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Summary 
Aggregation-join query plays an important role in query 
processing in data girds and has been applied to many fields, 
such as global climate simulation, high energy physics and 
molecular biology. Applying aggregation and join operations on 
remote relations in data grids is a unique and difficult issue due 
to the heterogeneous, unpredictable and volatile behaviors of the 
grid resources. To the best of our knowledge, little is done to 
date on aggregation-join query processing in data grids. An 
approach for efficiently processing aggregation-join query is 
proposed in this paper. And analytical and experimental results 
show the effectiveness and efficiency of the proposed approach. 
Key words:  
Data Grids, Aggregation-join Query, Partial Replica, Replica 
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1. Introduction 

Data grids [1,2] are distributed data management 
architecture used as a coordinated and collaborative means 
for integrating data across high speed networks, and thus 
form a single virtual environment for data access and 
management [3,4,5] The employment of data grids has 
provided the scientific community with fast, reliable and 
transparent access to geographically distributed data 
resources. 
Data grids utilize traditional replica technique to replicate 
one or several copies of each dataset and distribute them at 
different grid nodes. And thus the existence of replicas 
efficiently reduces data access cost and network 
transmission cost, as well as increases grid system fault 
tolerance, achieves load balancing and improves the 
security of data sets. 
In such distributed grid environments, Data Grid 
Management System (DGMS) needs to continue 
monitoring grid global performance for capacity planning 
and system diagnosis, such as network bandwidth, 
available storage space, CPU power usage. Grid users 
need to monitor dynamic information about grid resource, 
thus discovery interested and appropriate resource. So 
Resource Monitoring and Discovery Mechanism play an 
important role in data grids.  

Queries involving aggregates are very common used by 
Resource Monitoring and Discovery Mechanism for gird 
resource management, discovery and publication in data 
grids, which summarize a large set of records based on the 
designated grouping. The input set of records may be 
derived from multiple tables using a join operation. These 
queries are often used as a tool for strategic decision 
making and commonly used in a variety of applications 
including data integration services, decision support 
systems and scientific data analysis. 
Although data grids offer a great deal of facilities for 
wide-area query processing, query processing in data grids 
is challenging due to the heterogeneous, unpredictable and 
volatile behavior of grid resources. As far as we know, 
there is little to date in the literature on distributed 
aggregation-join query in data grids exploring relation 
partial replicas and load balancing. The contribution of 
this paper is to have proposed an adaptive aggregation-
join query processing algorithm that makes use of relation 
partial replicas and achieves load balancing. 
The rest of the paper is organized as follows. In Section 2, 
the problem of grid aggregation-join query and the 
procedure for processing this query are presented. An 
algorithm is proposed to get efficient tuples by reducing 
the sizes of partial replicas. And, the concept of Replica 
Maximum Cover and its related algorithm are introduced 
in Section 3. Section 4 defines the concept of Minimum 
Maximum Edge Matching and develops its related 
algorithm for adaptively selecting computational nodes. 
Section 5 proposes the methods for parallel executing join 
and aggregation operations at selected nodes. Adaptive 
adjustment of query processing is given in Section 6. The 
experimental results are provided in Section 7, and the 
conclusion and future work are discussed in Section 8. 

2. Problem Statement 
Assume a user at any grid node issues a query to DGMS 
and the query is required to get aggregation-join results of 
relation R and S according to join attributed T, group-by 
attribute R.GB and aggregation attribute S.A. R and S have 
been split into numerous partial replicas and these replicas 
are present at different grid nodes, the partial replicas of 
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relation R, R1, R2,...,Rm1
 locate at m1 different grid nodes 

NR1,NR2,..., NRm1 and the partial replicas of relation S, 
S1,S2,...,Sm2

 locate at m2 different grid nodes 
NS1,NS2,...,NSm2

. The problem of aggregation-join query 
processing is formulated as follows. 
INPUT: (1) an aggregation-join query Q 

(2) partial replicas of relations R and S, R1,R2,..., 
Rm1 and S1,S2,...,Sm2 which locate different 
grid nodes. 

(3) Join Attribute T, group-by attributed R.GB 
and aggregation attribute S.A 

OUTPUT: Aggregation-join results of R>< S according 
to R.GB and S.A 

Considering the existence of multiple replicas of datasets 
and achieving system load balancing, the aggregation-join 
of R and S is computed in the following six steps in 
general. 
Step 1. Reduce the sizes of partial replicas R1,R2,...,Rm1 and 

S1,S2,...,Sm2
, and get efficient tuple sets R′1, 

R′2,...,R′m1 and S′1,S′2,...,S′m2
. 

