
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

111

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

Improving Array Search algorithm Using Associative Memory Neural
Network

 Emad Issa Abdul Kareem † and Aman Jantan††,

 Universiti Sains Malaysia (USM), School of Computer science, Pinang, Malaysia

Abstract

When we face any problem need to solve it with or without
computer, we must choose a proper data structure, to represent
its data efficiently. This means, we can insert, delete and search
any element using chosen data structure efficiently. Array is the
most widely used data structure.

Our research aims to combine array with BAM neural
network to improve array search algorithm to find any element in
the array structure with only one comparison. Thus, we are
developing new array structure algorithms (inserts, delete and
search)

Experimental test presents promising results by applying all
the proposed algorithms. In addition Experimental test proves
that the proposed search algorithm is able to find any element in
the array structure with only one comparison via using BAM.
Key words:
Data structure algorithms, array data structure, search
algorithms, neuralnetwork, associative memory, bidirectional
associative memory BAM.

1. Introduction

In solving any problem with or without a computer it is
necessary to choose an abstraction of reality, i.e., to define
a set of data that is to represent the real situation. This
choice must be guided by the problem to be solved.

 Then, choose the prepare data structure representation
of this information. This choice is guided by the tool that
is to solve the problem, i.e., by the facilities offered by the
computer.

If we can choose a prepare data structure to represent
the data of our problem, this means an efficient operations
will be done to deal with this data.

The main operations in any data structure are INSERT
any element, DELETE any element and SEARCH for any
element.

The task of searching is one of most frequent
operations in computer programming. It also provides an
ideal ground for application of the data structures so far
encountered. There exist several basic variations of the
theme of searching, and many different algorithms
have been developed on this subject.

This work will spend on combine array with BAM neural
network to improve array search algorithm, which is
initially developed by Kosko (1988, 1992).
This development is a conditional development; in which
the condition is to maintain all the features of array
structure.

2. Literature review

Typical programming languages such as Pascal, C or
Java ext... Provide primitive data types such as integers,
real, Boolean values character and string. They allow these
to be organized into arrays, where the arrays generally
have statically determined size.

2.1Array structure:

Array is probably the most widely used data
structure; in some languages it is even the only one
available. An array consists of components which are
all of the same type, called its base type; it is
therefore called a homogeneous structure. The array is a
random-access structure, because all components can be
selected at random and are equally quickly accessible. In
order to denote an individual component, the name of the
entire structure is augmented by the index selecting the
component. This index is to be an integer between 0 and
n-1, where n is the number of elements, the size, of the
array [4].

2.1.1Insertion and Deletion of element in an array
structure:

When we are storing elements in array and we need to
store another element in the array, then we need to
INSERT this element in prepare position.
Other cases if you accidentally stored duplicate data, then
you need to DELETE the duplicate element.

Depending on [5] to insertion any element in array
structure, we need to have two Information: the element to
be inserted and the position to which it will be inserted
(see figure 1).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

112

For deletion, we only need the position to which it
will be deleted (see figure 2).

Insert Algorithm
Input: A: array of length n.
 X: value of element to be inserting.
 POS: the position of X in the array A.
Output : A: array of length n (after insertion)
Step1 : For I = n-1 to POS
A [I]:=A [I-1].
Step2:A[I]:=X.

Figure 1: Insert Algorithm

Delete Algorithm
Input: A: array of length n.
 POS: the position of X in the array A.
Output : A: array of length n (after insertion)
 X: the value of element in position POS.
Step1 : For I = POS to n-1
 A [I-1] =A [I].
Step2: X=A [I-1].
Step 3: A [I-1]:=0.

Figure 2: Delete Algorithm

2.1.2 Search Algorithms:

- Basic Sequential search
This very basic algorithm is also known as the linear

search or brute force search. It searches for a given
element in an array or list by looking through the array
sequentially until it finds the element or reaches the end of
the structure. Let n denote the size of the array or list on
which we search. Let An be a random variable
representing the number of comparisons made between
keys during a successful search and let An be a random
variable for the number of comparisons in an unsuccessful
search [7].

