
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

102

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

An Algorithm for Distributed Aggregation-join Query Processing in
Data Grids

Hua Feng1† and Zhenhuan Zhang2††,

†Daqing Oilfield Limited Company, China
††Daqing Oilfield Production Technology Institute China

Summary
Aggregation-join query plays an important role in query
processing in data girds and has been applied to many fields,
such as global climate simulation, high energy physics and
molecular biology. Applying aggregation and join operations on
remote relations in data grids is a unique and difficult issue due
to the heterogeneous, unpredictable and volatile behaviors of the
grid resources. To the best of our knowledge, little is done to
date on aggregation-join query processing in data grids. An
approach for efficiently processing aggregation-join query is
proposed in this paper. And analytical and experimental results
show the effectiveness and efficiency of the proposed approach.
Key words:
Data Grids, Aggregation-join Query, Partial Replica, Replica
Maximum Cover, Minimum Maximum Edge Matching

1. Introduction

Data grids [1,2] are distributed data management
architecture used as a coordinated and collaborative means
for integrating data across high speed networks, and thus
form a single virtual environment for data access and
management [3,4,5] The employment of data grids has
provided the scientific community with fast, reliable and
transparent access to geographically distributed data
resources.
Data grids utilize traditional replica technique to replicate
one or several copies of each dataset and distribute them at
different grid nodes. And thus the existence of replicas
efficiently reduces data access cost and network
transmission cost, as well as increases grid system fault
tolerance, achieves load balancing and improves the
security of data sets.
In such distributed grid environments, Data Grid
Management System (DGMS) needs to continue
monitoring grid global performance for capacity planning
and system diagnosis, such as network bandwidth,
available storage space, CPU power usage. Grid users
need to monitor dynamic information about grid resource,
thus discovery interested and appropriate resource. So
Resource Monitoring and Discovery Mechanism play an
important role in data grids.

Queries involving aggregates are very common used by
Resource Monitoring and Discovery Mechanism for gird
resource management, discovery and publication in data
grids, which summarize a large set of records based on the
designated grouping. The input set of records may be
derived from multiple tables using a join operation. These
queries are often used as a tool for strategic decision
making and commonly used in a variety of applications
including data integration services, decision support
systems and scientific data analysis.
Although data grids offer a great deal of facilities for
wide-area query processing, query processing in data grids
is challenging due to the heterogeneous, unpredictable and
volatile behavior of grid resources. As far as we know,
there is little to date in the literature on distributed
aggregation-join query in data grids exploring relation
partial replicas and load balancing. The contribution of
this paper is to have proposed an adaptive aggregation-
join query processing algorithm that makes use of relation
partial replicas and achieves load balancing.
The rest of the paper is organized as follows. In Section 2,
the problem of grid aggregation-join query and the
procedure for processing this query are presented. An
algorithm is proposed to get efficient tuples by reducing
the sizes of partial replicas. And, the concept of Replica
Maximum Cover and its related algorithm are introduced
in Section 3. Section 4 defines the concept of Minimum
Maximum Edge Matching and develops its related
algorithm for adaptively selecting computational nodes.
Section 5 proposes the methods for parallel executing join
and aggregation operations at selected nodes. Adaptive
adjustment of query processing is given in Section 6. The
experimental results are provided in Section 7, and the
conclusion and future work are discussed in Section 8.

2. Problem Statement
Assume a user at any grid node issues a query to DGMS
and the query is required to get aggregation-join results of
relation R and S according to join attributed T, group-by
attribute R.GB and aggregation attribute S.A. R and S have
been split into numerous partial replicas and these replicas
are present at different grid nodes, the partial replicas of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

103

relation R, R1, R2,...,Rm1
 locate at m1 different grid nodes

NR1,NR2,..., NRm1 and the partial replicas of relation S,
S1,S2,...,Sm2

 locate at m2 different grid nodes
NS1,NS2,...,NSm2

. The problem of aggregation-join query
processing is formulated as follows.
INPUT: (1) an aggregation-join query Q

(2) partial replicas of relations R and S, R1,R2,...,
Rm1 and S1,S2,...,Sm2 which locate different
grid nodes.

(3) Join Attribute T, group-by attributed R.GB
and aggregation attribute S.A

OUTPUT: Aggregation-join results of R>< S according
to R.GB and S.A

Considering the existence of multiple replicas of datasets
and achieving system load balancing, the aggregation-join
of R and S is computed in the following six steps in
general.
Step 1. Reduce the sizes of partial replicas R1,R2,...,Rm1 and

S1,S2,...,Sm2
, and get efficient tuple sets R′1,

R′2,...,R′m1 and S′1,S′2,...,S′m2
.

Step 2. Respectively select n1 (n1≤m1) and n2 (n2≤m2)
partial replicas from R′1,R′2,...,R′m1 and S′1,S′2,...,
S′m2

 as operand relations, satisfying R=R′1∪R′2

∪...∪R′n1
 and S=S′1∪S′2∪...∪S′n2

.
Step 3. Remove duplication from operand relations

R′1,R′2,...,R′n1 and get R′′1,R′′2,...,R′′n1 satisfying
R′′i∩R′′j=∅, (i≠j,1≤i, j≤n1) and R′′1∪R′′2∪...
∪R′′n1=R. Similarly, remove duplication from
operand relations S′1,S′2,...,S′n2 and get S′′1,S′′2,...,
S′′n2 satisfying S′′i∩S′′j=∅, (i≠j,1≤i, j≤n2) and
S′′1∪S′′2∪...∪S′′n2=S.

