
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

187

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

NAMST-A: New Algorithm for Minimum Spanning Tree (Adaptive)
using Reconfigurable Logic

 Prasad G. R . K. C. Shet Narasimha B. Bhat

 NITK, Surathkal, India NITK, Surathkal, India Manipal Dot Net Pvt Ltd Manipal, India

Summary

This paper presents NAMST-A (New Algorithm for Minimum
Spanning Tree- Adaptive), a new reconfigurable logic based
algorithm for finding minimum spanning tree (MST). It is an
extension of NAMST [7]. It uses ball and string model, and has a
time complexity O(N), where ‘N’ is the number of nodes. It is
faster compared to other existing MST algorithms as it does not
need to find the minimum of nodes/adjacent nodes. On Xilinx
Virtex II Pro kit, NAMST-A takes 428.92 ns for finding MST of
size 28 in a graph of 17 nodes.

Key words:
Reconfigurable computing, minimum spanning tree, ball and
string model, FPGA.

1. Introduction

Finding minimum spanning tree is still an active area of
research [1] [3] [4] [9] [10], due to the demand for faster
algorithms by the applications that use it, like CAD for
VLSI, wireless communication, distributed networks etc.
Most of the existing MST algorithms iterate hundreds of
instructions and hence have high execution time.

Reconfigurable computing [2] achieves high performance
by spatially spreading computation on the hardware
instead of iterating hundreds of instructions on a processor.
Reconfigurable computing has execution time close to that
of ASICs, with flexibility to reconfigure. It can be used to
efficiently and effectively mimic “natural” solutions: an
implementation that replicates the way nature tackles
analogous problems.

This paper presents NAMST-A (“New Algorithm for
Minimum Spanning Tree-Adaptive”), a new MST
algorithm using reconfigurable logic, and is an extension
of NAMST [7], to accelerate the algorithm for graphs of
large edge weights. NAMST and NASMT-A have time
complexity O(N), where ‘N’ is the number of nodes. They
do not need to find minimum of nodes/adjacent nodes, like
other existing MST algorithms do. Hence they are faster
compared to the other MST algorithms.

NAMST is an extension of NATR (New Algorithm for
Tracing Routes) [6], our earlier work on finding shortest
paths in large graphs. Finding shortest path mimics the
formation of ball and string model [5] [6]. In finding the
shortest path, all nodes except the source (which is fixed)
fall down synchronously from the source by comparing
their positions with that of the adjacent nodes, and stop on
reaching shortest distance from the source. A stopped
node’s position is the shortest distance between that node
and the source. In NAMST too, all nodes except the
source, fall down synchronously from the source. When a
string between a fixed node ‘j’ and a free node ‘i’ is
stretched to full, then the free node ‘i’ is fixed and ‘j’ is set
as the previous node of ‘i’. Also the positions of all free
nodes are set 0, and the free nodes are made to fall gain..
This is continued till all nodes get fixed, and this yields the
MST. Given its adjacent node’s information, a node will
fall independently and this makes NAMST scalable.
NAMST assumes undirected graphs with positive integer
edge weights.

NAMST-A is similar to NAMST, with the only difference
being that the nodes fall by multiple steps in the former
instead of single unit steps in the latter. This is done to
accelerate the algorithm for graphs of large edge weights.

The rest of the paper is organized as follows. Section 2
explains the ball and string model and its formation.
NAMST-A and its implementation details are given in
Sections 3 and 4 respectively. Section 5 presents the
results and Section 6 explains the scalability of the
algorithm. The paper concludes with Section 7.

2. Ball and String Model (BSM)

Ball and string model (BSM) of a graph is a network of
balls connected by strings, where balls represent the nodes
and strings represent the edges of the graph. For the graph
shown in Figure 1, its equivalent BSM is as shown in
Figure 2. In this figure, a straight line represents a fully
stretched string, and a curved line represents a string with
slack.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

188

Figures 3 to 6 illustrate the formation of BSM. In these
Figures, nodes are denoted by circles, strings by lines and
the fixed nodes by hatching. V1 is the source, which is
fixed. Initially (Figure 3) all nodes (balls) are at a distance
of 0 from the source. Keeping V1 fixed, the other nodes
are released, and their motion is shown in Figures 4 to 6.