[6] Refers, there are another four approaches of
sequential search:
1- Self-organizing sequential search: move-to-front
method.
2- Self-organizing sequential search: transpose method.
3- Optimal sequential search.
4- Jump search.
-Sorted array search

This type of algorithms is designed to search for an
element in an array whose elements are arranged in order.

According to [6] there are three approaches:
1- Binary search.
2- Interpolation search.
3- Interpolation-sequential search.
-Hashing

Hashing or scatter storage algorithms are
distinguished by the use of a hash-hashing function. This
is a function which takes a key as input and yields an
integer in a prescribed range (for example, [0, m— 1]) as a
result.

 The function is designed so that the integer values it
produces are uniformly distributed throughout the range.
These integer values are then used as indices for an array
of size m called the hashing table. Records are both
inserted into and retrieved from the table by using the
hashing function to calculate the required indices from the
array keys [7].

In this paper we want to combine between array
structure and associative memory neural network.

2.2 Associative Memory Neural Nets:

Associative memory neural nets are single-layer nets
in which the weights are determined in such a way that the
net can store a set of pattern associations. Each association
is an input-output vector pair, s:t. If each vector t is the
same as the vectors with which it is associated, then the
net is called an autoassociative memory. If the t's are
different from the s's, the net is called a heteroassociative
memory. In each of these cases, the net not only learns the
specific pattern pairs that were used for training, but also
is able to recall the desired response pattern when given an
input stimulus that is similar, but not identical, to the
training input [1].

Bidirectional associative memory (BAM) is one of
the heteroassociative memory [3].

2.2.1 Bidirectional Associative Memory BAM:

A BAM stores a set of pattern associations by
summing bipolar correlation matrices (an n by m outer
product matrix for each pattern to be stored). The
architecture of the net consists of two layers of neurons
(see figure (3)), connected by directional weighted
connection paths. The net iterates, sending signals back
and forth between the two layers until all neurons reach
equilibrium (i.e., until each neuron's activation remains
constant for several steps). Bidirectional associative
memory neural nets can respond to input to either layer.
Because the weights are bidirectional and the algorithm
alternates between updating the activations for each layer,
we shall refer to the layers as the X-layer and the Y-layer
(rather than the input and output layers)[2].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

113

Figure 3: Bidirectional associative memory BAM

3. Array structure using BAM

The proposed array structure has the same structure
of the original one plus BAM matrix.
Using BAM neural network we will create associative
memory to store each element with its index (x : i. where :
x is any element in the array and i is the index of the
element x in the array) Thus , we can use this associative
memory to retrieve x if the input of the BAM neural
network is i and vice versa (we can retrieve i if the input is
x) .

We propose three algorithms, the first algorithm (see
figure (4)) is to insert any element in the proposed array
structure, the second algorithm (see figure (5)) is to delete
any element from the proposed array structure and the
third algorithm (see figure (6)) is to search about any
element in the proposed array structure.

Insert Algorithm

Input: A: array of length n.
 X: value of element to be inserting.
 I: index of X value.
 BAM: bidirectional associative memory

matrix.
Output: A: array of length n (after insertion)
 BAM: bidirectional associative memory

matrix.(new BAM after insertion)
Step1: convert X value and I value to binary vector
XV and IV.
Step2: convert XV and IV to bipolar using hard limiter
function [4].

0

0

1

1

<=

>

⎪
⎩

⎪
⎨

⎧

−
=

Y

Y
Y

Step3: insert X value in the array in position I.
 A[I]=X
Step4: Create Wight matrix W between XV and IV
 W=XV*IV.
Step5: add new weight matrix W to the BAM
 BAM=BAM+W.
Step6: end.

Figure 4: Insert algorithm.