Fig.1 Illustration of processing an aggregation-join query

Step 4. Select at most n1×n2 grid nodes as join nodes (JNs)
from m available ones, and transfer efficient tuple
sets of R′′1,R′′2,...,R′′n1 and S′′1,S′′2,...,S′′n2 to join
nodes for parallel performing join operations.

Step 5. According to the group-by attribute R.GB, select
aggregation nodes (ANs) from m available grid

nodes and transfer join results to ANs for
completing aggregation operations.

Step 6. Parallel transfer aggregation-join results from ANs
to user node in pipeline.

3. Pre-Processing of Relation Partial Replicas
This section first discusses how to get efficient tuple sets
R′1,R′2,...,R′m1

 and S′1,S′2,...,S′m2
 from partial replicas

R1,R2,...,Rm1
 and S1,S2,...,Sm2

. Then the concept of Replica
Maximum Cover is proposed and an algorithm for seeking
optimal partial replicas as operand relations is present.
Finally, a method for removing duplication from multiple
selected partial replicas for each relation is described.

3.1 Getting Efficient Tuple Sets

In grid environments, grid services like Grid Information
Service and Network Weather Service have been
developed and used to dynamic resource discovery and
network monitoring respectively. Our approach utilizes
these services to locate partial replicas of the given
relations R and S, i.e. R1, R2,...,Rm1 and S1,S2,...,Sm2.
When processing aggregation-join queries in data grids, it
is not necessary to transfer all tuples in each partial replica
to computational nodes for performing join and
aggregation operations. We only need to transfer the
tuples that satisfy the join conditions, and thus the network
transmission cost is reduced.
An algorithm for reducing the sizes of each partial replica,
Obtain-Effient-Tuples (OTE), is proposed in this section.
And the algorithm is processed in the following three steps.
Step 1. Respectively get the projection of each partial

replica on the join attribute T, R1[T], R2[T], ...,
Rm1

[T] and S1[T], S2[T], ..., Sm2
[T], at grid nodes

NR1, NR2, ..., NRm1
 and NS1, NS2, ..., NSm2

.
Step 2. Parallel execute (2.1) and (2.2)

(2.1) Parallel execute (2.1.1)-(2.1.m2)
(2.1.1) Parallel transfer R1[T], R2[T], ..., Rm1

[T]
from nodes NR1, NR2,..., NRm1

 to node NS1

(2.1.2) Parallel transfer R1[T], R2[T], ..., Rm1
[T]

from nodes NR1, NR2, ..., NRm1
 to node NS2

...
(2.1.m2) Parallel transfer R1[T],R2[T],...,Rm1

[T]
from nodes NR1,NR2,...,NRm1

 to node NSm2

(2.2) Paralle execute (2.2.1)-(2.2.m1)
(2.2.1) Parallel transfer S1[T],S2[T],...,Sm2

[T] from
nodes NS1,NS2,...,NSm2

 to node NR1

(2.2.2) Parallel transfer S1[T],S2[T],...,Sm2
[T] from

nodes NS1,NS2,...,NSm2
 to node NR2

...

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

104

(2.2.m2) Parallel transfer S1[T],S2[T],...,Sm2
[T]

from nodes NS1,NS2,...,NSm2
 to node NRm1

Step 3 Parallel execute (3.1) and (3.2)
(3.1) Parallel execute (3.1.1)-(3.1.m2)

(3.1.1) At node NS1, compute
S′1(R1)=R1[T]>< S1,
S′1(R2)=R2[T]>< S1,
...
S′1(Rm1

)=Rm1
[T]>< S1

(3.1.2) At nodeNS2, compute
S′2(R1)=R1[T]>< S2,
S′2(R2)=R2[T]>< S2,
...
S′2(Rm1

)=Rm1
[T]>< S2

...
(3.1.m2) At node NSm2

, compute
S′m2

(R1)=R1[T]>< Sm2
,

S′m2
(R2)=R2[T]>< Sm2

,
...
S′m2

(R m1
)=Rm1

[T]>< S m2

(3.2) Parallel execute (3.2.1)-(3.2.m1)
(3.2.1) At node NR1, compute

R′1(S1)=S1[T]>< R1,
R′1(S2)=S2[T]><R1,
...
R′1(S m2

)=S m2
[T]><R1

(3.2.2) At node NS2, compute
R′2(S1)=S1[T]><R2,
R′2(S2)=S2[T]><R2,
...
R′2(S m2

)=S m2
[T]><R2

...
(3.2.m1) At node NSm2

, compute
R′m2

(S1)=S1[T]><Rm1
,

R′m2
(S2)=S2[T]><Rm1

,
...
R′m2

(S m2
)=Sm2

[T]><R m1

Thus at nodes NRi (1≤i≤m1), efficient tuple sets R′i(S1),
R′i(S2),...,R′i(Sm2

), where R′i(S1) ∪R′i(S2)∪...∪R′i(Sm2
)=R′i,

are obtained. Similarly, at nodes NSj(1≤j≤m2), efficient
tuple sets S′j(R1),S′j(R2),...,S′j(Rm1