Step 2. Respectively select n1 (n1≤m1) and n2 (n2≤m2) 
partial replicas from R′1,R′2,...,R′m1 and S′1,S′2,..., 
S′m2

 as operand relations, satisfying R=R′1∪R′2 

∪...∪R′n1
 and S=S′1∪S′2∪...∪S′n2

. 
Step 3. Remove duplication from operand relations 

R′1,R′2,...,R′n1 and get R′′1,R′′2,...,R′′n1 satisfying 
R′′i∩R′′j=∅, (i≠j,1≤i, j≤n1) and R′′1∪R′′2∪... 
∪R′′n1=R. Similarly, remove duplication from 
operand relations S′1,S′2,...,S′n2 and get S′′1,S′′2,..., 
S′′n2 satisfying S′′i∩S′′j=∅, (i≠j,1≤i, j≤n2) and 
S′′1∪S′′2∪...∪S′′n2=S. 

 
Fig.1  Illustration of processing an aggregation-join query 

Step 4. Select at most n1×n2 grid nodes as join nodes (JNs) 
from m available ones, and transfer efficient tuple 
sets of R′′1,R′′2,...,R′′n1 and S′′1,S′′2,...,S′′n2 to join 
nodes for parallel performing join operations. 

Step 5. According to the group-by attribute R.GB, select 
aggregation nodes (ANs) from m available grid 

nodes and transfer join results to ANs for 
completing aggregation operations. 

Step 6. Parallel transfer aggregation-join results from ANs 
to user node in pipeline. 

3. Pre-Processing of Relation Partial Replicas 
This section first discusses how to get efficient tuple sets 
R′1,R′2,...,R′m1

 and S′1,S′2,...,S′m2
 from partial replicas 

R1,R2,...,Rm1
 and S1,S2,...,Sm2

. Then the concept of Replica 
Maximum Cover is proposed and an algorithm for seeking 
optimal partial replicas as operand relations is present. 
Finally, a method for removing duplication from multiple 
selected partial replicas for each relation is described. 

3.1 Getting Efficient Tuple Sets 

In grid environments, grid services like Grid Information 
Service and Network Weather Service have been 
developed and used to dynamic resource discovery and 
network monitoring respectively. Our approach utilizes 
these services to locate partial replicas of the given 
relations R and S, i.e. R1, R2,...,Rm1 and S1,S2,...,Sm2.  
When processing aggregation-join queries in data grids, it 
is not necessary to transfer all tuples in each partial replica 
to computational nodes for performing join and 
aggregation operations. We only need to transfer the 
tuples that satisfy the join conditions, and thus the network 
transmission cost is reduced. 
An algorithm for reducing the sizes of each partial replica, 
Obtain-Effient-Tuples (OTE), is proposed in this section. 
And the algorithm is processed in the following three steps.  
Step 1. Respectively get the projection of each partial 

replica on the join attribute T, R1[T], R2[T], ..., 
Rm1

[T] and S1[T], S2[T], ..., Sm2
[T], at grid nodes 

NR1, NR2, ..., NRm1
 and NS1, NS2, ..., NSm2

. 
Step 2. Parallel execute (2.1) and (2.2) 

(2.1) Parallel execute (2.1.1)-(2.1.m2) 
(2.1.1) Parallel transfer R1[T], R2[T], ..., Rm1

[T] 
from nodes NR1, NR2,..., NRm1

 to node NS1 

(2.1.2) Parallel transfer R1[T], R2[T], ..., Rm1
[T] 

from nodes NR1, NR2, ..., NRm1
 to node NS2 

... 
(2.1.m2) Parallel transfer R1[T],R2[T],...,Rm1

[T] 
from nodes NR1,NR2,...,NRm1

 to node NSm2 

(2.2) Paralle execute (2.2.1)-(2.2.m1) 
(2.2.1) Parallel transfer S1[T],S2[T],...,Sm2

[T] from 
nodes NS1,NS2,...,NSm2

 to node NR1 

(2.2.2) Parallel transfer S1[T],S2[T],...,Sm2
[T] from 

nodes NS1,NS2,...,NSm2
 to node NR2 

... 
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(2.2.m2) Parallel transfer S1[T],S2[T],...,Sm2
[T] 

from nodes NS1,NS2,...,NSm2
 to node NRm1 

Step 3 Parallel execute (3.1) and (3.2) 
(3.1) Parallel execute (3.1.1)-(3.1.m2) 

(3.1.1) At node NS1, compute 
S′1(R1)=R1[T]>< S1, 
S′1(R2)=R2[T]>< S1, 
... 
S′1(Rm1

)=Rm1
[T]>< S1 

(3.1.2) At nodeNS2, compute 
S′2(R1)=R1[T]>< S2,  
S′2(R2)=R2[T]>< S2, 
... 
S′2(Rm1

)=Rm1
[T]>< S2 

... 
(3.1.m2) At node NSm2

, compute 
S′m2

(R1)=R1[T]>< Sm2
, 

S′m2
(R2)=R2[T]>< Sm2

, 
... 
S′m2

(R m1
)=Rm1

[T]>< S m2 

(3.2) Parallel execute (3.2.1)-(3.2.m1) 
(3.2.1) At node NR1, compute 

R′1(S1)=S1[T]>< R1, 
R′1(S2)=S2[T]><R1, 
... 
R′1(S m2

)=S m2
[T]><R1 

(3.2.2) At node NS2, compute 
R′2(S1)=S1[T]><R2, 
R′2(S2)=S2[T]><R2, 
... 
R′2(S m2