Figure 4 shows the positions of the nodes after they fall
down by a unit distance. At this point of time no string is
stretched to full. Figure 5 shows the positions of the nodes
when they fall by a distance of 2 units, and now the string
between the nodes v1 and v3 is stretched to full. Hence v3
cannot fall down further and gets fixed at 2. Figure 6
shows the positions of the balls after they fall by a
distance of 3 units, and now v2 gets fixed. This continues
and finally we obatin the BSM as shown in Figure 2.

3. NAMST-A

In the formation of BSM, whenever a node gets fixed, if
all the free nodes are brought to 0 and are made to fall
again, it results in the formation of MST, as at each time a
free node close to the fixed node/s is selected and fixed.

For the graph in Figure 1 with v1 as source, the trace is as
shown in Figures 7 to 12, and at the end we get the MST
as in Figure 13. Figure 7 shows the positions of the nodes
when they are together at 0, with v1 as fixed node. Figure
8 shows the positions of the nodes after they fall down by
a unit distance and, at this point of time no string is
stretched to full. Figure 9 shows the positions of the nodes
when they fall by a distance of 2 units and now the string
between the nodes v1 and v3 is stretched to full. Hence v3
is fixed at 2 and at the same time, the positions of all free
nodes are set to 0 as shown in Figure 10. The free nodes
are made to fall again and, after falling by a distance of 2,
node v6 is fixed with v3 as its previous node. This
continues till all nodes get fixed and at the end we get
MST as shown in Figure 13.

Fig. 1. An example graph.

v2

v1

v3

v4

v5

v6

v7

v9 v10

2
2

2

3

4

4

4

3

3

2

2

1

1
1

3

v8

V1

V3
V2

V4

V9

V5

V8

V6

V10
V7

3

2 3

3

1 1

1

2

2

2

4

4

4

2

3

Fig. 2. Ball and string model for the
graph of Fig. 1.

V1 V3 V2 V4 V9 V5 V8 V6 V10V7

Fig. 3. Initially all balls are together and v1 is fixed.

V1

V3V2 V4 V9 V5 V8 V6 V10V7
3 2 4

Fig. 4. Balls after falling by a distance of 1.

V1

3 2 4

Fig. 5. Balls after falling by a distance of 2, v3 is fixed.

V3V2 V4 V9V5 V8V6 V10V7

V1

3 2 4

Fig. 6. Balls after falling by a distance of 3, v2 is fixed.

V3

V2 V4 V9V5 V8V6 V10V7

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

189

When the nodes are falling, more than one node may be
eligible to get fixed. This happens when multiple strings
are fully stretched simultaneously. But only one node is
selected at a time, to avoid non optimal solution, and
hence the time complexity is O(N). Consider the situation
in Figure 14. In this when the free nodes (unconnected
nodes) fall down by a distance of 3 units, nodes v7 and v9
satisfy the condition to get fixed. But fixing both nodes
results in a non optimal solution (to connect v7 and v9 to
MST, edge weights taken are 3+3=6). Instead, either node
v7 or v9 is fixed first and, then the other node is fixed
using the link between them (to connect v7 and v9 to MST,
edge weights taken are 3+1=4). This gives the optimal
solution.

Whenever a node gets fixed, there may be more than one
adjacent node satisfying the condition (a string stretched to
the full) to become previous node. In this situation too,
only one is selected using daisy chain. To give an example,
in Figure 15, when the node v5 falls by a distance of 1 unit,

V1 V3 V2 V4 V9 V5 V8 V6 V10V7

Fig. 7. Initially all balls are together and v1 is fixed.

V1

V3 V2 V4 V9 V5 V8 V6 V10V7
3 2 4

Fig. 8. Balls after moving by distance of 1.

V1

3
2 4

Fig. 9. Balls after moving by distance of 2, v3 is fixed.

V3 V2 V4 V9 V5 V8 V6 V10V7

V1 V3 V2 V4 V9 V5 V8 V6 V10V7

Fig. 10. All balls are together, at relative distance of 0.

V1 V3

V2 V4 V9 V5 V8 V6 V10V7
3

2 4

Fig. 11. Balls after moving by distance of 1.

V1 V3

3
2 4

Fig. 12. Balls after moving by distance of 2.