), where S′j(R1)∪S′j(R2)
∪...∪S′j(R m1

)=S′j, are got

3.2 Selecting Optimal Partial Replicas

Definition 1 (Replica Cover)：Given a relation R, two
sets Φ={R1,R2,...,Rm} and F={R1,R2,...,Rn}, Ri⊂R, Rj⊂R,
1≤i≤m, 1≤j≤n, n≤m, F⊆Φ. F covers relation R if the
following conditions are satisfied:

(1) ∀ t∈R, ∃ Ri∈F satisfying t∈Ri

(2) R= R1∪R2∪...∪Rn

(3) ∀Ri and Rj (Ri∈F,Rj∈F,i≠j), satisfy Ri⊄Rj and
Rj⊄Ri

The number of partial replicas in F is the size of cover F,
denoted by |F|.
Definition 2 (Replica Maximum Cover) Given a relation
R, a set Φ={R1,R2,...,Rm} where Ri⊂R, and a set CR={F1,
F2,...,Fn} where Fi is a replica cover of R, Fi is named
Replica Maximum Cover of relation R if |Fi|=
Max{|F1|,|F2|,...,|Fm|}.
Assume a relation R={(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5,
6)}, Φ={R1, R2, R3, R4, R5},R1, R2, R3, R4 and R5 are partial
replicas of R, R1={(0, 1), (1, 2)}, R2={(2, 3), (3, 4), (4, 5),
(5, 6)}, R3={(2, 3), (4, 5)}, R4={(3, 4), (5, 6)}, R5={(1, 2),
(3, 4), (4, 5)}. A cover set CR={F1, F2}, F1={R1, R2},
F2={R1, R3, R4} is get. Since |F1|=2, |F2|=3, F2 is the
replica maximum cover of R.
An algorithm for seeking the replica maximum cover of a
relation, Replica Maximum Cover Algorithm (RMCA), is
described as follows.
Algorithm 1. Replica Maximum Cover Algorithm, RMCA

INPUT: a relation R and a set ΦR={R1, R2, ..., Rm}
OUTPUT: the Replica Maximum Cover of R, RMCR
(1) Sort the elements in ΦR according to the number of

tuples in each partial replicas and get R1,R2,...,Rm
satisfying |R1|≥|R2|≥...≥|Rm|

(2) Let RMCR=∅
(3) FOR i=1 TO m DO
(4) Delete Ri from ΦR, let ΦR=ΦR-{Ri}
(5) IF (R≠(RMCR∪ΦR)) THEN
(6) Add Ri into RMCR, let RMCR=RMCR∪{Ri}
(7) END IF
(8) END FOR
(9) RETURN RMCR
Since in the algorithm RMCA, each element in ΦR={R1,
R2, ..., Rm} needs to be executed once from step (3) to step
(8), the time complexity of algorithm RMCA is O(m).
When selecting operand relations for aggregation-join
query, it is unnecessary take all partial replicas of R and S
as operand relations. We only need to select some optimal
partial replicas from R′1,R′2,...,S′m1 and S′1,S′2,...,S′m as
operand relations and transfer their tuples to computational
nodes. But the selection of optimal partial replica of R and
S depends on a lot of factors, such as sizes of selected
partial replicas, network bandwidth, and computational
capacities of m available computational nodes. Since the
behaviors of grid resources are unpredictable and volatile,
some factors can not be determined when we select
optimal replicas. For maximizing parallelism of the
aggregation-join query, we only take the sizes of partial
replicas into consideration while selection optimal partial

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

105

replicas. And thus, the problem is transformed into Replica
Maximum Cover problem. We use a method to solve this
problem and get an acceptable and feasible solution within
reasonable time, which may not be optimal.
The problem is formulated as follows.

INPUT: (1) relations R and S, as well as the sets
ΦR={R1,R2,...,Rm1} and ΦS={S1,S2,...,Sm2}

(2) CR and CS which involve all covers of R and
S

OUTPUT: the optimal partial replicas of R and S, RMCR
and RMCS, satisfying C((RMCR,RMCS))=
Min(C(CR,CS)), C: CR×CS →Q+, ∀(RMCR,
RMCS)∈CR×CS, ∃ minimum cost C((RMCR,
RMCS)).

The Replica Maximum Covers of R and S are got by using
algorithm RMCA respectively. For simplicity and without
loss of generality, we assume RMCR={R′1,R′2,...,R′n1} and
RMCS={S′1,S′2,...,S′n2}.