)=S m2
[T]><R2 

... 
(3.2.m1) At node NSm2

, compute 
R′m2

(S1)=S1[T]><Rm1
, 

R′m2
(S2)=S2[T]><Rm1

, 
... 
R′m2

(S m2
)=Sm2

[T]><R m1 

Thus at nodes NRi (1≤i≤m1), efficient tuple sets R′i(S1), 
R′i(S2),...,R′i(Sm2

), where R′i(S1) ∪R′i(S2)∪...∪R′i(Sm2
)=R′i, 

are obtained. Similarly, at nodes NSj(1≤j≤m2), efficient 
tuple sets S′j(R1),S′j(R2),...,S′j(Rm1

), where S′j(R1)∪S′j(R2) 
∪...∪S′j(R m1

)=S′j, are got 

3.2 Selecting Optimal Partial Replicas 

Definition 1 (Replica Cover)：Given a relation R, two 
sets Φ={R1,R2,...,Rm} and F={R1,R2,...,Rn}, Ri⊂R, Rj⊂R, 
1≤i≤m, 1≤j≤n, n≤m, F⊆Φ. F covers relation R if the 
following conditions are satisfied: 

(1) ∀ t∈R, ∃ Ri∈F satisfying t∈Ri 

(2) R= R1∪R2∪...∪Rn 

(3) ∀Ri and Rj (Ri∈F,Rj∈F,i≠j), satisfy Ri⊄Rj and 
Rj⊄Ri 

The number of partial replicas in F is the size of cover F, 
denoted by |F|. 
Definition 2 (Replica Maximum Cover) Given a relation 
R, a set Φ={R1,R2,...,Rm} where Ri⊂R, and a set CR={F1, 
F2,...,Fn} where Fi is a replica cover of R, Fi is named 
Replica Maximum Cover of relation R if |Fi|= 
Max{|F1|,|F2|,...,|Fm|}. 
Assume a relation R={(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 
6)}, Φ={R1, R2, R3, R4, R5},R1, R2, R3, R4 and R5 are partial 
replicas of R, R1={(0, 1), (1, 2)}, R2={(2, 3), (3, 4), (4, 5), 
(5, 6)}, R3={(2, 3), (4, 5)}, R4={(3, 4), (5, 6)}, R5={(1, 2), 
(3, 4), (4, 5)}. A cover set CR={F1, F2}, F1={R1, R2}, 
F2={R1, R3, R4} is get. Since |F1|=2, |F2|=3, F2 is the 
replica maximum cover of R. 
An algorithm for seeking the replica maximum cover of a 
relation, Replica Maximum Cover Algorithm (RMCA), is 
described as follows. 
Algorithm 1. Replica Maximum Cover Algorithm, RMCA

INPUT: a relation R and a set ΦR={R1, R2, ..., Rm} 
OUTPUT: the Replica Maximum Cover of R, RMCR 
(1) Sort the elements in ΦR according to the number of 

tuples in each partial replicas and get R1,R2,...,Rm 
satisfying |R1|≥|R2|≥...≥|Rm| 

(2)  Let RMCR=∅ 
(3)  FOR i=1 TO m DO 
(4)     Delete Ri from ΦR, let ΦR=ΦR-{Ri} 
(5)     IF (R≠(RMCR∪ΦR)) THEN 
(6)         Add Ri into RMCR, let RMCR=RMCR∪{Ri} 
(7)     END IF 
(8)  END FOR 
(9)  RETURN RMCR 
Since in the algorithm RMCA, each element in ΦR={R1, 
R2, ..., Rm} needs to be executed once from step (3) to step 
(8), the time complexity of algorithm RMCA is O(m). 
When selecting operand relations for aggregation-join 
query, it is unnecessary take all partial replicas of R and S 
as operand relations. We only need to select some optimal 
partial replicas from R′1,R′2,...,S′m1 and S′1,S′2,...,S′m as 
operand relations and transfer their tuples to computational 
nodes. But the selection of optimal partial replica of R and 
S depends on a lot of factors, such as sizes of selected 
partial replicas, network bandwidth, and computational 
capacities of m available computational nodes. Since the 
behaviors of grid resources are unpredictable and volatile, 
some factors can not be determined when we select 
optimal replicas. For maximizing parallelism of the 
aggregation-join query, we only take the sizes of partial 
replicas into consideration while selection optimal partial 
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replicas. And thus, the problem is transformed into Replica 
Maximum Cover problem. We use a method to solve this 
problem and get an acceptable and feasible solution within 
reasonable time, which may not be optimal. 
The problem is formulated as follows. 

