
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

141

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

A Soft Computing Model to Counter Terrorism

Karthikeyan Marappan†, Krishnan Nallaperumal†, K. Senthamarai Kannan†† and B.Bensujin†

†Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, India
††Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli, India

Summary
In the aftermath of September 11, the experts concluded that data
mining could help it prevent future terrorist attacks. Experts are
also concerned that in its zeal to apply technology to
antiterrorism, the government could disrupt the crime-fighting
processes of the agencies that are charged with finding and
stopping terrorists before they act. The entire information or the
evidence about a terrorist and the inclined behavior of some
personalities are stored in interactive XML sheets (iXML), which
are called as trifles, the piece of information. These trifles play a
vital role in training the soft computing model and for pattern
detection. These trifles in the form of iXML sheets are given in
the network for pattern detection. The soft computing model
used here is the Competitive Neural Tree (CNeT). The CNeT is
the type of decision tree in which each node is compared and a
decision will be taken to move to the next. In each stage the
pattern recognition is done with the contents of the iXML nodes.

Key words:
CNet, decision tree, iXML, soft computing, and trifle.

1. Introduction

key aspiration of this paper is to develop techniques for
organizing intelligence information to sculpt terrorism
threats using data mining techniques [10]. Our goal can be
stated quite clearly as follows: How well we organize
existing evidence influences? How well we humans are
able to engender new hypotheses as well as new evidential
tests of all hypotheses we are considering? The process of
organizing evidence is a decisive step in the process of
discovery or investigation. A data-centered approach to
organizing evidence [9], [11] is adopted, which allow us to
create, justify, or negate hypotheses. This is accomplished
through the creation of intelligent agents that act as
conceptual magnets that attract trifles (or atomic pieces) of
evidence. This attraction is triggered in one of three ways:
1) the evidence justifies an existing hypothesis, 2) the
evidence negates an existing hypothesis, or 3) the
evidence suggests that a new hypothesis be formed, which
in turn becomes a new conceptual magnet. We propose a
novel use of data mining, information retrieval and
software agent technologies to enable this innovation.

In this paper, we describe an architecture that facilitates
the organizing of the enormous volume of evidence that an
intelligence analyst has available. An essential point in our
design is that of automating the process of hypothesis
generation with human interaction. Humans, in contrast,
have an amazing capacity of adaptation to new situations,
and are capable of thinking of scenarios that have not
occurred before. We are however, capable of organizing
such a huge amount of evidence to corroborate or negate
our hypothesis, and that is where our system strength
resides through artificial neural networks. The network we
used here is the Competitive neural tree (CNeT)[1] [2]
[3][20]. The CNeT is a Tree network, in that there are well
defined search techniques for spanning the tree is available.
Neural network based pattern detection in an N-
dimensional data space which consists of generating decision
boundaries that can successfully distinguish the various
classes in the feature space. The classification rules have
been extracted from all these models in the form of lf-Then
rules. Finally the extracted rules have been validated for their
correctness.

The central piece of our design will be the support for
queries, both ad-hoc and long standing, that will act as
“magnets” attracting the relevant evidence that a human
needs to estimate the validity of a hypothesis. The
evidences are represented as an interactive XML file
(trifle) and then fed to the soft computing model. The soft
computing model is designed in such a way that, it accepts
the given hypothesis, or negates the hypothesis, or it
creates a new hypothesis. The proposed soft computing
model, the Competitive neural tree is designed in such a
way that it accepts an iXML file for training the network.
The input to the network is an iXML file, it is read by
individual nodes and the patterns are matched.

Neural tree architectures were recently introduced for
pattern classification [1], [2], [4], [20] in an attempt to
combine advantages of neural networks and decision trees.
By applying the decision tree methodology, one difficult
decision is split into a sequence of less difficult decisions.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

142

The first decision determines which decision has to be
made next and so on. From all the questions that are
arranged in a tree like structure only some are asked in the
process of determining the final answer. Neural tree
architectures are decision trees with a neural network in
each node. These networks perform either feature
extraction from the input or make a decision. A decision
must be made at internal nodes regarding the child-node to
be visited next. Terminal nodes give the final answer.