Delete Algorithm

Input: A: array of length n.
 I: index of the element to be deleting.
 BAM: bidirectional associative memory

matrix.
Output: A: array of length n (after deletion).
 X: the value of the deleting element.
 BAM: bidirectional associative memory

matrix.(new BAM after deletion)
Step1: delete the element from array in position I.
 X=A [I].
Step2: convert X value and I value to binary vector
XV and IV.
Step3: convert XV and IV to bipolar using hard limiter
function [4].

0

0

1

1

<=

>

⎪
⎩

⎪
⎨

⎧

−
=

Y

Y
Y

Step4: Create Wight matrix W between XV and IV
 W=XV*IV.
Step5: delete new weight matrix W from the BAM
 BAM=BAM-W.
Step6: end.

Figure 5: Delete algorithm.

Search Algorithm

Input: A: array of length n.
 X: the element to be search about it.

BAM: bidirectional associative memory
matrix.

Output: found: is a Boolean variable, found=true if
X is found in the array else found=false if not
found.

 I: the index of the value in the array.
Step1: convert X value to binary vector XV.
Step2: convert XV to bipolar using hard limiter
function [4].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

114

0

0

1

1

<=

>

⎪
⎩

⎪
⎨

⎧

−
=

Y

Y
Y

 Step3: create the assumed index AI
 AI=XV*BAM.
Step4: convert assumed index AI from bipolar to
binary vector
Step5: convert assumed index AI from binary to
integer I.
Step6: use the assumed index I to access the
element in the array and Compare it with X
If A [I] =X then
 begin
 Found=true
 return (I)
 end
 Else found= false.
Step7: end.

Figure 6: search algorithm.

4. Testing and discussion:

Empirically, we have simple exercise to illustrate the
improving of the array search algorithm via using BAM
neural network with array structure.
In this exercise, we have an array of character with length
5.

We want to store (c, g, f, w, and z) in the array (see
figure (7)).

Figure (7): array of character (Array of char) with length 5.

Depending on the suggested insert algorithm to insert

any element in the array (see figure (4)), we have to
convert all the data and its position (index) in the array to
binary and then to bipolar (see table (1)).

Table (1): table of convert the data and its poison to binary then to bipolar
Data Binary Bipolar Index Binary Bipolar
c 00011 -1-1-111 1 001 -1-11
g 00111 -1-1111 2 010 -11-1
f 00110 -1-111-1 3 011 -111
w 11000 11-1-1-1 4 100 1-1-1

 z 11010 11-11-1 5 101 1-11

All programming languages are dealing with the

characters depending on its position in English alphabet.
Thus, in table (1) we convert all the character depending
on its position in the English alphabet, this means (a will
be 1, b will be 2 … and z will be 26).

Depending on the suggested insert algorithm, we have
to create the bidirectional associative memory BAM to all
the elements which are want to store them in array as
follow:

To store c -1-11 to store g -11-1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−
−

111
111
111
111
111

 +

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−
−

111
111
111

111
111

+

To store f -111 to store w 1-1-1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−

−−
−−

111
111
111
111
111

 +

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−−
−−

111
111
111
111
111

 +

To store z 1-11 BAM to store all

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−
−

111
111
111

111
111

 =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−
−−

113
313
153
135
135

We can use the BAM matrix to find any element in this

array structure.
For example we want to find w in this array and return
Boolean value (found) and its position if it is in the array
and (not found) if it is not in the array.

Depending on the suggested search algorithm(see
figure (6)), we just need to multiply the w after converting
it to bipolar with BAM matrix, to return a position, and
then we have to compare the stored value in this position
with searching value w.

If they are equal, it will imply that w is already found
in this position, whenever not equal this means w not
found, as follows:

1 2 3 4 5

c g f w z

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

115

 [11-1-1-1]*

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−
−−

113
313
153
135
135

= [19,-13,-3]

After applied hard limiter function:
[19,-13,-3] [1,-1,-1] 4 is the position in the array,
after comparing the stored value in this position w with
searching value w ,we can find there are equal, this means
w is already found in the array in position 4.

