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Summary 
In the aftermath of September 11, the experts concluded that data 
mining could help it prevent future terrorist attacks. Experts are 
also concerned that in its zeal to apply technology to 
antiterrorism, the government could disrupt the crime-fighting 
processes of the agencies that are charged with finding and 
stopping terrorists before they act. The entire information or the 
evidence about a terrorist and the inclined behavior of some 
personalities are stored in interactive XML sheets (iXML), which 
are called as trifles, the piece of information. These trifles play a 
vital role in training the soft computing model and for pattern 
detection. These trifles in the form of iXML sheets are given in 
the network for pattern detection. The soft computing model 
used here is the Competitive Neural Tree (CNeT). The CNeT is 
the type of decision tree in which each node is compared and a 
decision will be taken to move to the next. In each stage the 
pattern recognition is done with the contents of the iXML nodes. 
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1. Introduction 

key aspiration of this paper is to develop techniques for 
organizing intelligence information to sculpt terrorism 
threats using data mining techniques [10]. Our goal can be 
stated quite clearly as follows: How well we organize 
existing evidence influences? How well we humans are 
able to engender new hypotheses as well as new evidential 
tests of all hypotheses we are considering? The process of 
organizing evidence is a decisive step in the process of 
discovery or investigation. A data-centered approach to 
organizing evidence [9], [11] is adopted, which allow us to 
create, justify, or negate hypotheses. This is accomplished 
through the creation of intelligent agents that act as 
conceptual magnets that attract trifles (or atomic pieces) of 
evidence. This attraction is triggered in one of three ways: 
1) the evidence justifies an existing hypothesis, 2) the 
evidence negates an existing hypothesis, or 3) the 
evidence suggests that a new hypothesis be formed, which 
in turn becomes a new conceptual magnet. We propose a 
novel use of data mining, information retrieval and 
software agent technologies to enable this innovation.  

 
In this paper, we describe an architecture that facilitates 
the organizing of the enormous volume of evidence that an 
intelligence analyst has available. An essential point in our 
design is that of automating the process of hypothesis 
generation with human interaction. Humans, in contrast, 
have an amazing capacity of adaptation to new situations, 
and are capable of thinking of scenarios that have not 
occurred before. We are however, capable of organizing 
such a huge amount of evidence to corroborate or negate 
our hypothesis, and that is where our system strength 
resides through artificial neural networks. The network we 
used here is the Competitive neural tree (CNeT)[1] [2] 
[3][20]. The CNeT is a Tree network, in that there are well 
defined search techniques for spanning the tree is available. 
Neural network based pattern detection in an N-
dimensional data space which consists of generating decision 
boundaries that can successfully distinguish the various 
classes in the feature space. The classification rules have 
been extracted from all these models in the form of lf-Then 
rules. Finally the extracted rules have been validated for their 
correctness. 
 
The central piece of our design will be the support for 
queries, both ad-hoc and long standing, that will act as 
“magnets” attracting the relevant evidence that a human 
needs to estimate the validity of a hypothesis. The 
evidences are represented as an interactive XML file 
(trifle) and then fed to the soft computing model. The soft 
computing model is designed in such a way that, it accepts 
the given hypothesis, or negates the hypothesis, or it 
creates a new hypothesis. The proposed soft computing 
model, the Competitive neural tree is designed in such a 
way that it accepts an iXML file for training the network. 
The input to the network is an iXML file, it is read by 
individual nodes and the patterns are matched. 
 
Neural tree architectures were recently introduced for 
pattern classification [1], [2], [4], [20] in an attempt to 
combine advantages of neural networks and decision trees. 
By applying the decision tree methodology, one difficult 
decision is split into a sequence of less difficult decisions. 
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The first decision determines which decision has to be 
made next and so on. From all the questions that are 
arranged in a tree like structure only some are asked in the 
process of determining the final answer. Neural tree 
architectures are decision trees with a neural network in 
each node. These networks perform either feature 
extraction from the input or make a decision. A decision 
must be made at internal nodes regarding the child-node to 
be visited next. Terminal nodes give the final answer. 
 
DECISION trees have extensively been used to perform 
decision making in pattern recognition [6] [7] [8]. By 
applying the decision tree methodology, one difficult 
decision can be split into a sequence of less difficult 
decisions. The first decision determines which decision 
has to be made next by indicating which node of the tree 
should be visited. Because of the tree structure, only some 
of all possible questions are asked in the process of 
making the final decision. In fact, the final decision is 
made at a terminal node of the tree, which is reached by 
traversing the tree starting from the root as indicated by 
the decisions made at internal nodes.  
 
