW for two data sets. Since there is not 
enough space for showing all the rule sets, we show only 
the results for cpu and lung-cancer data sets. The tables 
show we found very simple rule sets. 

We compared the generalization performance of 
several regression methods by 10-fold cross validation. 
We considered four kinds of regression methods (linear 
regression, HME, three-layer perceptron, and polynomial 
regression). As linear regression models, we use multiple 
regression (MR) for the data having only numerical 
variables, and quantification theory type I (QT) for the 
data having both numerical and nominal variables. The 
simplest regression form of the HME (Hierarchical 
Mixtures of Experts) [17][18] is piecewise linear 
regression, which constructs subspaces by using gating 

variables and applies linear regression in each subspace. 
We use the HME in two ways: using numerical variables 
as gating variables (HMEx), or using nominal variables as 
gating (HMEq). We varied the number I of experts from 1 
to 8. For a three-layer perceptron, we learn the perceptron 
in four ways: using only numerical variables (NNx), using 
both numerical and nominal variables (NNqx), or applying 
the BCW to NNx or NNqx (NNx+BCW, NNqx+BCW). 
We varied the number J of hidden units of the perceptron 
from 1 to 5, and the number G of clusters from 2 to 12. As 
connectionist polynomial regression models, we compare 
four models (RF5, RF6.4, RF5+BCW, RF6.4+BCW). 

Tables 14 and 15 compare the generalization 
performances by 10-fold cross validation errors. Table 14 
shows the results using only numerical variables, and 

Table 13: Final rules obtained by RF6.4+BCW (Lung-cancer Data) 
 

nominal variables 
rule q1 q2 q3 

Polynomial 

rule1 2 1 2 
1 1 2 

rule2 
2 4 2 
1 3,4 2 
2 1,2,3,4 1 rule3 
2 2,3 2 
1 1, 2, 3, 4 1 

rule4 
1 2 2 

Table 14: Comparison of 10-fold cross validation errors (Real Data having only numerical variables) 
 
 

data set MR HMEx NNx NNx+BCW RF5 RF5+BCW
cpu 4.609E+03 1.569E+03 1.625E+03 1.595E+03 2.206E+03 1.627E+03 

boston 2.355E+01 1.060E+01 9.740E+00 1.054E+01 9.500E+00 8.206E+00 
college 9.570E+06 9.495E+06 9.230E+06 9.090E+06 9.659E+06 9.342E+06 

cholesterol 2.641E+03 2.476E+03 2.579E+03 2.606E+03 2.511E+03 2.369E+03 
b-carotene 2.989E+04 2.887E+04 2.923E+04 2.850E+04 2.886E+04 2.923E+04 

mpg 1.809E+01 1.588E+01 1.541E+01 1.676E+01 1.711E+01 1.696E+01 
lung-cancer 2.284E+04 2.183E+04 2.090E+04 1.988E+04 2.186E+04 1.954E+04 

wage 2.124E+01 1.924E+01 1.925E+01 1.897E+01 2.029E+01 1.976E+01 
yokohama 1.232E+09 4.014E+08 4.250E+08 4.410E+08 4.493E+08 3.887E+08 

baseball-2006 1.755E+07 1.602E+07 1.656E+07 1.626E+07 1.668E+07 1.521E+07 

Table 15: Comparison of 10-fold cross validation errors (Real Data having both numerical and nominal variables) 
 

data set QT HMEq NNqx NNqx+BCW RF6.4 RF6.4+BCW
cpu 4.301E+03 1.453E+03 1.566E+03 1.498E+03 2.021E+03 1.363E+03 

boston 1.350E+01 1.209E+01 9.450E+00 1.025E+01 9.262E+00 7.533E+00 
college 9.703E+06 8.661E+06 6.910E+06 7.331E+06 6.330E+06 8.283E+06 

cholesterol 2.584E+03 2.502E+03 2.577E+03 2.517E+03 2.446E+03 2.418E+03 
b-carotene 2.928E+04 2.895E+04 2.893E+04 2.786E+04 2.958E+04 2.646E+04 

mpg 1.622E+01 1.392E+01 1.373E+01 1.569E+01 1.283E+01 1.495E+01 
lung-cancer 2.136E+04 2.154E+04 2.156E+04 1.801E+04 2.172E+04 1.857E+04 

wage 1.884E+01 1.925E+01 1.864E+01 1.818E+01 1.849E+01 1.830E+01 
yokohama 4.151E+08 3.790E+08 3.462E+08 4.064E+08 3.911E+08 4.667E+08 

baseball-2006 1.849E+07 1.406E+07 1.670E+07 1.680E+07 1.732E+07 1.620E+07 
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Table 15 shows the results using both numerical and 
nominal variables. We can see that the performance of 
RF5+BCW or RF6.4+BCW was better than plain RF5 or 
RF6.4 in most data sets, and showed the best performance 
in many data sets. So we can say that applying the BCW 
to connectionist polynomial regressions is valuable for 
finding succinct polynomials and fitting better the data. 
Although NN or NN+BCW showed the best performance 
in some data sets, they are rather poor in terms of the 
readability. 

 
6 Conclusion  

This paper proposed a weight sharing method called 
BCW and applied it to connectionist polynomial 
regression methods called RF5 and RF6.4 for finding 
succinct multivariate polynomials. In our experiments 
using artificial data, our method selected the original 
model by BIC and found polynomials almost equivalent to 
the original. In our experiments using 10 real data sets, our 
method found polynomials having crisp readability with 
satisfactory generalization performance. In the future we 
plan to apply the BCW to other models and evaluate its 
usefulness. 
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