V2 V4 V9 V5 V8 V6 V10 V7

Fig. 13. Minimum spanning tree.

v2

v1

v3

v4

v5

v6

v7

v8

v9 v10

2
2

3

3

2

2

1

1 1

Fig. 14. Minimum spanning tree, during construction.

v2

v1

v3

v4

v5

v6

v7

v8

v9 v10

2
2

3

3

2

2

1

1 1

3

v2

v1

v3

v4

v5

v6

v7

v9 v10

2
2

1
3

4

4

4

3

3

2

2

1

1
1

3

v8

Fig. 15. Minimum spanning tree, during construction.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

190

nodes v4 and v6 satisfy the condition to become the
previous node of v5. In NAMST-A, v4 is selected as the
previous node of v5. The NAMST-A algorithm is as
shown in Figure 16.

If the nodes fall by a unit distance (K=1) in each step, then
‘S’ steps are needed to build the MST, where ‘S’ is the
size of the MST. This is the basic version of NAMST, and
is as illustrated in Figures 7 to 13. For graphs of large edge
weights, the algorithm can be accelerated by making the
nodes to fall by more than a unit distance. This is the
adaptive version of NAMST. The algorithm adapts to the
string lengths (edge weights) by means of a variable step
size SZ. SZ is the number of units by which the nodes fall
in a step. Initially SZ is set to 1. Later, if a ‘move’ is
successful for all nodes, then the SZ is multiplied by ‘K’
else the SZ is divided by ‘K’, where ‘K’ is the acceleration
factor. A successful ‘move’ is one in which the actual
separation between the nodes does not exceed the string
length between nodes; which is the value in the adjacency
matrix D. In case of a failure the separation exceeds the
value in adjacency matrix, and logically it means that the
string between nodes is broken. The adaptive version is
illustrated in Figures 17 to 23 for K=2.

To show how the adaptive version reduces the number of
steps required to find the MST, consider the graph shown
in Figure 17. The trace of the adaptive version (with K=2)
for this graph is as shown in Figures 18 to 23. Initially SZ
is 1 and all nodes are together at 0 as shown in Figure 18.
In the first step all nodes fall down by a unit distance as
shown in Figure 19 and move is successful for all nodes.
Hence SZ is doubled to 2. The nodes are again successful
in falling by 2 units and again SZ is doubled to 4. Once
again the nodes are successful in falling by 4 units and SZ
is doubled to 8. But in the next step the string between the
nodes v1 and v3 breaks, when v3 tries to move by 8 units
(from 7 to 15), as the maximum separation allowed
between the nodes v1 and v3 is 10 (value from D). The
actual separation between v3 and v1 is 15-0=15. Hence
move is a failure for v3 and all nodes remain at the old
positions with SZ being halved to 4. In next step, again
move is a failure as new position of v3 is 11 and the actual
separation (11-0=11) is greater than 10. Hence SZ is
halved to 2 and in the next step move is successful. In the
9th step, the string between the nodes v1 and v3 is
stretched to full. Hence v3 is fixed at 10. This continues
till all nodes get fixed. Though the MST size is 160, it is
found in 99 steps. Thus for large edge weights adaptive
version reduces number of steps required to find MST.

Fig. 16. NAMST algorithm.

1. For all nodes, position Xi is set to 0. For all non
source nodes set status flag O to 0 and for source set
this to 1. PV is previous node, TO and TPV are
temporary status flag and previous nodes, set step
size SZ to 1. MF stands for move failure and on
failure it is set to 1 else it will be 0.

 2. While not all nodes are fixed loop

 for all i=1 to N do in parallel
 Xi = Xi + SZ
 for j=1 to N do in parallel
 if ((Xi > Dij) then
 MFi =1
 else
 if (Xi = Dij and Oj =1) then
 TOi = 1
 TPVi =j
 end if
 end if
 end for loop

 end for loop

 MF=0
 for i = 1 to N do
 MF=MF or MFi
 end for loop

 if(MF=1) then
 if(SZ > =K) then
 SZ=SZ/K
 else
 SZ=1
 end if
 else

 sflag=1
 for i=1 to N loop
 if(TOi =1 and sflag=1)then
 set Oi to 1
 set PVi to TPVi
 sflag=0
 end if
 end for loop
 SZ=SZ*K
 end if

 if none of the nodes are fixed in the current step
 update incremented positions as Xi
 else
 set all node positions Xi to 0
 end if

 end while loop

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

191

4. Implementation

NAMST-A is implemented using Xilinx Virtex II Pro
development kit [11] with XC2VP30 FPGA and is coded
in VHDL. ChipScope pro 8.2i is used to check the results.