INPUT: (1) relations R and S, as well as the sets 
ΦR={R1,R2,...,Rm1} and ΦS={S1,S2,...,Sm2} 

(2) CR and CS which involve all covers of R and 
S 

OUTPUT: the optimal partial replicas of R and S, RMCR 
and RMCS, satisfying C((RMCR,RMCS))= 
Min(C(CR,CS)), C: CR×CS →Q+, ∀(RMCR, 
RMCS)∈CR×CS, ∃ minimum cost C((RMCR, 
RMCS)). 

The Replica Maximum Covers of R and S are got by using 
algorithm RMCA respectively. For simplicity and without 
loss of generality, we assume RMCR={R′1,R′2,...,R′n1} and 
RMCS={S′1,S′2,...,S′n2}. 

3.3 Duplication Removals in Optimal Partial 
Replicas 

Since two tuples tR in R and tS in S satisfying join condition 
℘(T) may exist in several partial replicas of R and S, i.e. 
tR∈R′a1

,R′a2
,...,R′ac

(1≤ai≤n1,1≤i≤c), tS∈S′b1
,S′b2

,...,S′bd 
(1≤ 

bj≤n2,1≤j≤d), and each pair of partial replicas of R and S 
R′ai

 and S′bj
 is transferred to one join node to perform join 

operations, join result tR >< tS may be generated many 
times at multiple different join nodes. For avoiding 
generating duplicate join results, it is necessary to remove 
duplicate tuples in R′1,R′2,...,R′n1. Such that for any tR 
(tR∈R′), it only exists one partial replica of R. Similarly, 
we need to remove duplication in partial replicas of S. And 
thus, each result of R>< S is sure to be generated once at 
all join nodes. 
We adopt the following method to remove duplication in 
selected optimal partial replicas. Assume the average cost 
for processing a tuple at node NRa is TNRa

 and the average 
cost for processing a tuple at node NRb is TNRb

. If 
R′a∩R′b≠∅ (1≤a,b≤n1, a≠b) and TNRa

≤TNRb
, duplicate tuple 

t is removed from R′b. Similarly, duplicate tuples in partial 
replicas of S are processed. 
Proposition 1 (R1∪R2∪...∪Rn1

) >< (S1∪S2∪...∪Sn2
)= 

(R′′1∪R′′2∪...∪R′′n1
) >< (S′′1∪S′′2∪...∪S′′n2

), where R′′1, 
R′′2, ..., R′′n1

 and S′′1, S′′2, ..., S′′n2
 are tuple sets after 

reduction and duplicate removals, satisfying R′′a∩R′′b =∅, 
S′′i∩S′′j=∅ (1≤a, b≤n1,a≠b,1≤i, j≤n2,i≠j). 
Proof: According to above algorithm, we have 

R′a=Ra>< (S1[T]∪S2[T]∪...∪Sn2[T]) (1≤a≤n1), 

S′b=Sb>< (R1[T]∪R2[T]∪...∪Rn1[T]) (1≤b≤n2) 
Thus, R′1∪R′2∪...∪R′n1 

=(R1∪R2∪...∪Rn1)>< (S1[T]∪S2[T]∪...∪Sn2[T]) 
Similarly, we have 
(S′1∪S′2∪...∪S′n2)=(S1∪S2∪...∪Sn2) >< (R1[T]∪R2[T]∪...
∪Rn1[T]) 
And thus, (R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2) 
=((R1∪R2∪...∪Rn1) >< (S1[T]∪S2[T]∪...∪Sn2[T])) >< ((S1

∪S2∪...∪Sn2)>< (R1[T]∪R2[T]∪...∪Rn1[T])) 
By the join-associative property and the join-commutative 
property, we have 
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2) 

=((R1∪R2∪...∪Rn1)>< (R1[T]∪R2[T]∪...∪Rn1[T]))><  
((S1∪S2∪...∪Sn2)>< (S1[T]∪S2[T]∪...∪Sn2[T])) 
Since Ra[T] is the projection of Ra on T, we have 
Ra[T]><Ra=Ra and 

 SRb    SRb⊆Rb (Ra[T]><Rb[T]≠∅)
Ra[T]><Rb=   
 ∅ (Ra[T]><Rb[T]=∅)

Similarly, we have Si[T]>< Si=Si and  

 SSj   SSj⊆Sj (Si[T]>< Sj[T]≠∅) 
Si[T]>< Sj=   
 ∅ (Si[T]>< Sj[T]=∅) 

By the join-associative property and the join-commutative 
property, we have 
(R1∪R2∪...∪Rn1)>< (R1[T]∪R2[T]∪...∪Rn1[T]) 
=R1∪R2∪...∪Rn1 

(S1∪S2∪...∪Sn2)>< (S1[T]∪S2[T]∪...∪Sn2[T]) 
=S1∪S2∪...∪Sn2 
Thus, we have 
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2) 
=(R1∪R2∪...∪Rn1)>< (S1∪S2∪...∪Sn2)  (1) 
Since for any tR∈R′1∪R′2∪...∪R′n1, R′′a exists and satisfies 
tR∈R′′a, we have 