DECISION trees have extensively been used to perform
decision making in pattern recognition [6] [7] [8]. By
applying the decision tree methodology, one difficult
decision can be split into a sequence of less difficult
decisions. The first decision determines which decision
has to be made next by indicating which node of the tree
should be visited. Because of the tree structure, only some
of all possible questions are asked in the process of
making the final decision. In fact, the final decision is
made at a terminal node of the tree, which is reached by
traversing the tree starting from the root as indicated by
the decisions made at internal nodes.

The design of decision trees is frequently performed in a
top-down fashion [12]. The nodes are split during the
design process according to some criterion. The existing
splitting criteria include the impurity measure used in
classification and regression trees [13], [17] and the
mutual information measure employed by the average
mutual information gain algorithm [16]. The terminal
nodes are determined during the construction of the tree
by freezing some of the nodes according to some stopping
criterion or by growing a large tree and performing
selective backward pruning. After the final tree structure is
determined, the terminal nodes are frequently assigned
class labels by using a majority rule.

2. Trifle Illustration

Before going into the details of our technical approach, we
need to define a trifle as it forms the fundamental piece of
evidence that will be used in hypothesis processing.
Examples of trifles, or pieces of evidence, with which the
intelligence community is currently inundated are: 1) an
object identified in an image, 2) information in an
intelligence report, 3) information in an open-source
document (e.g., online newspaper article), or 4) a video
clip (e.g., from Door-Dharshan, Al- Jazeera or CNN). This
information could be stored in a structured database [14]
or found from some unstructured location (e.g., web,
Intelink). This information must be organized to support
an existing query (e.g., Is chemical plant X producing

weapons of mass destruction?) or to direct the analyst to
perhaps consider a new hypothesis.

Outcome of this research work leads to a new way for
intelligence analysts to interact with the intelligence data
stream and can be described by the following. Intelligence
analysts are currently overwhelmed with the amount of
data that they must analyze. Most of this data is never
analyzed at all, potentially leaving key pieces of
information out of the analysis process. Our ability to
collect data will only grow, further accentuating the
problem. Our approach allows the analyst to interact with
the intelligence stream in a novel way. This interaction can
be viewed as a triangle with the Human, Hypotheses, and
Trifles at each vertex. The interaction is not isolated at

each vertex of the triangle, however, and the interaction
with all three is the key to the analyst making informed
analysis that supports the intelligence decision-making
process. The human also interacts with the trifles, not
arbitrarily, but as a result of the hypothesis. From this
processing, trifles are accumulating, forming a critical
mass that may require the attention of the analyst. Perhaps
a new hypothesis should be considered as a result of this.

Fig. 1. (a) Tree structure and (b) Explanation of each node

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

143

3. Architecture

Competitive Neural Tree has a structured architecture. A
hierarchy of identical nodes forms an m-ary tree as shown
in Fig. 1(a). Fig. 1(b) shows a node in detail. Each node
contains m slots s1, s2, . . . , sm and a counter age that is
incremented each time an example is presented to that
node. The behavior of the node changes as the counter age
increases. Each slot si stores a prototype pi, a counter
count, and a pointer to a node. The prototypes pi Є P have
the same length as the input vectors x. They are trained to
match the patterns obtained from each node.

The slot counter count is incremented each time the
prototype of that slot is updated to match an example.
Finally, the pointer contained in each slot may point to a
child-node assigned to that slot.

A NULL pointer indicates that no node was created as a
child so far. In this case, the slot is called terminal slot or
leaf. Internal slots are slots with an assigned child-node.

3.1 Learning at the Node-Level

In the learning phase [5] [18] [19], the tree grows starting
from a single node, the root. The prototypes of each node
form a minuscule competitive network. All prototypes in a
node compete to attract the examples arriving at this node.
These networks are trained by competitive learning. When
an example x Є χ arrives at a node, all of its prototypes
p1,p2,...,pm compete to match it. The closest prototype to x
is the winner. If d(x, pj) denotes the distance between x
and pj , the prototype pk is the winner if d(x, pk) < d(x, pj)
for all values of j ≠ k.