Fig. 17. Another example graph.

v2

v1

v3

v4

v5

v6

v7

v9 v10

10
20

20

30

40

40

40

30

30

20

20

10

10
10

30

v8

V1 V3 V2 V4 V9 V5 V8 V6 V10V7

Fig. 18. Initially all balls are together and v1 is fixed and
step_size is 1.

V1

V3 V2 V4 V9 V5 V8 V6 V10V7
30 10 40

Fig.19. Balls are successful in moving by distance of 1 and
step size is doubled to 2.

V1

30 10 40

Fig.20. Again balls are successful in moving by a distance of
2 and step_size is doubled to 4.

V3 V2 V4 V9 V5 V8 V6 V10V7

V1

30 10 40

Fig.21. Again balls are successful in moving by a distance of
4 and step_size is doubled 8.

V3 V2 V4 V9 V5 V8 V6 V10V7

V1

30 10 40

Fig.22. v3 fails to move by 8, and hence step_size is halved
to 4 and old positions are retained.

V3V2 V4 V9V5 V8V6 V10V7

V1

30 10 40

Fig.23. v3 fails to move by even 4, and hence step_size is
again halved to 2 and old positions are retained.

V3V2 V4 V9V5 V8V6 V10V7

Fig. 24. NAMST-A, as a collection of nodes.

Nodes’
positions X

Adjacency
matrix D

Nodes’
status O

Node 2
Oj X2 O2 TO2 D2j

clk

Node selection

. X1 X2 XN O1 O2 ON
D

Previous
nodes PV

Node 1
OjX1 O1TO1 D1j

clk

TPV1 TPV2

PV

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

192

As shown in Figure 24, NAMST-A/NAMST consists of
‘N’ nodes falling synchronously with the clock. To fall
down, a node takes information of the adjacent nodes i.e.
adjacent node position and status flag (fixed or moveable).
Node position(X) and previous nodes (PV) are declared as
signals (integer array) and status flags (O) is declared as a
signal of type std_logic_vector of size N. Adjacency
matrix D is declared as two dimensional constant array. A
signal by name “load” is used to initialize values (when
load=0) and after the initialization, load is made 1. In
subsequent clocks (when load=1), nodes move as
described in the algorithm, and the algorithm comes to a
halt when all the nodes get fixed.

4.1 Node structure of Basic version/NAMST

Node structure for the basic version is as shown in Figure
25. A node increments its position by 1(step_size) and
compares that with the adjacency matrix value Dij to set
flag Ej. If Xi=Dij then Ej is set to 1, otherwise it is set to 0.
If any Ej is 1 with the corresponding Oj as 1, it implies that
the string between node ‘i’ and its adjacent node ‘j’ is
stretched to full, and hence ‘i’ is to be fixed. So TOi is set
to 1 and TPVi is set to j, where TOi and TPVi are
temporary status flag and temporary previous nodes of
node ‘i’ respectively. More than one adjacent node may
satisfy condition to become previous node of ‘i’ but only
one node (low numbered) is selected using a daisy chain.
As said earlier only one node is to be fixed at a time to get
optimal solution and for this purpose TO and TPV are
used. Using TO and TPV, and a daisy chain, one node
(low numbered) among the many eligible nodes is fixed,
as shown in Figure 26. In Figure 26, part A shows
selection of a node and setting its status flag, part B shows
setting previous node and part C shows setting X for the
next clock cycle. In the current clock cycle, if any node
gets fixed then positions of free nodes are set to 0 else
positions are incremented by 1.

4.2 Node structure of NAMST-A

For the adaptive version, the node structure is same as that
of the basic version, except that an integer signal step_size,
SZ is used in place of constant 1, at the adder input. The
comparator will have output Cj which tells whether Xi >
Dij (if so move is a failure). In a clock cycle, if a move is a
failure for any node, then the step_size SZ is divided by
‘K’ (if step_size > K else step_size is set to 1). On a
successful move step_size SZ is multiplied by ‘K’.

4.3 Resource and memory requirement

With each node consisting of N comparators, resource
needed is O(N2) and because of storing D in memory,
storage required is O(N2). But with Z (Z<<N) adjacent
nodes, we need to allocate resources and memory for Z
adjacent nodes only, i.e. Z*N comparators and 2*Z*N
memory for adjacent node information (2*Z=Z for edge
weights + Z for adjacent node numbers). Hence with Z

Fig. 25. Node structure.

Di1 DiN

= E1

Comparator Comparator

Xi

ONO1

= EN

TOi

. . .F1 FN

FO

1

Adder

TPVi

SS=1

F1

32

F2

32

. . .