R′1∪R′2∪...∪R′n1=R′′1∪R′′2∪...∪R′′n1 
Similarly, we have  

S′1∪S′2∪...∪S′n2=S′′1∪S′′2∪...∪S′′n2 
And thus, we get 
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2) 
=(R′′1∪R′′2∪...∪R′′n1)>< (S′′1∪S′′2∪...∪S′′n2) (2) 
According to equations (1) and (2), we have  
(R1∪R2∪...∪Rn1)>< (S1∪S2∪...∪Sn2) 
=(R′′1∪R′′2∪...∪R′′n1)>< (S′′1∪S′′2∪...∪S′′n2) 

4. Selecting Join Nodes 
This section first gives the cost model for performing join 
operations at join nodes. Then the method for selecting 
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join nodes based on the concept of Minimum Maximum 
Edge Matching (MMEM) is introduced. 

4.1 Cost Model 

Assume efficient tuple sets R′′a(1≤a≤n1) and S′′b(1≤b≤n2), 
which are a pair of partial replicsin R and S, are 
transferred to node JNk to perform join operations. For R′′a 
and S′′b, only the tuples in R′′a(Sb) and S′′b(Ra) satisfies the 
join condition ℘(T), (R′′a(Sb)⊆R′′a, S′′b(Ra)⊆S′′b). So we 
only need to transfer R′′a(Sb) and S′′b(Ra) to join node JNk 
to perform join operations instead of transferring all tuples 
in R′′a and S′′b to join node. 
The load of join node JNk is described by the vector 
<CPUJNk

,MemJNk
,I/OJNk

,TRN→JNk
>, where CPUJNk

, MemJNk
 

and I/OJNk
 are available CPU power, available memory 

and disk bandwidth, TRN→JNk
 is the average network 

bandwidth between node N and node JNk. 
The cost for performing join of R′′a(Sb) and S′′b(Ra) at JNk 
consists of two parts: computational cost Tcompu(R′′a(Sb), 
S′′b(Ra),JNk) and communication cost Tcommu(R′′a(Sb), 
S′′b(Ra),JNk). Communication cost is the time for parallel 
transferring R′′a(Sb) from node NRa to node JNk and 
transferring S′′b(Ra) from node NSb to node JNk, i.e. 
Tcommu(R′′a(Sb),S′′b(Ra),JNk) 
= Max{C0+|R′′a(Sb)|×TRNRa→JNk

,C0+|S′′b(Ra)|×TRNRb→JNk
} 

Computational cost is the time for completing the 
aggregation-join operations of R′′a(Sb) and S′′b(Ra) at node 
JNk, i.e.  
Tcompu(R′′a(Sb),S′′b(Ra),JNk) 
= (|R′′a(Sb)|/|T(R)|+|S′′b(Ra)|/|T(S)|)×(Tcompa(JNk)+Tmove(JNk)), 
Where T(R) and T(S) respectively denotes sizes of each 
tuple in R and S, Tcompa(JNk) denotes the time for completing 
a comparison operation in memory of JNk, Tmove(JNk) 
denotes the time for moving a tuple in memory of JNk. And 
thus, the total cost 
TC(R′′a(Sb),S′′b(Ra),JNk) 
=Tcommu(R′′a(Sb),S′′b(Ra),JNk)+Tcompu(R′′a(Sb),S′′b(Ra),JNk) 

4.2 Selecting Join Nodes based on MMEM 

Since the tuples in each pair of partial replicas R′′a(Sb) and 
S′′b(Ra) (1≤a≤n1,1≤b≤n2) are transferred to a join node to 
perform join operations, at most n1×n2 nodes need to be 
selected as join nodes from m available nodes. Each 
selected join node corresponds to a pair of partial replicas. 
To minimize the cost for parallel performing join 
operations, the problem of selecting join nodes is 
formulated as the problem of seeking a MMEM in a 
weighted complete bipartite graph [8,9]. An weighted 
complete bipartite graph G=(A,B,E,ϕ) shown in Fig.2 is 
constructed in the following four steps. 

Step 1. A={A1, A2, ..., An1×n2
}, where the pair of grid nodes, 

at which partial replicas R′′a(Sb) and S′′b(Ra) 
(1≤a≤n1,1≤b≤n2) locate, is considered as a vertex in 
a vertex set A, i.e. A1=(NR1, NS1), A2=(NR1, NS2), ..., 
An1×n2=(NRn1, NSn2). 

Step 2. B={JN1, JN2, ..., JNm}, where each node in m 
available nodes is considered as a vertex in vertex 
set B.  

Step 3. E=∪∀x∈A {(x,y) | ∀y∈B} 
Step 4. ϕ: E→ℜ, where ℜ is the set of real numbers, and 

ϕ((Ai, JNk))=t means the cost of computation and 
communication for performing aggregation join 
operations at node JNk is t. 