The distance measure used in this paper is the squared
Euclidean norm, defined as

2
),(jj pxPxd −= (1)

The competitive learning scheme used at the node level
resembles an unsupervised learning algorithm proposed to
generate crisp c- partitions of a set of unlabeled data
vectors [4], [5]. According to this scheme, the winner pk is
the only prototype that is attracted by the input x arriving
at the node. More specifically, the winner pk is updated
according to the equation

)(old
k

old
K

new
k PxPP −+= α (2)

where is the learning rate. The learning rate decreases
exponentially with the age of a node according to the
equation

)exp(0 agedααα −= (3)
where 0 is the initial value of the learning rate and d
determines how fast decreases. The update equation (2)

will move the winner pk closer to the example x and
therefore decrease the distance between the two. After a
sequence of example presentations and updates, the
prototypes will respond each to examples from a particular
region of the input space. Each prototype pj attracts a
cluster of examples Rj.

The prototypes split the region of the input space that the
node sees into sub regions. The examples that are located
in a sub region constitute the input for a node on the next
level of the tree that may be created after the node is
mature. A new node will be created only if a splitting
criterion is TRUE.

3.2 Life Cycle of Nodes

Each node goes through a life cycle. The node is created
and ages with the exposure to examples. When a node is
mature, new nodes can be assigned as children to it. A
child-node is created by copying properties of the slot that
is split to the slots of the new node. More specifically, the
child will inherit the prototype of the parent slot. Right
after the creation of a node, all its slots are identical. As
soon as a child is assigned to a node, that node is frozen.
Its prototypes are no longer updated in order to keep the
partition of the input space for the child-nodes constant. A
node may be destroyed after all of its children have been
destroyed.

4. Training Procedure

The generic training procedure is described below:

Do while stopping criterion is FALSE:

• Select an I XML file.
• Traverse the tree starting from the root to find a

terminal prototype pk that is close to x. Let nl and
sk be the node and the slot that pk belongs to,
respectively.

• If the node nl is not frozen, then update the
prototype pk according to equation (2).

• If a splitting criterion for slot sk is TRUE, then
assign a new node as child to sk and freeze node
nl.

• Increment the counter count in slot sk and the
counter age in node nl.

Depending on how the search in the second step is
implemented, various learning algorithms can be
developed. The search method is the only operation in the
learning algorithm that depends on the size of the tree.
Hence, the computational complexity of the search method
determines the speed of the learning process. Among the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

144

various search methods available, the full search method
achieves the best performance and it s detailed in the
following section.

Sample pseudo code used for training the network
/*Assigning inputs to each neuron*/

• Set the initial value i=0
• For all neuron In Input
• Neuron.Output = Inputs(i)
• i = i + 1
• End

/*Calculating the weight of each neuron*/
• For all input neuron connected to This Neuron
• netValue = netValue + (Weight Associated With

InputNeuron * Output of InputNeuron)
• End

/*Calculating the error value */
• Delta = Neuron.Output * (1 - Neuron.Output) *

ErrorFactor
/*Calculating the output */

• For each layer in Input layers
• neuron.Update(Input* Weight)
• End

/*Calculating the Bias Value */
• Set netValue As Single = bias
• For all input neuron connected to ThisNeuron
• netValue = netValue + (Weight Associated With

InputNeuron * Output of InputNeuron)
• End

4.1 Full Search Method

The search method determines the speed of learning and
recall as well as the generalization ability of the trained
CNeT. A feature vector x constitutes the input for the
search. An exhaustive search of the tree is guaranteed to

return the closest prototype vk to the input vector x.
Because of the computational and time requirements
associated with an exhaustive search, alternative search
methods can be employed for determining a terminal
prototype vk that is close, but not necessarily the closest, to
the input x. During learning, any terminal prototype vj Є V
is a candidate to be selected by the search method. In
contrast, only the prototypes that responded during
learning to at least one example are candidates to be
selected in the recall phase. Fig. 2 shows which nodes are
visited and expanded in a complete binary tree by the
search methods described in this section.

