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Summary 
 
This paper presents NAMST-A (New Algorithm for Minimum 
Spanning Tree- Adaptive), a new reconfigurable logic based 
algorithm for finding minimum spanning tree (MST). It is an 
extension of NAMST [7]. It uses ball and string model, and has a 
time complexity O(N), where ‘N’ is the number of nodes. It is 
faster compared to other existing MST algorithms as it does not 
need to find the minimum of nodes/adjacent nodes. On Xilinx 
Virtex II Pro kit, NAMST-A takes 428.92 ns for finding MST of 
size 28 in a graph of 17 nodes. 
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1. Introduction 

Finding minimum spanning tree is still an active area of 
research [1] [3] [4] [9] [10], due to the demand for faster 
algorithms by the applications that use it, like CAD for 
VLSI, wireless communication, distributed networks etc. 
Most of the existing MST algorithms iterate hundreds of 
instructions and hence have high execution time.  
 
Reconfigurable computing [2] achieves high performance 
by spatially spreading computation on the hardware 
instead of iterating hundreds of instructions on a processor. 
Reconfigurable computing has execution time close to that 
of ASICs, with flexibility to reconfigure. It can be used to 
efficiently and effectively mimic “natural” solutions: an 
implementation that replicates the way nature tackles 
analogous problems. 
 
This paper presents NAMST-A (“New Algorithm for 
Minimum Spanning Tree-Adaptive”), a new MST 
algorithm using reconfigurable logic, and is an extension 
of NAMST [7], to accelerate the algorithm for graphs of 
large edge weights. NAMST and NASMT-A have time 
complexity O(N), where ‘N’ is the number of nodes. They 
do not need to find minimum of nodes/adjacent nodes, like 
other existing MST algorithms do. Hence they are faster 
compared to the other MST algorithms.   
 

NAMST is an extension of NATR (New Algorithm for 
Tracing Routes) [6], our earlier work on finding shortest 
paths in large graphs. Finding shortest path mimics the 
formation of ball and string model [5] [6]. In finding the 
shortest path, all nodes except the source (which is fixed) 
fall down synchronously from the source by comparing 
their positions with that of the adjacent nodes, and stop on 
reaching shortest distance from the source. A stopped 
node’s position is the shortest distance between that node 
and the source. In NAMST too, all nodes except the 
source, fall down synchronously from the source. When a 
string between a fixed node ‘j’ and a free node ‘i’ is 
stretched to full, then the free node ‘i’ is fixed and ‘j’ is set 
as the previous node of ‘i’. Also the positions of all free 
nodes are set 0, and the free nodes are made to fall gain.. 
This is continued till all nodes get fixed, and this yields the 
MST. Given its adjacent node’s information, a node will 
fall independently and this makes NAMST scalable. 
NAMST assumes undirected graphs with positive integer 
edge weights. 
 
NAMST-A is similar to NAMST, with the only difference 
being that the nodes fall by multiple steps in the former 
instead of single unit steps in the latter. This is done to 
accelerate the algorithm for graphs of large edge weights. 
 
The rest of the paper is organized as follows. Section 2 
explains the ball and string model and its formation. 
NAMST-A and its implementation details are given in 
Sections 3 and 4 respectively. Section 5 presents the 
results and Section 6 explains the scalability of the 
algorithm. The paper concludes with Section 7. 

2. Ball and String Model (BSM) 

Ball and string model (BSM) of a graph is a network of 
balls connected by strings, where balls represent the nodes 
and strings represent the edges of the graph. For the graph 
shown in Figure 1, its equivalent BSM is as shown in 
Figure 2. In this figure, a straight line represents a fully 
stretched string, and a curved line represents a string with 
slack. 
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Figures 3 to 6 illustrate the formation of BSM. In these 
Figures, nodes are denoted by circles, strings by lines and 
the fixed nodes by hatching. V1 is the source, which is 
fixed. Initially (Figure 3) all nodes (balls) are at a distance 
of 0 from the source. Keeping V1 fixed, the other nodes 
are released, and their motion is shown in Figures 4 to 6. 