The design of decision trees is frequently performed in a 
top-down fashion [12]. The nodes are split during the 
design process according to some criterion. The existing 
splitting criteria include the impurity measure used in 
classification and regression trees [13], [17] and the 
mutual information measure employed by the average 
mutual information gain algorithm [16]. The terminal 
nodes are determined during the construction of the tree 
by freezing some of the nodes according to some stopping 
criterion or by growing a large tree and performing 
selective backward pruning. After the final tree structure is 
determined, the terminal nodes are frequently assigned 
class labels by using a majority rule. 

2. Trifle Illustration 

Before going into the details of our technical approach, we 
need to define a trifle as it forms the fundamental piece of 
evidence that will be used in hypothesis processing.  
Examples of trifles, or pieces of evidence, with which the 
intelligence community is currently inundated are:  1) an 
object identified in an image, 2) information in an 
intelligence report, 3) information in an open-source 
document (e.g., online newspaper article), or 4) a video 
clip (e.g., from Door-Dharshan, Al- Jazeera or CNN). This 
information could be stored in a structured database [14] 
or found from some unstructured location (e.g., web, 
Intelink). This information must be organized to support 
an existing query (e.g., Is chemical plant X producing 

weapons of mass destruction?) or to direct the analyst to 
perhaps consider a new hypothesis. 
 
Outcome of this research work leads to a new way for 
intelligence analysts to interact with the intelligence data 
stream and can be described by the following. Intelligence 
analysts are currently overwhelmed with the amount of 
data that they must analyze. Most of this data is never 
analyzed at all, potentially leaving key pieces of 
information out of the analysis process. Our ability to 
collect data will only grow, further accentuating the 
problem. Our approach allows the analyst to interact with 
the intelligence stream in a novel way. This interaction can 
be viewed as a triangle with the Human, Hypotheses, and 
Trifles at each vertex. The interaction is not isolated at 

each vertex of the triangle, however, and the interaction 
with all three is the key to the analyst making informed 
analysis that supports the intelligence decision-making 
process. The human also interacts with the trifles, not 
arbitrarily, but as a result of the hypothesis. From this 
processing, trifles are accumulating, forming a critical 
mass that may require the attention of the analyst. Perhaps 
a new hypothesis should be considered as a result of this. 

 

Fig. 1.  (a) Tree structure and (b) Explanation of each node 
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3. Architecture 

Competitive Neural Tree has a structured architecture. A 
hierarchy of identical nodes forms an m-ary tree as shown 
in Fig. 1(a). Fig. 1(b) shows a node in detail. Each node 
contains m slots s1, s2, . . . , sm and a counter age that is 
incremented each time an example is presented to that 
node. The behavior of the node changes as the counter age 
increases. Each slot si stores a prototype pi, a counter 
count, and a pointer to a node. The prototypes pi Є P have 
the same length as the input vectors x. They are trained to 
match the patterns obtained from each node.  
 
The slot counter count is incremented each time the 
prototype of that slot is updated to match an example. 
Finally, the pointer contained in each slot may point to a 
child-node assigned to that slot. 
 
A NULL pointer indicates that no node was created as a 
child so far. In this case, the slot is called terminal slot or 
leaf. Internal slots are slots with an assigned child-node. 

3.1 Learning at the Node-Level 

In the learning phase [5] [18] [19], the tree grows starting 
from a single node, the root. The prototypes of each node 
form a minuscule competitive network. All prototypes in a 
node compete to attract the examples arriving at this node. 
These networks are trained by competitive learning. When 
an example x Є χ arrives at a node, all of its prototypes 
p1,p2,...,pm compete to match it. The closest prototype to x 
is the winner. If d(x, pj) denotes the distance between x 
and pj , the prototype pk is the winner if d(x, pk) < d(x, pj ) 
for all values of  j ≠ k. 
 
The distance measure used in this paper is the squared 
Euclidean norm, defined as 

2
),( jj pxPxd −=     (1) 

The competitive learning scheme used at the node level 
resembles an unsupervised learning algorithm proposed to 
generate crisp c- partitions of a set of unlabeled data 
vectors [4], [5]. According to this scheme, the winner pk is 
the only prototype that is attracted by the input x arriving 
at the node. More specifically, the winner pk is updated 
according to the equation 

)( old
k

old
K

new
k PxPP −+= α     (2) 

where  is the learning rate. The learning rate  decreases 
exponentially with the age of a node according to the 
equation 

)exp(0 agedααα −=     (3) 
where 0 is the initial value of the learning rate and d 
determines how fast  decreases. The update equation (2) 

will move the winner pk closer to the example x and 
therefore decrease the distance between the two. After a 
sequence of example presentations and updates, the 
prototypes will respond each to examples from a particular 
region of the input space. Each prototype pj attracts a 
cluster of examples Rj.  
 
The prototypes split the region of the input space that the 
node sees into sub regions. The examples that are located 
in a sub region constitute the input for a node on the next 
level of the tree that may be created after the node is 
mature. A new node will be created only if a splitting 
criterion is TRUE. 