3.3 Duplication Removals in Optimal Partial
Replicas

Since two tuples tR in R and tS in S satisfying join condition
℘(T) may exist in several partial replicas of R and S, i.e.
tR∈R′a1

,R′a2
,...,R′ac

(1≤ai≤n1,1≤i≤c), tS∈S′b1
,S′b2

,...,S′bd
(1≤

bj≤n2,1≤j≤d), and each pair of partial replicas of R and S
R′ai

 and S′bj
 is transferred to one join node to perform join

operations, join result tR >< tS may be generated many
times at multiple different join nodes. For avoiding
generating duplicate join results, it is necessary to remove
duplicate tuples in R′1,R′2,...,R′n1. Such that for any tR
(tR∈R′), it only exists one partial replica of R. Similarly,
we need to remove duplication in partial replicas of S. And
thus, each result of R>< S is sure to be generated once at
all join nodes.
We adopt the following method to remove duplication in
selected optimal partial replicas. Assume the average cost
for processing a tuple at node NRa is TNRa

 and the average
cost for processing a tuple at node NRb is TNRb

. If
R′a∩R′b≠∅ (1≤a,b≤n1, a≠b) and TNRa

≤TNRb
, duplicate tuple

t is removed from R′b. Similarly, duplicate tuples in partial
replicas of S are processed.
Proposition 1 (R1∪R2∪...∪Rn1

) >< (S1∪S2∪...∪Sn2
)=

(R′′1∪R′′2∪...∪R′′n1
) >< (S′′1∪S′′2∪...∪S′′n2

), where R′′1,
R′′2, ..., R′′n1

 and S′′1, S′′2, ..., S′′n2
 are tuple sets after

reduction and duplicate removals, satisfying R′′a∩R′′b =∅,
S′′i∩S′′j=∅ (1≤a, b≤n1,a≠b,1≤i, j≤n2,i≠j).
Proof: According to above algorithm, we have

R′a=Ra>< (S1[T]∪S2[T]∪...∪Sn2[T]) (1≤a≤n1),

S′b=Sb>< (R1[T]∪R2[T]∪...∪Rn1[T]) (1≤b≤n2)
Thus, R′1∪R′2∪...∪R′n1

=(R1∪R2∪...∪Rn1)>< (S1[T]∪S2[T]∪...∪Sn2[T])
Similarly, we have
(S′1∪S′2∪...∪S′n2)=(S1∪S2∪...∪Sn2) >< (R1[T]∪R2[T]∪...
∪Rn1[T])
And thus, (R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2)
=((R1∪R2∪...∪Rn1) >< (S1[T]∪S2[T]∪...∪Sn2[T])) >< ((S1

∪S2∪...∪Sn2)>< (R1[T]∪R2[T]∪...∪Rn1[T]))
By the join-associative property and the join-commutative
property, we have
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2)

=((R1∪R2∪...∪Rn1)>< (R1[T]∪R2[T]∪...∪Rn1[T]))><
((S1∪S2∪...∪Sn2)>< (S1[T]∪S2[T]∪...∪Sn2[T]))
Since Ra[T] is the projection of Ra on T, we have
Ra[T]><Ra=Ra and

 SRb SRb⊆Rb (Ra[T]><Rb[T]≠∅)
Ra[T]><Rb=
 ∅ (Ra[T]><Rb[T]=∅)

Similarly, we have Si[T]>< Si=Si and

 SSj SSj⊆Sj (Si[T]>< Sj[T]≠∅)
Si[T]>< Sj=
 ∅ (Si[T]>< Sj[T]=∅)

By the join-associative property and the join-commutative
property, we have
(R1∪R2∪...∪Rn1)>< (R1[T]∪R2[T]∪...∪Rn1[T])
=R1∪R2∪...∪Rn1

(S1∪S2∪...∪Sn2)>< (S1[T]∪S2[T]∪...∪Sn2[T])
=S1∪S2∪...∪Sn2
Thus, we have
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2)
=(R1∪R2∪...∪Rn1)>< (S1∪S2∪...∪Sn2) (1)
Since for any tR∈R′1∪R′2∪...∪R′n1, R′′a exists and satisfies
tR∈R′′a, we have

R′1∪R′2∪...∪R′n1=R′′1∪R′′2∪...∪R′′n1
Similarly, we have

S′1∪S′2∪...∪S′n2=S′′1∪S′′2∪...∪S′′n2
And thus, we get
(R′1∪R′2∪...∪R′n1)>< (S′1∪S′2∪...∪S′n2)
=(R′′1∪R′′2∪...∪R′′n1)>< (S′′1∪S′′2∪...∪S′′n2) (2)
According to equations (1) and (2), we have
(R1∪R2∪...∪Rn1)>< (S1∪S2∪...∪Sn2)
=(R′′1∪R′′2∪...∪R′′n1)>< (S′′1∪S′′2∪...∪S′′n2)

4. Selecting Join Nodes
This section first gives the cost model for performing join
operations at join nodes. Then the method for selecting

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

106

join nodes based on the concept of Minimum Maximum
Edge Matching (MMEM) is introduced.