 

 

 

 

 

 

 

Figure 4 shows the positions of the nodes after they fall 
down by a unit distance. At this point of time no string is 
stretched to full. Figure 5 shows the positions of the nodes 
when they fall by a distance of 2 units, and now the string 
between the nodes v1 and v3 is stretched to full. Hence v3 
cannot fall down further and gets fixed at 2. Figure 6 
shows the positions of the balls after they fall by a 
distance of 3 units, and now v2 gets fixed. This continues 
and finally we obatin the BSM as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. NAMST-A 

In the formation of BSM, whenever a node gets fixed, if 
all the free nodes are brought to 0 and are made to fall 
again, it results in the formation of MST, as at each time a 
free node close to the fixed node/s is selected and fixed. 
 
For the graph in Figure 1 with v1 as source, the trace is as 
shown in Figures 7 to 12, and at the end we get the MST 
as in Figure 13. Figure 7 shows the positions of the nodes 
when they are together at 0, with v1 as fixed node. Figure 
8 shows the positions of the nodes after they fall down by 
a unit distance and, at this point of time no string is 
stretched to full. Figure 9 shows the positions of the nodes 
when they fall by a distance of 2 units and now the string 
between the nodes v1 and v3 is stretched to full. Hence v3 
is fixed at 2 and at the same time, the positions of all free 
nodes are set to 0 as shown in Figure 10. The free nodes 
are made to fall again and, after falling by a distance of 2, 
node v6 is fixed with v3 as its previous node. This 
continues till all nodes get fixed and at the end we get 
MST as shown in Figure 13. 
 
 

Fig. 1. An example graph. 
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Fig. 2. Ball and string model for the 
graph of Fig. 1. 

V1 V3 V2 V4 V9 V5 V8 V6 V10V7 

Fig. 3. Initially all balls are together and v1 is fixed. 

V1 

V3V2 V4 V9 V5 V8 V6 V10V7 
3 2 4

Fig. 4. Balls after falling by a distance of 1. 

V1 

3 2 4

Fig. 5. Balls after falling by a distance of 2, v3 is fixed. 
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Fig. 6. Balls after falling by a distance of 3, v2 is fixed. 

V3

V2 V4 V9V5 V8V6 V10V7



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 
 

 

189

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
When the nodes are falling, more than one node may be 
eligible to get fixed. This happens when multiple strings 
are fully stretched simultaneously. But only one node is 
selected at a time, to avoid non optimal solution, and 
hence the time complexity is O(N). Consider the situation 
in Figure 14. In this when the free nodes (unconnected 
nodes) fall down by a distance of 3 units, nodes v7 and v9 
satisfy the condition to get fixed. But fixing both nodes 
results in a non optimal solution (to connect v7 and v9 to 
MST, edge weights taken are 3+3=6). Instead, either node 
v7 or v9 is fixed first and, then the other node is fixed 
using the link between them (to connect v7 and v9 to MST, 
edge weights taken are 3+1=4). This gives the optimal 
solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Whenever a node gets fixed, there may be more than one 
adjacent node satisfying the condition (a string stretched to 
the full) to become previous node. In this situation too, 
only one is selected using daisy chain. To give an example, 
in Figure 15, when the node v5 falls by a distance of 1 unit, 

V1 V3 V2 V4 V9 V5 V8 V6 V10V7 

Fig. 7. Initially all balls are together and v1 is fixed. 

V1 
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Fig. 8. Balls after moving by distance of 1. 
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3 
2 4 

Fig. 9. Balls after moving by distance of 2, v3 is fixed. 

V3 V2 V4 V9 V5 V8 V6 V10V7 

V1 V3 V2 V4 V9 V5 V8 V6 V10V7 

Fig. 10. All balls are together, at relative distance of 0. 
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Fig. 11. Balls after moving by distance of 1. 
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Fig. 12. Balls after moving by distance of 2. 

V2 V4 V9 V5 V8 V6 V10 V7

Fig. 13. Minimum spanning tree. 
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Fig. 14. Minimum spanning tree, during construction. 
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Fig. 15. Minimum spanning tree, during construction. 
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nodes v4 and v6 satisfy the condition to become the 
previous node of v5. In NAMST-A, v4 is selected as the 
previous node of v5. The NAMST-A algorithm is as 
shown in Figure 16. 
 