The full search method explained in fig. 2 is based on
conservative exhaustive search. To guarantee that the
prototype pk with the minimum distance to a given feature
vector x is returned, it is necessary to compute the
distances d(x, pj) between the input vector x and each of
the terminal prototypes pj Є P. The prototype pk with the
minimum distance is returned. The time requirement for
the full search method is of the order O(n). However, the
full search method guarantees the return of the closest
prototype to the input vector.

4.2 Pattern Detection

All the networks are trained and stored in the form of
XML files and can be used later. During the detection
process, the Interactive XML sheets are uploaded to the
network. As per the learning done on the neural tree, the
tree recognize each node and perform a full search on the
tree. When the searching is done on the neural tree, the
tree does not grows, it still remain constant and can be
compared with the nodes.

The algorithm for the pattern detection is given below,

Do While Terminal Node is True

• Read the root node of the iXML file.
• Compare the node with the existing trained

network which was already trained with effective
data supplied.

• If the root node presents the availability, then
move to the child node to dig the information and
store in the nodes of the new network.

• If the delta value provides an output which is
greater than higher threshold, justify the
hypothesis.

• Else if the delta value provides an output which is
less than lower threshold, negate the hypothesis.

• If the hypothesis is neither justified nor negated
the new hypothesis is generated.

• The tree will be again trained with the new
hypothesis.

Fig. 2. Shaded nodes visited by the full search method.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

145

The above algorithm receives an input in the form of an
iXML file and feed it to the network. The network
matches the pattern with previously trained elements. If
the input matches with the pattern then a justification on
the hypothesis is made or the hypothesis is negated else a
new hypothesis will be generated.

5. Generalization of Network

The CNeT is generalized to classify the vectors of same
features. The generalization ability is measured by the
accuracy with which it makes these classifications. The
network accepts complete set of nonlinear input. One of
the major advantages of CNeT is their ability to generalize.
This means that a trained net could classify data from the
same class as the learning data that it has never seen
before. To reach the best generalization, the dataset should
be split into three parts:

• The training set is used to train a CNeT. The
error of this dataset is minimized during training.

• The validation set is used to determine the
performance of a neural network on patterns that
are not trained during learning.

• A test set for finally checking the over all
performance of a neural net.

Fig. 3 shows a typical error development of a training set
(lower curve) and a validation set (upper curve).

The learning should be stopped at the minimum of the
validation set error. At this point the net generalizes best.
When learning is not stopped, overtraining occurs and the
performance of the net on the whole data decreases,
despite the fact that the error on the training data still gets
smaller. After completing the learning phase, the net
should be finally checked with the third data set, the test
set.

The generalization is not achieved, sometimes, when the
training set error is low. Two different estimate have been
conducted for calculating the error rate from the input
which are not in the training set but drawn from the same
underlying distribution as the training set. The error rate
we call it as out-of-sample-set error rate. Perhaps the
simplest technique we adopted is to divide the input
vectors available for training into two disjoint sets,
considering one as the training set and the other as the
validation set. Based on the two set of data’s the error rate
is calculated. If the number of vectors in both sets is large,
the error rate on the validation set is a reasonable estimate
of generalization accuracy.

The second method adopted to estimate the error rate,
generalization accuracy, is the cross validation. The
available training vectors are divided in to k disjoint
subsets, called folds. A single fold is selected as validation
set and the remaining k-1 set are selected as training set.
The procedure has been repeated for k times, each time
selecting a different fold as a validation set and its
complement as the training set. The error rate is computed
for each validation set and the average of these error rates
is taken and estimated as the out-of-sample error.

6. Training Patterns

A sample iXML file / trifle is illustrated below. Thousands
of such trifles are used for training the network. The
training set and validation set are classified from the
thousand number of trifles used for training.