4.1 Cost Model

Assume efficient tuple sets R′′a(1≤a≤n1) and S′′b(1≤b≤n2),
which are a pair of partial replicsin R and S, are
transferred to node JNk to perform join operations. For R′′a
and S′′b, only the tuples in R′′a(Sb) and S′′b(Ra) satisfies the
join condition ℘(T), (R′′a(Sb)⊆R′′a, S′′b(Ra)⊆S′′b). So we
only need to transfer R′′a(Sb) and S′′b(Ra) to join node JNk
to perform join operations instead of transferring all tuples
in R′′a and S′′b to join node.
The load of join node JNk is described by the vector
<CPUJNk

,MemJNk
,I/OJNk

,TRN→JNk
>, where CPUJNk

, MemJNk

and I/OJNk
 are available CPU power, available memory

and disk bandwidth, TRN→JNk
 is the average network

bandwidth between node N and node JNk.
The cost for performing join of R′′a(Sb) and S′′b(Ra) at JNk
consists of two parts: computational cost Tcompu(R′′a(Sb),
S′′b(Ra),JNk) and communication cost Tcommu(R′′a(Sb),
S′′b(Ra),JNk). Communication cost is the time for parallel
transferring R′′a(Sb) from node NRa to node JNk and
transferring S′′b(Ra) from node NSb to node JNk, i.e.
Tcommu(R′′a(Sb),S′′b(Ra),JNk)
= Max{C0+|R′′a(Sb)|×TRNRa→JNk

,C0+|S′′b(Ra)|×TRNRb→JNk
}

Computational cost is the time for completing the
aggregation-join operations of R′′a(Sb) and S′′b(Ra) at node
JNk, i.e.
Tcompu(R′′a(Sb),S′′b(Ra),JNk)
= (|R′′a(Sb)|/|T(R)|+|S′′b(Ra)|/|T(S)|)×(Tcompa(JNk)+Tmove(JNk)),
Where T(R) and T(S) respectively denotes sizes of each
tuple in R and S, Tcompa(JNk) denotes the time for completing
a comparison operation in memory of JNk, Tmove(JNk)
denotes the time for moving a tuple in memory of JNk. And
thus, the total cost
TC(R′′a(Sb),S′′b(Ra),JNk)
=Tcommu(R′′a(Sb),S′′b(Ra),JNk)+Tcompu(R′′a(Sb),S′′b(Ra),JNk)

4.2 Selecting Join Nodes based on MMEM

Since the tuples in each pair of partial replicas R′′a(Sb) and
S′′b(Ra) (1≤a≤n1,1≤b≤n2) are transferred to a join node to
perform join operations, at most n1×n2 nodes need to be
selected as join nodes from m available nodes. Each
selected join node corresponds to a pair of partial replicas.
To minimize the cost for parallel performing join
operations, the problem of selecting join nodes is
formulated as the problem of seeking a MMEM in a
weighted complete bipartite graph [8,9]. An weighted
complete bipartite graph G=(A,B,E,ϕ) shown in Fig.2 is
constructed in the following four steps.

Step 1. A={A1, A2, ..., An1×n2
}, where the pair of grid nodes,

at which partial replicas R′′a(Sb) and S′′b(Ra)
(1≤a≤n1,1≤b≤n2) locate, is considered as a vertex in
a vertex set A, i.e. A1=(NR1, NS1), A2=(NR1, NS2), ...,
An1×n2=(NRn1, NSn2).

Step 2. B={JN1, JN2, ..., JNm}, where each node in m
available nodes is considered as a vertex in vertex
set B.

Step 3. E=∪∀x∈A {(x,y) | ∀y∈B}
Step 4. ϕ: E→ℜ, where ℜ is the set of real numbers, and

ϕ((Ai, JNk))=t means the cost of computation and
communication for performing aggregation join
operations at node JNk is t.

Fig.2 A constructed weighted complete bipartite graph G

Fig.3 The desired MMEM in G

When the weighted complete bipartite graph G is
constructed, we use the method proposed in [8,9] to seek a
MMEM M in G. Once M is found, n1×n2 vertexes in vertex
set B correspond to the desired n1×n2 join nodes. Assume
M={(A1, JN1), (A2, JN2),..., (An1×n2, JNn1×n2

)} is shown in
Fig.3 and JN1,JN2,...,JNn1×n2

 are the desired join nodes.

5. Executing Aggregation-join Operations

5.1 Executing Join Operations

For any tR∈R′′, tR only exists in a partial replica R′′a
(1≤a≤n1). But tR may exists in several different efficient
tuple sets R′′a(S1), R′′a(S2),..., R′′a(Sn2) at the same grid
node Na. Similarly, ts may exists in several different
efficient tuple sets S′′b(R1), S′′b(R2),...,S′′b(Rn1) at the same

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

107

grid node Nb. Since each pair of R′′a(Si) and S′′b(Rj) is
transferred to a join node to performing join operations,
the join result tR>< ts may be generated many times at
different join nodes.
Assume R′′a(Sb) and S′′b(Ra) are transferred to JNk to
perform join operations. At JNk, the join result of R′′a(Sb)
and S′′b(Ra), R′′a(Sb)>< S′′b(Ra), are get by using “block
merge join” algorithm at join node JNk [9].
According to the values on group-by attribute R.GB in join
results, we partition an output buffer OB(GBi(JNk)) for
each group in the memory of node JNk. When the size of
join results in OB(GBi(JNk)) arrives at the size of one
block, the join results in OB(GBi(JNk)) are transferred to
corresponding aggregation node ANi. Assume there are L
groups on the group-by attribute R.GB in R′′>< S′′, we at
most need to select L grid nodes as aggregation nodes.