3.2 Life Cycle of Nodes 

Each node goes through a life cycle. The node is created 
and ages with the exposure to examples. When a node is 
mature, new nodes can be assigned as children to it. A 
child-node is created by copying properties of the slot that 
is split to the slots of the new node. More specifically, the 
child will inherit the prototype of the parent slot. Right 
after the creation of a node, all its slots are identical. As 
soon as a child is assigned to a node, that node is frozen. 
Its prototypes are no longer updated in order to keep the 
partition of the input space for the child-nodes constant. A 
node may be destroyed after all of its children have been 
destroyed. 

4. Training Procedure 

The generic training procedure is described below: 
 
Do while stopping criterion is FALSE: 

• Select an I XML file. 
• Traverse the tree starting from the root to find a 

terminal prototype pk that is close to x. Let nl and 
sk be the node and the slot that pk belongs to, 
respectively. 

• If the node nl is not frozen, then update the 
prototype pk according to equation (2). 

• If a splitting criterion for slot sk is TRUE, then 
assign a new node as child to sk and freeze node 
nl. 

• Increment the counter count in slot sk and the 
counter age in node nl. 

 
Depending on how the search in the second step is 
implemented, various learning algorithms can be 
developed. The search method is the only operation in the 
learning algorithm that depends on the size of the tree. 
Hence, the computational complexity of the search method 
determines the speed of the learning process. Among the 
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various search methods available, the full search method 
achieves the best performance and it s detailed in the 
following section. 
 

Sample pseudo code used for training the network 
/*Assigning inputs to each neuron*/ 

• Set the initial value i=0 
• For all neuron In Input 
• Neuron.Output = Inputs(i) 
• i = i + 1 
• End 

/*Calculating the weight of each neuron*/ 
• For all input neuron connected to This Neuron 
• netValue = netValue + (Weight Associated With 

InputNeuron *  Output of InputNeuron) 
• End 

/*Calculating the error value */ 
• Delta = Neuron.Output * (1 - Neuron.Output) * 

ErrorFactor    
/*Calculating the output */ 

• For each layer in Input layers 
• neuron.Update(Input* Weight) 
• End 

/*Calculating the Bias Value */ 
• Set netValue As Single = bias 
• For all input neuron connected to ThisNeuron 
• netValue = netValue + (Weight Associated With 

InputNeuron *   Output of InputNeuron) 
• End 

4.1 Full Search Method 

The search method determines the speed of learning and 
recall as well as the generalization ability of the trained 
CNeT. A feature vector x constitutes the input for the 
search. An exhaustive search of the tree is guaranteed to 

return the closest prototype vk to the input vector x. 
Because of the computational and time requirements 
associated with an exhaustive search, alternative search 
methods can be employed for determining a terminal 
prototype vk that is close, but not necessarily the closest, to 
the input x. During learning, any terminal prototype vj Є V 
is a candidate to be selected by the search method. In 
contrast, only the prototypes that responded during 
learning to at least one example are candidates to be 
selected in the recall phase. Fig. 2 shows which nodes are 
visited and expanded in a complete binary tree by the 
search methods described in this section.  
 
The full search method explained in fig. 2 is based on 
conservative exhaustive search. To guarantee that the 
prototype pk with the minimum distance to a given feature 
vector x is returned, it is necessary to compute the 
distances d(x, pj) between the input vector x and each of 
the terminal prototypes pj Є P. The prototype pk with the 
minimum distance is returned. The time requirement for 
the full search method is of the order O(n). However, the 
full search method guarantees the return of the closest 
prototype to the input vector. 

4.2 Pattern Detection 

All the networks are trained and stored in the form of 
XML files and can be used later. During the detection 
process, the Interactive XML sheets are uploaded to the 
network. As per the learning done on the neural tree, the 
tree recognize each node and perform a full search on the 
tree. When the searching is done on the neural tree, the 
tree does not grows, it still remain constant and can be 
compared with the nodes. 
 
The algorithm for the pattern detection is given below, 
 
Do While Terminal Node is True 

• Read the root node of the iXML file. 
• Compare the node with the existing trained 

network which was already trained with effective 
data supplied. 

• If the root node presents the availability, then 
move to the child node to dig the information and 
store in the nodes of the new network. 

• If the delta value provides an output which is 
greater than higher threshold, justify the 
hypothesis. 

• Else if the delta value provides an output which is 
less than lower threshold, negate the hypothesis. 

• If the hypothesis is neither justified nor negated 
the new hypothesis is generated. 

• The tree will be again trained with the new 
hypothesis. 

 

Fig. 2.  Shaded nodes visited by the full search method.
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The above algorithm receives an input in the form of an 
iXML file and feed it to the network. The network 
matches the pattern with previously trained elements. If 
the input matches with the pattern then a justification on 
the hypothesis is made or the hypothesis is negated else a 
new hypothesis will be generated. 
 