6.1. Sample iXML File / Trifle.

 <?xml version="1.0" ?>

 <doc>
<assembly>
 <name>ixml</name>
 <version>1.0.2346.43108</version>
 <fullname>nxml, Version=1.0.2346.43108,
Culture=neutral, PublicKeyToken=null</fullname>

 </assembly>
 /* Terrorist Details*/

<Terrorist>
 <Name> Name of the terrorist </Name>
 <Age> Age of the terrorist </Age>

Typical Error Curve

0

20

40

60

80

100

120

1 2 3 4 5

Number of training

Er
ro

r %
 o

n
tra

in
in

g
se

t Validation
Curve

Training curve

Fig. 3. Error curve.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

146

 <Gender>Sex of the terrorist </Gender>
 <Place of Birth> Birth Place</Place of Birth>

<Previous Activities>Type of attack done by the
terrorist </Previous Activities>
<Location>Place where the terrorist attack has been
happened </Location>
<Number of participants> Total number of people
involved in the activity</Number of participants>

</Terrorist>
</doc>
<?xml version="1.0" ?>
 <doc>

<assembly>
 <name>ixml</name>
 <version>1.0.2346.43108</version>
 <fullname>nxml, Version=1.0.2346.43108,
Culture=neutral, PublicKeyToken=null</fullname>

 </assembly>
/* Details of evidence*/
<Terrorist Attack>

<Location>Place in which the terrorist attack took
place </Location>
<Type of Attack> The type of attack conducted by the
terrorist </Type of Attack>
<Members in the group> The members participated in
the activity</Members>
<Loss>Number of people died in the attack</Loss>

</Terrorist Attack>

Trifles are generated automatically based on the data
available in various formats, which includes
heterogeneous databases and information provided by
intelligence agencies.

6.2. Hypothesis

The system is designed to accept any type of hypothesis
given to it. The CNeT try to match the hypothesis and
attracts all the trifles associated to the hypothesis. Based
on the volume of the trifles attracted by the submitted
hypothesis, the system either justify the hypothesis or
negate the hypothesis, else suggests the way for generation
of new hypothesis.

7. Conclusion and Summary

This paper introduces an innovative methodology to
organize the evidences of terrorism and discover
knowledge with the help of data mining technique. The
technique presented here works on interactive XML files
which overcomes the problem of mining the
heterogeneous data. The soft computing model presented

here is also capable of providing a solid inculcation with
the training of the network and the detection of patterns.

References
[1] Sven Behnke and Nicolaos B. Karayiannis, “CNeT: Competitive

neural trees for pattern classification,” in Proc. IEEE Int. Conf.
Neural Networks, Washington, D.C., June 3–6, 1996, pp. 1439–
1444.

[2] Sivanandan,Shanmugam,sumathi,”Development of Soft Computing
Models For Data Miming”, IE(I) journal Vol 86, May 2005 - CP PP
22 -31.

[3] Sven Behnke and Nicolaos B. Karayiannis, “ Competitive neural
trees for pattern classification”.

[4] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park,
M.El-Sharkawi, and R. J. Marks II, “A performance comparison of
trained multilayer perceptrons and trained classification trees,” Proc.
IEEE, vol. 78, no. 10, pp. 1614–1619, 1990.

[5] L. Fang, A. Jennings, W. X. Wen, K.Q.-Q. Li, T. Li \Unsupervised
learning for neural trees," Proceedings International Joint
Conference on Neural Networks, vol 3, pp. 2709{2715, 1991.

[6] S. Rasoul Safavian and David Landgrebe, “A Survey of Decision
Tree Classifier Methodology”

[7] Safavian, S.R. Landgrebe, D., “A survey of decision tree classifier
methodology”Proceedings in the IEEE, Vol 21, issue 3.

[8] Xiangyang Li, Nong Ye, “Decision tree classifiers for computer
intrusion detection”,Published in Nova Science Publishers, Inc.
Commack, NY, USA.