5.2 Executing Aggregation Operations

Aggregation operations are processed at aggregation
nodes in the following way.
The memory space at ANj is partitioned into two parts,
named IB(ANj) and OB(ANj). IB(ANj) is used for buffering
arrived join results and OB(ANj) is used for storing join
results which have finished being grouped and aggregated.
For each aggregation node ANj, its initial value equals to 0,
i.e. AggVal(ANj))=0.
Assume a block from GBi(JNk) arrives at node ANj, first,
the arrived block is inserted into the input buffer IB(ANj).
For any join result t=(A[t],GB[t], ...), we check whether it
exists in OB(ANj) or not. If not, insert t=(A[t],GB[t], ...)
into OB(ANj), compute AggVal(ANj)) = AggVal(ANj)) +
A[t] and remove t=(A[t],GB[t], ...) from IB(ANj); otherwise,
remove t=(A[t],GB[t], ...) from IB(ANj) directly. Thus,
even the same join results are generated many times at
different join nodes, aggregation result is computed only
once.

6. Adaptive Adjustment of Query Processing

6.1 Adaptively Adjusting the Selection of Join Nodes

Since data grids is an unpredictable and volatile
computational environment, the loads of selected join
nodes JN1,JN2, ..., JNn1×n2

 may vary a lot with time, i.e.
available CPU power degrade and available memory space
become less and so on. If the remained tuples in
R′′1,R′′2, ...,R′′n1 and S′′1, S′′2,...,S′′n2 at NR′′1,NR′′2,...,
NR′′n1 and NS′′1, NS′′2,...,NS′′n2 are still transferred to
JN1,JN2,...,JNn1×n2 to continue performing join operations,
the performance of the aggregation-join query may
degrades. So we have to determine whether to select at
most n1×n2 new join nodes JN′1,JN′2,...,JN′n1×n2 and to

transfer remained tuples to JN′1,JN′2,...,JN′n1×n2
 for

continuing performing join operations.
Assuming that the remained tuple sets at NR1,NR2,...,NRn1
and NS1,NS2,...,NSn2 are LR′′1,LR′′2,...,LR′′n1 and
LS′′1,LS′′2,...,LS′′n2 respectively. We have to re-construct a
weighted complete bipartite graph G′=(A,B,E,ϕ), where
(1) A={A1,A2,...,An1×n2} is a vertex set, where A1= (NR1,

NS1),A2=(NR1,NS2),..., An1×n2=(NRn1,NSn2)
(2) B={JN1, JN2, ..., JNm} is a vertex set, each vertex is an

available join node
(3) E=∪∀x∈A {(x,y) | ∀y∈B}, and
(4) ϕ: E→ℜ, where ℜ is the set of real numbers, and

ϕ((Ai,JNk))=t means the cost of completing the join of
LR′′a and LS′′b at JNk is t.

If the MMEM M′ of G′ is same to the MMEM M of G, the
remained tuples in LR′′1, LR′′2,...,LR′′n1 and LS′′1,LS′′2,...,
LS′′n2 continue being transferred to JN1,JN2,...,JNn1×n2 for
performing join operations. Otherwise, the remained tuples
are to be transferred to JN′1,JN′2,...,JN′n1×n2 for performing
join operations. This ensures the join operations are always
parallel performed at most efficient join nodes and the time
cost of performing join operations is decreased. While join
results are being generated at join nodes, they still
transferred to original selected aggregation nodes (ANs)
for completing aggregation operations.

6.2 Dealing with Possible Lost Join Results

When the join node for performing join of R′′a(Sb) and
S′′b(Ra) is changed from JNk to JNh, some join results in
R′′a(Sb)>< S′′b(Ra) may be lost. Assuming HR′′a(Sb) and
HS′′b(Ra) are transferred tuples sets to JNk, R′′a(Sb)Val
represents the tuple sets having T value equal to Val in
R′′a(Sb), i.e. for any t∈ R′′a(Sb)Val, t[T]=Val. ||R′′a(Sb)Val||
represents the number of tuples in R′′a(Sb)Val.
The method for avoiding losing some join results is
composed of the following three phases.
Phase 1. For each value Val on the join attribute T of

R′′a(Sb)>< S′′b(Ra), we first record ||R′′a(Sb)Val||
and ||S′′b(Ra)Val||, as well as ||HR′′a(Sb)Val|| and
||HS′′b(Ra)Val||, where HR′′a(Sb)Val and
HS′′b(Ra)Val are tuple sets having T value equal
to Val which have been transferred to JNk.

Phase 2. When determining whether to adjust join nodes,
we compute the number of tuples having T
value equal to Val in join results which have
been generated at JNk i.e.
GenTN1=||HR′′a(Sb)Val|| × ||HS′′b(Ra)Val||, and
compute the number of tuples having T value
equal to Val in join results which will be
generated at JNh, i.e. GenTN2= (||R′′a(Sb)Val||-

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

108

||HR′′a(Sb)Val||)×(||S′′b(Ra)Val||-||HS′′b(Ra)Val||)
Phase 3. Compare GenTN1 and GenTN2.