If the nodes fall by a unit distance (K=1) in each step, then 
‘S’ steps are needed to build the MST, where ‘S’ is the 
size of the MST. This is the basic version of NAMST, and 
is as illustrated in Figures 7 to 13. For graphs of large edge 
weights, the algorithm can be accelerated by making the 
nodes to fall by more than a unit distance. This is the 
adaptive version of NAMST. The algorithm adapts to the 
string lengths (edge weights) by means of a variable step 
size SZ. SZ is the number of units by which the nodes fall 
in a step. Initially SZ is set to 1. Later, if a ‘move’ is 
successful for all nodes, then the SZ is multiplied by ‘K’ 
else the SZ is divided by ‘K’, where ‘K’ is the acceleration 
factor. A successful ‘move’ is one in which the actual 
separation between the nodes does not exceed the string 
length between nodes; which is the value in the adjacency 
matrix D. In case of a failure the separation exceeds the 
value in adjacency matrix, and logically it means that the 
string between nodes is broken.  The adaptive version is 
illustrated in Figures 17 to 23 for K=2. 

To show how the adaptive version reduces the number of 
steps required to find the MST, consider the graph shown 
in Figure 17. The trace of the adaptive version (with K=2) 
for this graph is as shown in Figures 18 to 23. Initially SZ 
is 1 and all nodes are together at 0 as shown in Figure 18. 
In the first step all nodes fall down by a unit distance as 
shown in Figure 19 and move is successful for all nodes. 
Hence SZ is doubled to 2. The nodes are again successful 
in falling by 2 units and again SZ is doubled to 4. Once 
again the nodes are successful in falling by 4 units and SZ 
is doubled to 8. But in the next step the string between the 
nodes v1 and v3 breaks, when v3 tries to move by 8 units 
(from 7 to 15), as the maximum separation allowed 
between the nodes v1 and v3 is 10 (value from D).  The 
actual separation between v3 and v1 is 15-0=15. Hence 
move is a failure for v3 and all nodes remain at the old 
positions with SZ being halved to 4. In next step, again 
move is a failure as new position of v3 is 11 and the actual 
separation (11-0=11) is greater than 10. Hence SZ is 
halved to 2 and in the next step move is successful. In the 
9th step, the string between the nodes v1 and v3 is 
stretched to full. Hence v3 is fixed at 10. This continues 
till all nodes get fixed. Though the MST size is 160, it is 
found in 99 steps. Thus for large edge weights adaptive 
version reduces number of steps required to find MST. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. NAMST algorithm. 

 

1. For all nodes, position Xi is set to 0. For all non 
source nodes set status flag O to 0 and for source set 
this to 1. PV is previous node, TO and TPV are 
temporary status flag and previous nodes, set step 
size SZ to 1.  MF stands for move failure and on 
failure it is set to 1 else it will be 0. 

 
 2. While not all nodes are fixed loop 
 
        for all i=1 to N do in parallel 
            Xi = Xi + SZ 
            for j=1 to N do in parallel 
    if ((Xi > Dij  ) then 
        MFi =1 
                else 
                    if (Xi = Dij  and Oj =1) then 
             TOi  = 1  
                         TPVi =j 
                    end if 
                end if 
            end for loop 

            end for loop 
 
            MF=0  
            for i = 1 to N do 
 MF=MF or MFi 
            end for loop 
 
            if(MF=1) then 
 if(SZ > =K) then 
     SZ=SZ/K 
                else 
                    SZ=1 
                end if 
            else 

           sflag=1 
           for i=1 to N loop 
               if(TOi =1 and sflag=1)then 
        set Oi to 1 
        set PVi to TPVi  
                    sflag=0 
               end if 
            end for loop 
            SZ=SZ*K 
        end if 
 
        if none of the nodes are fixed in the current step 
     update incremented positions  as Xi  
         else 
     set all node positions  Xi  to  0 
        end if 
 
     end while loop 
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4. Implementation 

NAMST-A is implemented using Xilinx Virtex II Pro 
development kit [11] with XC2VP30 FPGA and is coded 
in VHDL. ChipScope pro 8.2i is used to check the results. 