5. Generalization of Network 

The CNeT is generalized to classify the vectors of same 
features. The generalization ability is measured by the 
accuracy with which it makes these classifications. The 
network accepts complete set of nonlinear input. One of 
the major advantages of CNeT is their ability to generalize. 
This means that a trained net could classify data from the 
same class as the learning data that it has never seen 
before. To reach the best generalization, the dataset should 
be split into three parts:  

• The training set is used to train a CNeT. The 
error of this dataset is minimized during training.  

• The validation set is used to determine the 
performance of a neural network on patterns that 
are not trained during learning.  

• A test set for finally checking the over all 
performance of a neural net.  

 
Fig. 3 shows a typical error development of a training set 
(lower curve) and a validation set (upper curve). 
 
The learning should be stopped at the minimum of the 
validation set error. At this point the net generalizes best. 
When learning is not stopped, overtraining occurs and the 
performance of the net on the whole data decreases, 
despite the fact that the error on the training data still gets 
smaller. After completing the learning phase, the net 
should be finally checked with the third data set, the test 
set.  
 
The generalization is not achieved, sometimes, when the 
training set error is low. Two different estimate have been 
conducted for calculating the error rate from the input 
which are not in the training set but drawn from the same 
underlying distribution as the training set. The error rate 
we call it as out-of-sample-set error rate. Perhaps the 
simplest technique we adopted is to divide the input 
vectors available for training into two disjoint sets, 
considering one as the training set and the other as the 
validation set. Based on the two set of data’s the error rate 
is calculated. If the number of vectors in both sets is large, 
the error rate on the validation set is a reasonable estimate 
of generalization accuracy. 

 

The second method adopted to estimate the error rate, 
generalization accuracy, is the cross validation. The 
available training vectors are divided in to k disjoint 
subsets, called folds. A single fold is selected as validation 
set and the remaining k-1 set are selected as training set. 
The procedure has been repeated for k times, each time 
selecting a different fold as a validation set and its 
complement as the training set. The error rate is computed 
for each validation set and the average of these error rates 
is taken and estimated as the out-of-sample error. 
 

6. Training Patterns 

A sample iXML file / trifle is illustrated below. Thousands 
of such trifles are used for training the network. The 
training set and validation set are classified from the 
thousand number of trifles used for training.  
 

6.1. Sample iXML File / Trifle. 

 
  <?xml version="1.0" ?>  

 <doc> 
<assembly> 
 <name>ixml</name>  
 <version>1.0.2346.43108</version>  
 <fullname>nxml, Version=1.0.2346.43108, 
Culture=neutral, PublicKeyToken=null</fullname>  

  </assembly> 
  /* Terrorist Details*/ 

<Terrorist> 
 <Name> Name of the terrorist </Name> 
 <Age> Age of the terrorist </Age> 
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Fig. 3. Error curve. 
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 <Gender>Sex of the terrorist </Gender> 
 <Place of Birth> Birth Place</Place of Birth> 

<Previous Activities>Type of attack done by the 
terrorist </Previous Activities> 
<Location>Place where the terrorist attack has been 
happened </Location> 
<Number of participants> Total number of people 
involved in the activity</Number of participants> 

</Terrorist> 
</doc> 
<?xml version="1.0" ?>  
 <doc> 

<assembly> 
 <name>ixml</name>  
 <version>1.0.2346.43108</version>  
 <fullname>nxml, Version=1.0.2346.43108, 
Culture=neutral, PublicKeyToken=null</fullname>  

  </assembly> 
/* Details of evidence*/ 
<Terrorist Attack> 

<Location>Place in which the terrorist attack took 
place </Location> 
<Type of Attack> The type of attack conducted by the 
terrorist </Type of Attack> 
<Members in the group> The members participated in 
the activity</Members> 
<Loss>Number of people died in the attack</Loss> 

</Terrorist Attack> 
 

Trifles are generated automatically based on the data 
available in various formats, which includes 
heterogeneous databases and information provided by 
intelligence agencies. 
 

6.2. Hypothesis 

The system is designed to accept any type of hypothesis 
given to it. The CNeT try to match the hypothesis and 
attracts all the trifles associated to the hypothesis. Based 
on the volume of the trifles attracted by the submitted 
hypothesis, the system either justify the hypothesis or 
negate the hypothesis, else suggests the way for generation 
of new hypothesis. 

7. Conclusion and Summary 

This paper introduces an innovative methodology to 
organize the evidences of terrorism and discover 
knowledge with the help of data mining technique. The 
technique presented here works on interactive XML files 
which overcomes the problem of mining the 
heterogeneous data. The soft computing model presented 

here is also capable of providing a solid inculcation with 
the training of the network and the detection of patterns. 
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