(3.1) If GenTN1≥GenTN2, the tuples in LR′′a(Sb)Val
continue being transferred to JNk to perform
join operations. When no tuples having T
value equal to Val in LR′′a(Sb)Val at NRa exist,
i.e. LR′′a(Sb)Val=∅, we begin to transfer
tuples in LR′′a(Sb) from NRa to JNh for
performing join operations.

(3.2) If GenTN1<GenTN2, the tuples having T
value equal to Val which have been
transferred to JNk must be re-transferred to
JNh to re-generate join results and delete
generated join results (HR′′a(Sb) ><
HS′′b(Ra))Val at join node JNk

Phase 4. Similarly, the tuples in LS′′b(Ra)Val are processed.

Fig.4 Dealing with possible lost join results

In the example shown in Fig.4, the tuples without
background are transferred ones, and the tuples in gray are
remained ones shown in Fig.4(a). Fig.4(b) shows the
generated join results at JNk, Fig.4(c) shows the
forthcoming join results at JNh and Fig.4(d) shows the
possible lost join results. The tuples (3,2) in LR′′a(Sb) and
(2,6) in LS′′b(Ra) continue being transferred to execution
node JNk to perform join operations. And, the tuples
(4,3),(5,3) and (5,5) in LR′′a(Sb), as well as the tuples
(3,3),(3,5),(4,6) and (4,7) in LS′′b(Ra) are transferred to
new selected execution node JNh to generate join results.

7. Experimental Results and Analysis
This section first describes our experimental setup, and
then presents experimental results and analysis.

7.1 Experimental Setup

We built a simulation environment for conducting
performance study. The system was implemented using
Java, and is composed of 20 nodes which are
interconnected with a 100M LAN. Configurations of the
system are shown as Table 1.

Query. An aggregation-join query Q, being required to get
aggregation value on S.A after grouping R>< TS on R.GB.

Datasets. Four partial replicas of R, R1,R2,R3,R4 locate
N1,N2,N3,N4 and each tuple of R comprises five
integers(GB, A1, A2, A3, T). Five partial replicas of S,
S1,S2,S3,S4,S5 locate N5,N6,N7,N8,N9 and each tuple of S
comprises four integers(T, A, B1, B2). Each partial replica
is stored at one node as a textual file, the columns and
rows of which correspond to the attributes and tuples.
Transfer of datasets. We use the java.nio package for
transferring data sets across the network. The package
provides efficient API’s for unblocking network I/O.
Different network transfer rates between computer nodes
are devised through applying delay to data transmission.
Table 1 Configurations of the nodes in the aggregation-join query system

NAME DESCRIPTION CPU MEMORY
N0 User node, a user issues a query

and gets the results at this node
1.8GHz 256M

N1~N4 Nodes where partial replicas of
R locate

2.4GHz 512M

N5~N9 Nodes where partial replicas of
S locate

2.4GHz 512M

N10～
N19

Available join nodes and
aggregation nodes

3.2GHz 2GB

7.2 The Impact of Replica Maximum Cover

Phase I Phase II Phase III
0

30

60

90

120

150

tim
e

(S
ec

on
ds

)

 G-I
 G-II

(a)

5 10 15 20 25 30
0

50

100

150

200

250

300

R
es

po
ns

e
tim

e
(S

ec
on

ds
)

Size of Replicas (MB)

 G-I
 G-II

(b)

Fig.5 Effect of maximum replica cover algorithm

The experiment focuses on analyzing the effect on the
query response time of the algorithm RMCA by two
approaches. Commonly used Set Cover algorithm is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

109

adopted in approach G-I, i.e. to seek a relation replica
cover in which the number of partial replicas is minimal,
and the algorithm RMCA is used in approach G-II.
The process of aggregation-join query is decomposed into
three phases: Phase I includes getting efficient tuple sets,
selecting optimal replicas and removing duplication in
selected partial replicas; Phase II includes parallel
transferring tuples to join nodes and aggregation nodes, as
well as parallel performing join operations and
aggregation operations at selected computational nodes;
transferring final aggregation-join results to user node is
included in Phase III.
Fig.5 shows that, in Phase I the time costs between G-I
and G-II are nearly same and in Phase II the time cost in
G-I is higher than that in G-II. This is because the number
of optimal replicas in G-I is less than that in G-II, thus the
size of the maximal replica in G-I is much larger than that
in G-II and the time cost for parallel transferring tuples
and parallel performing aggregation-join operations in G-I
is much higher than that in G-II. In Phase III, the time cost
in G-I is still higher than that in G-II for the same amount
of join results are parallel transferred to user node from
less execution nodes in G-I than that in G-II. This shows
our algorithm RMCA has good performance on query
response time.