 
Fig.2 A constructed weighted complete bipartite graph G 

 

Fig.3 The desired MMEM in G 

When the weighted complete bipartite graph G is 
constructed, we use the method proposed in [8,9] to seek a 
MMEM M in G. Once M is found, n1×n2 vertexes in vertex 
set B correspond to the desired n1×n2 join nodes. Assume 
M={(A1, JN1), (A2, JN2),..., (An1×n2, JNn1×n2

)} is shown in 
Fig.3 and JN1,JN2,...,JNn1×n2

 are the desired join nodes. 

5. Executing Aggregation-join Operations 

5.1 Executing Join Operations 

For any tR∈R′′, tR only exists in a partial replica R′′a 
(1≤a≤n1). But tR may exists in several different efficient 
tuple sets R′′a(S1), R′′a(S2),..., R′′a(Sn2) at the same grid 
node Na. Similarly, ts may exists in several different 
efficient tuple sets S′′b(R1), S′′b(R2),...,S′′b(Rn1) at the same 
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grid node Nb. Since each pair of R′′a(Si) and S′′b(Rj) is 
transferred to a join node to performing join operations, 
the join result tR>< ts may be generated many times at 
different join nodes. 
Assume R′′a(Sb) and S′′b(Ra) are transferred to JNk to 
perform join operations. At JNk, the join result of R′′a(Sb) 
and S′′b(Ra), R′′a(Sb)>< S′′b(Ra), are get by using “block 
merge join” algorithm at join node JNk [9]. 
According to the values on group-by attribute R.GB in join 
results, we partition an output buffer OB(GBi(JNk)) for 
each group in the memory of node JNk. When the size of 
join results in OB(GBi(JNk)) arrives at the size of one 
block, the join results in OB(GBi(JNk)) are transferred to 
corresponding aggregation node ANi. Assume there are L 
groups on the group-by attribute R.GB in R′′>< S′′, we at 
most need to select L grid nodes as aggregation nodes. 

5.2 Executing Aggregation Operations 

Aggregation operations are processed at aggregation 
nodes in the following way. 
The memory space at ANj is partitioned into two parts, 
named IB(ANj) and OB(ANj). IB(ANj) is used for buffering 
arrived join results and OB(ANj) is used for storing join 
results which have finished being grouped and aggregated. 
For each aggregation node ANj, its initial value equals to 0, 
i.e. AggVal(ANj))=0. 
Assume a block from GBi(JNk) arrives at node ANj, first, 
the arrived block is inserted into the input buffer IB(ANj). 
For any join result t=(A[t],GB[t], ...), we check whether it 
exists in OB(ANj) or not. If not, insert t=(A[t],GB[t], ...) 
into OB(ANj), compute AggVal(ANj)) = AggVal(ANj)) + 
A[t] and remove t=(A[t],GB[t], ...) from IB(ANj); otherwise, 
remove t=(A[t],GB[t], ...) from IB(ANj) directly. Thus, 
even the same join results are generated many times at 
different join nodes, aggregation result is computed only 
once. 

6. Adaptive Adjustment of Query Processing 

6.1 Adaptively Adjusting the Selection of Join Nodes 

Since data grids is an unpredictable and volatile 
computational environment, the loads of selected join 
nodes JN1,JN2, ..., JNn1×n2

 may vary a lot with time, i.e. 
available CPU power degrade and available memory space 
become less and so on. If the remained tuples in 
R′′1,R′′2, ...,R′′n1 and S′′1, S′′2,...,S′′n2 at NR′′1,NR′′2,..., 
NR′′n1 and NS′′1, NS′′2,...,NS′′n2 are still transferred to 
JN1,JN2,...,JNn1×n2 to continue performing join operations, 
the performance of the aggregation-join query may 
degrades. So we have to determine whether to select at 
most n1×n2 new join nodes JN′1,JN′2,...,JN′n1×n2 and to 

transfer remained tuples to JN′1,JN′2,...,JN′n1×n2
 for 

continuing performing join operations. 
Assuming that the remained tuple sets at NR1,NR2,...,NRn1 
and NS1,NS2,...,NSn2 are LR′′1,LR′′2,...,LR′′n1 and 
LS′′1,LS′′2,...,LS′′n2 respectively. We have to re-construct a 
weighted complete bipartite graph G′=(A,B,E,ϕ), where 
(1) A={A1,A2,...,An1×n2} is a vertex set, where A1= (NR1, 

NS1),A2=(NR1,NS2),..., An1×n2=(NRn1,NSn2) 
(2) B={JN1, JN2, ..., JNm} is a vertex set, each vertex is an 

available join node 
(3) E=∪∀x∈A {(x,y) | ∀y∈B}, and 
(4) ϕ: E→ℜ, where ℜ  is the set of real numbers, and 

ϕ((Ai,JNk))=t means the cost of completing the join of 
LR′′a and LS′′b at JNk is t.  