[9] Cousins, D.B.; Weishar, D.J.; Sharkey, J.B. , “Intelligence
collection for counter terrorism in massive information content”
Aerospace Conference, 2004. Proceedings. 2004 IEEE Volume 5,
Issue , 6-13 March 2004 Page(s): 3273 – 3282.

[10] http://www.cio.in/govern
[11] www.homelandsecurity.org
[12] R. Nowak, “Decision Trees” IEEE Trans. Systems, Man, &

Cybernetics, May 1991.
[13] L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone,

Classification and Regression Trees. Belmont, CA: Wadsworth,
1984.

[14] http://www.tkb.org
[15] Michael J. Andrews, “ An Information Theoretic Hierarchical

Classifier for Machine Vision” WORCESTER POLYTECHNIC
INSTITUTE, May 1999.

[16] I. K. Sethi and G. P. R. Sarvarayudu, “Hierarchical classifier design
using mutual information,” IEEE Trans. Pattern Anal. Machine
Intell.vol. 4, pp. 441–445, 1982.

[17] P. A. Chou, “Optimal partitioning for classification and regression
trees,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 340–
354, 1991.

[18] S. Behnke and N. B. Karayiannis, “Competitive neural trees for
vector quantization,” Neural Network World, vol. 6, no. 3, pp. 263–
277, 1996.

[19] “CNeT: Competitive neural trees for pattern classification,” in Proc.
IEEE Int. Conf. Neural Networks, Washington, D.C., June 3–
6,1996, pp. 1439–1444.

[20] Sven Behnke and Nicolaos B. Karayiannis, “Competetive neural
trees for vector quantization,in Neural Network World, 6(3): 263-
277,1996.

[21] M. Karthikeyan, Krishnan Nallaperumal, K.Senthamaraikannan,
K.Velu and B.Bensujin, “A Soft Computing Model for Knowledge
Mining and Trifle Management”, International Journal of Imaging
Science and Engineering (IJISE), vol.1, No.4, Dec 2007, GA, USA.
ISSN:1934-9955, pp. 132-138.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

147

Nallaperumal Krishnan received
M.Sc., degree in Mathematics from
Madurai Kamaraj University, Madurai,
India in 1985, M.Tech degree in
Computer and Information Sciences
from Cochin University of Science and
Technology, Kochi, India in 1988 and
Ph.D., degree in Computer Science &
Engineering from Manonmaniam
Sundaranar University, Tirunelveli.

Currently, he is heading Centre for Information Technology and
Engineering of Manonmaniam Sundaranar University,
Tirunelveli. His research interests include Signal and Image
Processing, Remote Sensing, Visual Perception, Mathematical
Morphology Fuzzy Logic, Data mining and Pattern recognition.
He has authored three books, edited 18 volumes and published
25 scientific papers in Journals. He is a Senior Member of the
IEEE..

K. Senthamarai Kannan is currently
working as a Professor in Statistics, at
the Manonmaniam Sundaranar
University, Tirunelveli, Tamilnadu. He
has more than 18 years of teaching
experience at post-graduate level. He has
published more than 30 research papers
in international and national journals and
authored four books. He has visited
Turkey, Singapore and Malaysia. He has

been awarded TNSCST Young Scientist Fellowship and SERC
Visiting Fellowship. His area of specialization is ‘Stochastic
Processes and their Applications’. His other research interests
include stochastic modeling in the analysis of birth intervals in
human fertility, bio-informatics, data mining and precipitation
analysis.

Karthikeyan Marappan received B.E
degree in Electronics and
Communication Engineering from
Bharathiar University, Coimbatore, India
in 1990, M.Tech., degree in Computer
and Information Technology from Centre
for Information Technology and
Engineering, Manonmaniam Sundaranar
University, Tirunelveli, India. Currently,
he is doing Ph. D., in Computer and

Information Technology at Faculty of Engineering, Centre for
Information Technology and Engineering, Manonmaniam
Sundaranar University Tirunelveli. His research interests include
Data mining and Image Processing. He is a Member of the IEEE.