7.3 The Impact of Obtaining Efficient Tuple

Phase I Phase II Phase III
0

20

40

60

80

100

120

140

160

 H-I
 H-II

tim
e

(S
ec

on
ds

)

(a)

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

R
es

po
ns

e
tim

e
(S

ec
on

ds
)

Size of Replicas (MB)

 H-I
 H-II

(b)

Fig.6 Effect of efficient tuple sets

The experiment mainly analyzes the effect on the query
response time of the algorithm OET by two approaches. In
approach H-I, the algorithm OET is not used and the
tuples are directly transferred to execution nodes to
perform join operations, while in approach H-II, the tuples
generated by the algorithm OET are transferred to join
nodes to perform join operations. The process of
aggregation-join query is also divided into three phases.
Fig.6 shows that, In Phase I, the time cost in H-I is less
than that in H-II because the algorithm OET is used in H-
II and it costs some time to get efficient tuples. In Phase II,
the time cost in H-I is much higher than that in H-II. This
is because all the tuples in partial replicas in H-I are
transferred to join nodes whether they satisfy the join
condition or not, and participant in the join operations at
join nodes. Thus, the time costs for transferring tuples and
performing join operations is much higher in H-I than that
in H-II. In Phase III, since the same amount of final join
results are sent to user node from the same amount of
aggregation nodes in H-I and H-II, the time costs in H-I
and H-II are nearly same. These experiments results show
that our algorithm performs well and provides efficient
support for minimizing the transfer cost.

7.4 The Impact of Adaptive Adjustment of Query
Processing

Two approaches J-I and J-II are studied in this experiment
to analyze the query performance related to the algorithm
for adaptively adjustment of the query processing. In J-I,
the join nodes are not adjusted without considering
whether their loads are varied or not, i.e. once join nodes
are selected, the join operations are performed at them all
the time. We adaptively adjust the selection of join nodes
according to their loads in J-II.

5 10 15 20 25 30
0

50

100

150

200

250

300

R
es

po
ns

e
tim

e
(S

ec
on

ds
)

Size of Replicas (MB)

 J-I
 J-II

Fig.7 Effect of adjusting execution nodes

In the experiments, we adjust the selection of join nodes
with intervals of 20 seconds from the beginning of
transferring tuples to join nodes. As Fig.7 shows, the
response time of the query increases as the sizes of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

110

replicas become larger and the performance of J-II is well
than that of J-I. Although some time is cost in J-II for
adjusting the selection of join nodes and avoiding losing
some join results, the time cost in J-II is much less than
that in J-I. This is because load degradation of the join
nodes in J-I causes much higher time cost.

8. Conclusion
The heterogeneous, unpredictable and volatile behavior of
grid resources has posed new challenges to the query
processing in data grids. This paper investigates the
problem and proposes a novel approach for processing
aggregation-join query exploring relation partial replicas
and load balancing in data grids. Analytical and
experimental results show that the approach has high
performance. Nevertheless, there are still a number of
aspects that require further investigation for the
improvement of the aggregation-join query processing in
data grids. For example, it is not well understood how to
take relation replicas and load balancing into consideration
in processing multi-join queries. In future work, we will
address this issue.

References

[1] I. Foster, C. Kesselman. “The Grid 2: Blueprint for a New
Computing Infrastructure”. San Francisco, CA: Morgan
Kaufmann, 2003.

[2] A. Chervenak, I. Foste, C. Kesselman, et al. “The Data Grid:
Towards an architecture for the Distributed Management and
Analysis of Large Scientific Datasets”. Journal of Network
and Computer Applications, 2001, 23: 187-200.

[3] J. Smith, P. Watson, A. Gounaris, N.W. Paton, A.A.A
Fernandes, R. Sakellariou. “Distributed Query Processing on
the Grid”. International Journal of High Performance
Computing Applications, 2003, 179(4): 353-367.

[4] M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Watson,
A.A.A. Fernandes, A. Gounaris, J. Smith. “Service-based
Distributed Querying on the Grid”. Proceedings of the First
International Conference on Service Oriented Computing.
Heidelberg: Springer-Verlag, 2003. 467-482.

[5] A. Gounaris. “Resource Aware Query Processing on the
Grid”. Ph.D Thesis.

[6] S. Vazhkudai, S. Tuecke, I. Foster. “Replica Selection in the
Globus Data Grid”. Proceedings of the First IEEE/ACM
International Conference on Cluster Computing and the Grid.
Bangalore: IEEE Computer Society Press, 2001. 106∼113.

[7] G. Anastasios, W.P. Norman, S. Rizos, A.A.A. Fernandes.
“Adaptive Query Processing and the Grid: Opportunities and
Challenges”. Proceedings of the 1st International Workshop
on Grid and Peer-to-Peer Computing Impacts on Large Scale
Heterogeneous Distributed Database Systems. Bangalore:
IEEE Computer Society, 2004. 506~510.

[8] D.H. Yang, J.Z. Li. “Distributed Multi-join Query Processing
in Data Grids”. Information Sciences [J]. 177(1), 2007:3574–
3591.

[9] D.H. Yang, J.Z. Li, Q. Rasool. “Join Algorithm Using
Multiple Replicas in Data Grid”. Proceedings of the
International Conference on Advances in Web-Age
Information Management, Heidelberg: Springer-Verlag, 2005.
416-427.

Hua Feng received the B.S. and
M.S. degrees in Mechanical Engineering
from Jiamusi University in 1998 and
Daqing Petroleum Institute in 2007,
respectively. His research work focuses
on query processing and data mining in
wide-area network environments.

Zhenhuan Zhang received the B.S.
degrees in Mechanical Engineering from
Heilongjiang University in 1998. She
now is an M.S candidate in Jilin
University. Her research interest is in
database and artificial intelligence.