But for example, when we want to search about (b)
in the same array:

B 00010 -1-1-11-1

[-1-1-11-1]*

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−−
−−

113
313
153
135
135

=[-7,1,9]

After applied hard limiter function:
[-7, 1, 9] [-1,1,1] 3 is the position in the array, after
compare the stored value f in this position of array with
searching value b, we can find there are not equal, this
means b is not found in the array at all.
Depending on these tests:
1- No need to sort the data of the array structure before
using the proposed search algorithm because its technique
do not depend on sorted data (for example binary search
algorithm need to sort the data of array structure before
use it).
2- Ones can repeat the same steps using other types of
array (integer, string ext…).
3-With this proposed array structure, we can use all the
algorithms of sorting, traversing ext….
4- In case of recurrence of any element in more than one
location in the array, and we want to know the number of
element frequency with its positions, ones can repeats all
steps of proposed search algorithm after implementing
minus operation in each iteration between the stored
matrix of the searched element and BAM matrix, storing

new BAM matrix in new BAM matrix in order to avoid
destruction the origin BAM.
5- Many programming languages have its own function to
convert char, string, integer…ext to convert char, string
integer ext… to binary, thus no need to built any array
convert function.
6-Ones can use the proposed algorithms with any array
which it is already built before; via creating BAM to all
the elements and its positions.

5 Conclusions

 Compared with all the search algorithms used, the
proposed algorithm is more efficient because it is just need
one comparison to find the element in sorted or unsorted
array structure.
 Even when the size of BAM increasing depending on
the length of the array; search algorithm is still an efficient
algorithm and it is still need one comparison to find the
element.
References
[1] Emad Issa Abdul Kaream. "Hopfield Neural Network

Using Genetic Algorithm", M.Sc. thesis, High studies
institute for computer and information, Baghdad, Iraq,
(2001).

[2] Emad Issa Abdul Kaream. "Alternative Hopfiled Neural
Network With Multi-Connect Architecture." journal of
College of Education, Computer Department, Al-
mustansiryah University, Baghdad, Iraq, (2004).

[3] Laurence Fausett Ed., "Fundamental of Neural Networks,
Architectures, Algorithms and Applications". Prentice-Hall,
(1994).

[4] N Wirth, "Algorithms & data structures ", Book, Prentice-
Hall, Inc. Upper Saddle River, NJ, USA 1985.

[5] Rajeev Raman ,Venkatesh Raman and Srinivasa Rao," Algo
rithms and Data Structures",Book, Springer Berlin /
eidelberg,2001.

[6] G.H. Gonnet and ETH, Zurich,"Handbook of Algorithms
and Data Structures In Pascal and C ", ADDISON-
ESLEYPUBLISHINGCOMPANY, Second Edition, 1991.

[7] D.S.Malik "data structures using C++", Couse
Technology ,Inc ,first edition ,2003.

Emad Issa is a lecturer in department
of computer science in Al-
Mustansiriyah University, Baghdad,
Iraq, received the B.Sc. in computer
science from Baghdad University,
Baghdad, Iraq in 1994, and in
obtained his MSc. In AI from
Commission for Computers and
Informatics, Informatics Institute for

postgraduate studies, Baghdad, Iraq, during 1998-2001.
Now he is PhD. Student in Universiti Sains Malaysia
(USM). His research interests are in the fields of AI ,

w after
conver

BAM

b after
conver

BAM

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

116

Image processing , Pattern recognition and development
techniques.

Aman Jantan is a senior lecturer at the
school of computer Scince / Universiti
Sains Malaysia (USM) , received the
BComp.Sc , M.Sc. degree in computer
science from the Universiti 1993 and
1996 obtained his PhD in 2002 from the
same university. His research interests
are in the fields of AI, computer and
network security, E-commerce/web
intelligence, compilers design and
development techniques.