32

1 2

G1 G2

...

O1

SS=1

TO1 TO2

S1 S2

H1 H2

O2

Part A: Flag setting

PV1

TPV1

H1

32

TPV2

...

PV2

H2

32

Part B: Previous node setting

Fig. 26. Node selection through daisy chain.

TO1

TON X1

Adder

Multiplexer

1

0

X1

X2

Multiplexer

1

0

X2

...

Part C: Node Position setting

M

M=0 M=1 M=1 M=0
Adder

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

193

adjacent nodes, the resource required is O(N), and the
memory required is also O(N).
Table 1 Results of NAMST-A.

5. Results

The experiment is conducted for graphs of sizes 5, 10 and
17 nodes by placing all nodes in FPGA. Results are given
in Table 1. NAMST-A is also implemented in C on
Pentium IV processor running at 2.66GHz and having
1GB RAM. The results clearly show that FPGA
implementation is good. A graph is also plotted for
execution time as shown in Figure 27.

0

50000

100000

150000

200000

5 10 17

Number of nodes N

Ex
ec

ut
io

n
tim

e
in

 n
s

FPGA- Basic C-Basic

FPGA- Adaptive C- Adaptive

6. Scalability
NAMST-A handles graphs that are larger than an FPGA’s
capacity. This section explains how computation to be
done in a clock cycle is divided into smaller steps, and
how these steps are sequentially executed on FPGA.

Figure 28 shows the logical interface between the host
computer and the FPGA. If the FPGA can accommodate
only ‘k’ nodes (1<=k<=N), then computation to be done in
an iteration (clock cycle) is divided in to N/k steps and in
each step, computation of ‘k’ nodes is done. To start
computation for an iteration, X and O of all nodes are
loaded into FPGA memory, since a node’s computation
needs adjacent node information. First ‘k’ node’s Xi and
Oi, and first ‘k‘ rows of D are sent to the FPGA and
computation is done for first ‘k’ nodes. Node structure is
same for all nodes except current node’s X, O and D, and
hence these values are loaded when computation for a
node has to be done. After the computation, results from
the FPGA are stored in a temporary space in the host
computer for use in the next iteration. Similarly
computation of all nodes is done by taking ‘k’ nodes at a
time and once computation for the current iteration is over,
the values held in temporary space are updated as new
values. Before starting computation for the next iteration,
once again X and O are loaded in to FPGA.

Suppose we want to find MST for a graph of 10 nodes
using an FPGA that can accommodate only 4 nodes, in
that case computation to be done in an iteration is divided
in to three steps as shown in Figure 29.

 NAMST
(Basic)

NAMST-A
(Adaptive)

N 5 10 17 5 10 17

Max.
Operating

Clock
frequency

122.84 109.38 103.00 105.26 97.42 81.60

LUT % 1 3 7 2 6 12

Gate Count 4,061 7,880 14,058 8,606 18,329 33,324

Clock cycles 8 17 28 10 20 35

Execution
time in ns

using Max.
operating

clock(FPGA)

65.12 155.42 271.84 95.00 205.29 428.92

Actual Clock
used MHz
(Virtex- II

Pro)

100 100 100 100 50 50

Execution
time in ns
(Virtex II -

Pro)

80 170 280 100 400 700

Execution
time in ns
(Pentium IV)

4000 40,000 1,75,000 4000 30,000 1,30,000

Host computer FPGA

Node positions

Status Flags

New Node
positions, Status
Flags, Step_size,
Previous nodes

Temporary storage
for Node positions,
Status flags
Step_size, Previous
nodes

Node positions,
Status flags,

Step_size, Adjacency
matrix

Information
about 'k' nodes

'k' Nodes

Fig. 28. Interface between FPGA and host computer for 'k’ nodes
computation.