If the MMEM M′ of G′ is same to the MMEM M of G, the 
remained tuples in LR′′1, LR′′2,...,LR′′n1 and LS′′1,LS′′2,..., 
LS′′n2 continue being transferred to JN1,JN2,...,JNn1×n2 for 
performing join operations. Otherwise, the remained tuples 
are to be transferred to JN′1,JN′2,...,JN′n1×n2 for performing 
join operations. This ensures the join operations are always 
parallel performed at most efficient join nodes and the time 
cost of performing join operations is decreased. While join 
results are being generated at join nodes, they still 
transferred to original selected  aggregation nodes (ANs) 
for completing aggregation operations. 

6.2 Dealing with Possible Lost Join Results 

When the join node for performing join of R′′a(Sb) and 
S′′b(Ra) is changed from JNk to JNh, some join results in 
R′′a(Sb)>< S′′b(Ra) may be lost. Assuming HR′′a(Sb) and 
HS′′b(Ra) are transferred tuples sets to JNk, R′′a(Sb)Val 
represents the tuple sets having T value equal to Val in 
R′′a(Sb), i.e. for any t∈ R′′a(Sb)Val, t[T]=Val. ||R′′a(Sb)Val|| 
represents the number of tuples in R′′a(Sb)Val.  
The method for avoiding losing some join results is 
composed of the following three phases. 
Phase 1. For each value Val on the join attribute T of 

R′′a(Sb)>< S′′b(Ra), we first record ||R′′a(Sb)Val|| 
and ||S′′b(Ra)Val||, as well as ||HR′′a(Sb)Val|| and 
||HS′′b(Ra)Val||, where HR′′a(Sb)Val and 
HS′′b(Ra)Val are tuple sets having T value equal 
to Val which have been transferred to JNk. 

Phase 2. When determining whether to adjust join nodes, 
we compute the number of tuples having T 
value equal to Val in join results which have 
been generated at JNk i.e. 
GenTN1=||HR′′a(Sb)Val|| × ||HS′′b(Ra)Val||, and 
compute the number of tuples having T value 
equal to Val in join results which will be 
generated at JNh, i.e. GenTN2= (||R′′a(Sb)Val||-
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||HR′′a(Sb)Val||)×(||S′′b(Ra)Val||-||HS′′b(Ra)Val||) 
Phase 3. Compare GenTN1 and GenTN2. 

(3.1) If GenTN1≥GenTN2, the tuples in LR′′a(Sb)Val 
continue being transferred to JNk to perform 
join operations. When no tuples having T 
value equal to Val in LR′′a(Sb)Val at NRa exist, 
i.e. LR′′a(Sb)Val=∅, we begin to transfer 
tuples in LR′′a(Sb) from NRa to JNh for 
performing join operations. 

(3.2) If GenTN1<GenTN2, the tuples having T 
value equal to Val which have been 
transferred to JNk must be re-transferred to 
JNh to re-generate join results and delete 
generated join results (HR′′a(Sb) ><  
HS′′b(Ra))Val at join node JNk 

Phase 4. Similarly, the tuples in LS′′b(Ra)Val are processed. 

Fig.4 Dealing with possible lost join results 

In the example shown in Fig.4, the tuples without 
background are transferred ones, and the tuples in gray are 
remained ones shown in Fig.4(a). Fig.4(b) shows the 
generated join results at JNk, Fig.4(c) shows the 
forthcoming join results at JNh and Fig.4(d) shows the 
possible lost join results. The tuples (3,2) in LR′′a(Sb) and 
(2,6) in LS′′b(Ra) continue being transferred to execution 
node JNk to perform join operations. And, the tuples 
(4,3),(5,3) and (5,5) in LR′′a(Sb), as well as the tuples 
(3,3),(3,5),(4,6) and (4,7) in LS′′b(Ra) are transferred to 
new selected execution node JNh to generate join results. 

7. Experimental Results and Analysis 
This section first describes our experimental setup, and 
then presents experimental results and analysis. 

7.1 Experimental Setup 

We built a simulation environment for conducting 
performance study. The system was implemented using 
Java, and is composed of 20 nodes which are 
interconnected with a 100M LAN. Configurations of the 
system are shown as Table 1. 

Query. An aggregation-join query Q, being required to get 
aggregation value on S.A after grouping R>< TS on R.GB. 

Datasets. Four partial replicas of R, R1,R2,R3,R4 locate 
N1,N2,N3,N4 and each tuple of R comprises five 
integers(GB, A1, A2, A3, T). Five partial replicas of S, 
S1,S2,S3,S4,S5 locate N5,N6,N7,N8,N9 and each tuple of S 
comprises four integers(T, A, B1, B2). Each partial replica 
is stored at one node as a textual file, the columns and 
rows of which correspond to the attributes and tuples. 
Transfer of datasets. We use the java.nio package for 
transferring data sets across the network. The package 
provides efficient API’s for unblocking network I/O. 
Different network transfer rates between computer nodes 
are devised through applying delay to data transmission. 
Table 1 Configurations of the nodes in the aggregation-join query system 

NAME DESCRIPTION CPU MEMORY
N0 User node, a user issues a query 

and gets the results at this node 
1.8GHz 256M 

N1~N4 Nodes where partial replicas of 
R locate 

2.4GHz 512M 

N5~N9 Nodes where partial replicas of 
S locate 

2.4GHz 512M 

N10～
N19 

Available join nodes and 
aggregation nodes 

3.2GHz 2GB 

7.2 The Impact of Replica Maximum Cover 
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Fig.5 Effect of maximum replica cover algorithm 

The experiment focuses on analyzing the effect on the 
query response time of the algorithm RMCA by two 
approaches. Commonly used Set Cover algorithm is 
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adopted in approach G-I, i.e. to seek a relation replica 
cover in which the number of partial replicas is minimal, 
and the algorithm RMCA is used in approach G-II.  
The process of aggregation-join query is decomposed into 
three phases: Phase I includes getting efficient tuple sets, 
selecting optimal replicas and removing duplication in 
selected partial replicas; Phase II includes parallel 
transferring tuples to join nodes and aggregation nodes, as 
well as parallel performing join operations and 
aggregation operations at selected computational nodes; 
transferring final aggregation-join results to user node is 
included in Phase III. 
Fig.5 shows that, in Phase I the time costs between G-I 
and G-II are nearly same and in Phase II the time cost in 
G-I is higher than that in G-II. This is because the number 
of optimal replicas in G-I is less than that in G-II, thus the 
size of the maximal replica in G-I is much larger than that 
in G-II and the time cost for parallel transferring tuples 
and parallel performing aggregation-join operations in G-I 
is much higher than that in G-II. In Phase III, the time cost 
in G-I is still higher than that in G-II for the same amount 
of join results are parallel transferred to user node from 
less execution nodes in G-I than that in G-II. This shows 
our algorithm RMCA has good performance on query 
response time. 

7.3 The Impact of Obtaining Efficient Tuple 
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Fig.6 Effect of efficient tuple sets 

The experiment mainly analyzes the effect on the query 
response time of the algorithm OET by two approaches. In 
approach H-I, the algorithm OET is not used and the 
tuples are directly transferred to execution nodes to 
perform join operations, while in approach H-II, the tuples 
generated by the algorithm OET are transferred to join 
nodes to perform join operations. The process of 
aggregation-join query is also divided into three phases. 
Fig.6 shows that, In Phase I, the time cost in H-I is less 
than that in H-II because the algorithm OET is used in H-
II and it costs some time to get efficient tuples. In Phase II, 
the time cost in H-I is much higher than that in H-II. This 
is because all the tuples in partial replicas in H-I are 
transferred to join nodes whether they satisfy the join 
condition or not, and participant in the join operations at 
join nodes. Thus, the time costs for transferring tuples and 
performing join operations is much higher in H-I than that 
in H-II. In Phase III, since the same amount of final join 
results are sent to user node from the same amount of 
aggregation nodes in H-I and H-II, the time costs in H-I 
and H-II are nearly same. These experiments results show 
that our algorithm performs well and provides efficient 
support for minimizing the transfer cost. 

7.4 The Impact of Adaptive Adjustment of Query 
Processing 

Two approaches J-I and J-II are studied in this experiment 
to analyze the query performance related to the algorithm 
for adaptively adjustment of the query processing. In J-I, 
the join nodes are not adjusted without considering 
whether their loads are varied or not, i.e. once join nodes 
are selected, the join operations are performed at them all 
the time. We adaptively adjust the selection of join nodes 
according to their loads in J-II. 
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Fig.7 Effect of adjusting execution nodes 

In the experiments, we adjust the selection of join nodes 
with intervals of 20 seconds from the beginning of 
transferring tuples to join nodes. As Fig.7 shows, the 
response time of the query increases as the sizes of 
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replicas become larger and the performance of J-II is well 
than that of J-I. Although some time is cost in J-II for 
adjusting the selection of join nodes and avoiding losing 
some join results, the time cost in J-II is much less than 
that in J-I. This is because load degradation of the join 
nodes in J-I causes much higher time cost. 

8. Conclusion  
The heterogeneous, unpredictable and volatile behavior of 
grid resources has posed new challenges to the query 
processing in data grids. This paper investigates the 
problem and proposes a novel approach for processing 
aggregation-join query exploring relation partial replicas 
and load balancing in data grids. Analytical and 
experimental results show that the approach has high 
performance. Nevertheless, there are still a number of 
aspects that require further investigation for the 
improvement of the aggregation-join query processing in 
data grids. For example, it is not well understood how to 
take relation replicas and load balancing into consideration 
in processing multi-join queries. In future work, we will 
address this issue. 
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