Fig. 27. Execution times for NAMST. Fig. 29. Computation of '4' nodes in a clock cycle.
For First iteration For second iteration

L
O
A
D

Xi

Oi

L
O
A
D

Xi

Oi
 Steps

1, 2, 3,4 1, 2, 3,4 5, 6, 7,8 5, 6, 7,8 9, 10 9, 10

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

194

7. Conclusions

A new reconfigurable logic based minimum spanning tree
algorithm (NAMST-A) is proposed. NAMST-A has a time
complexity O(N). The algorithm is based on ball and
string model. Unlike most other existing algorithms,
NAMST-A does not need to find minimum of
nodes/adjacent nodes, which makes it faster compared to
other MST algorithms. In addition, it is implemented on
reconfigurable logic to have high performance close to
that of ASICs. In the basic version/NAMST, nodes always
fall down by a unit distance and hence ‘S’ clock cycles are
needed to find MST, where ‘S’ is the size of the MST. The
adaptive version of NAMST (NAMST-A) takes less than
S clock cycles to find MST in graphs with large edge
weights(>5), but takes more than ‘S’ clock cycles in case
of graphs with small edge weights. Hence for graphs with
small edge weights basic version is efficient and for
graphs with large edge weights adaptive version is
efficient.

References
[1] Aili Han and Daming Zhu, “DNA Computing Model for the

Minimum Spanning Tree Problem”, Proceedings of the eighth
international symposium on symbolic and numeric algorithms for
scientific computing (SYNASC'06), 2006, pp 372-377.

[2] Andre DeHon and John Wawrzynek, “Reconfigurable Computing:
What, Why, and Implications for Design Automation”, Proceedings
of 1999 Design Automation Conference, June 1999, pp 610-615.

[3] David A Bader, Guojing Cong, “A fast, parallel spanning tree
algorithm for symmetric multiprocessors (SMPs) “, Journal of
parallel and distributed computing, 2005, pp 994 – 1006.

[4] David A. Bader, Guojing Cong, “Fast Shared-Memory Algorithms
for Computing the Minimum Spanning Forest of Sparse Graphs”,
Journal of Parallel and Distributed Computing Volume 66, Issue 11,
Nov 2006, pp 1366 – 1378.

[5] Paolo Narvaez, Kai-Yeung Siu and Hong-Yi Tzeng, “New Dynamic
SPT Algorithm Based on a Ball and String Model”, IEEE
transactions on Networking, Dec 2001, pp 706-718.

[6] Prasad G. R., K. C. Shet and Narasimha B. Bhat, “NATR: A New
Algorithm for Tracing Routes”, presented in International Joint
Conferences on Computer, Information, and System Sciences, and
Engineering, Dec 3-12, 2007.

[7] Prasad G. R., K. C. Shet and Narasimha B. Bhat, “NAMST: A New
Algorithm for Minimum Spanning Tree using Reconfigurable
Logic”, presented in International Conference on Information
Systems and Technology, Dec 14-15, 2007, Thrissur, Kerala, India,
pp 37-42.

[8] Sabih H. Gerez, “Algorithms for VLSI Design Automation”, John
Wiley & Sons (Asia) Pte. Ltd., 2004.

[9] Lixia Hanr and Yuping Wang, “A Novel Genetic Algorithm for
Degree-Constrained Minimum Spanning Tree Problem”,
International Journal of Computer Science and Network Security,
VOL.6 No.7A, July 2006, pp 50-57.

[10] Seth Pettie and Vijaya Ramchandran, “An optimal minimum
spanning tree algorithm”, ACM journal, VOL 49, No 1, Jan 2002,
pp 16-34.

[11] www.xilinx.com, XUPV2P user guide.

Prasad G R is a research scholar at
National Institute of Technology,
Karnataka, Surathkal, INDIA. He
received his M.Tech degree in
Computer Science & Engineering from
Bangalore University in 1999 and B.E
Degree in Computer Science &
Engineering from Bangalore

University in 1995. His research interests include Reconfigurable
computing.

Dr. K.C Shet is a professor in Dept. of
Computer Engineering, National
Institute of Technology, Karnataka,
Surathkal, INDIA. He has more than 36
years of experience in teaching and
research. He holds a Ph. D. from IIT
Bombay, INDIA. He is a member of
Computer Society of India, and Indian
Society of Technical Education. He is a
Fellow of Institution of Engineers
(INDIA). His research interests

includes software testing, Security Solution for Web Services,
Cyber Laws, Anti spam solutions, Wireless Networks, Mobile
Computing, Ad hoc Networks. He has published more than 200
papers in refereed conference proceedings and journals.

Dr. Narasimha B. Bhat is CEO and
Founder of Manipal Dot Net
(www.manipal.net), a technology
startup in Manipal, Southern India. He
was R&D
Director at Synopsys USA. He has a
PhD from UC Berkeley, ME from IISc
Bangalore and BE from MIT, Manipal.
His research interests include
Reconfigurable Computing, Embedded

Systems and EDA.