 

 

 

 

 
 

Fig. 17. Another example graph. 
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Fig. 18. Initially all balls are together and v1 is fixed and 
step_size is 1. 

V1 

V3 V2 V4 V9 V5 V8 V6 V10V7 
30 10 40 

Fig.19. Balls are successful in moving by distance of 1 and 
step size is doubled to 2. 

V1 

30 10 40 

Fig.20. Again balls are successful in moving by a distance of
2 and step_size is doubled to 4. 
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Fig.21. Again balls are successful in moving by a distance of 
4 and step_size is doubled 8. 
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Fig.22. v3 fails to move by 8, and hence step_size is halved 
to 4 and old positions are retained. 
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Fig.23. v3 fails to move by even 4, and hence step_size is 
again halved to 2 and old positions are retained. 
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Fig. 24. NAMST-A, as a collection of nodes. 
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As shown in Figure 24, NAMST-A/NAMST consists of 
‘N’ nodes falling synchronously with the clock. To fall 
down, a node takes information of the adjacent nodes i.e. 
adjacent node position and status flag (fixed or moveable). 
Node position(X) and previous nodes (PV) are declared as 
signals (integer array) and status flags (O) is declared as a 
signal of type std_logic_vector of size N. Adjacency 
matrix D is declared as two dimensional constant array. A 
signal by name “load” is used to initialize values (when 
load=0) and after the initialization, load is made 1. In 
subsequent clocks (when load=1), nodes move as 
described in the algorithm, and the algorithm comes to a 
halt when all the nodes get fixed. 

4.1 Node structure of Basic version/NAMST 

Node structure for the basic version is as shown in Figure 
25. A node increments its position by 1(step_size) and 
compares that with the adjacency matrix value Dij to set 
flag Ej. If Xi=Dij then Ej is set to 1, otherwise it is set to 0. 
If any Ej is 1 with the corresponding Oj as 1, it implies that 
the string between node ‘i’ and its adjacent node ‘j’ is 
stretched to full, and hence ‘i’ is to be fixed. So TOi is set 
to 1 and TPVi is set to j, where TOi and TPVi are 
temporary status flag and temporary previous nodes of 
node ‘i’ respectively. More than one adjacent node may 
satisfy condition to become previous node of ‘i’ but only 
one node (low numbered) is selected using a daisy chain. 
As said earlier only one node is to be fixed at a time to get 
optimal solution and for this purpose TO and TPV are 
used.  Using TO and TPV, and a daisy chain, one node 
(low numbered) among the many eligible nodes is fixed, 
as shown in Figure 26. In Figure 26, part A shows 
selection of a node and setting its status flag, part B shows 
setting previous node and part C shows setting X for the 
next clock cycle. In the current clock cycle, if any node 
gets fixed then positions of free nodes are set to 0 else 
positions are incremented by 1. 

4.2 Node structure of NAMST-A 

For the adaptive version, the node structure is same as that 
of the basic version, except that an integer signal step_size, 
SZ is used in place of constant 1, at the adder input. The 
comparator will have output Cj which tells whether Xi > 
Dij (if so move is a failure). In a clock cycle, if a move is a 
failure for any node, then the step_size SZ is divided by 
‘K’ (if step_size > K else step_size is set to 1). On a 
successful move step_size SZ is multiplied by ‘K’. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Resource and memory requirement 

With each node consisting of N comparators, resource 
needed is O(N2) and because of storing D in memory, 
storage required is O(N2). But with Z (Z<<N) adjacent 
nodes, we need to allocate resources and memory for Z 
adjacent nodes only, i.e. Z*N comparators and 2*Z*N 
memory for adjacent node information (2*Z=Z for edge 
weights + Z for adjacent node numbers). Hence with Z 

Fig. 25. Node structure.  
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adjacent nodes, the resource required is O(N), and the 
memory required is also O(N).  
Table 1 Results of NAMST-A. 

 

5. Results 

The experiment is conducted for graphs of sizes 5, 10 and 
17 nodes by placing all nodes in FPGA. Results are given 
in Table 1. NAMST-A is also implemented in C on 
Pentium IV processor running at 2.66GHz and having 
1GB RAM. The results clearly show that FPGA 
implementation is good. A graph is also plotted for 
execution time as shown in Figure 27. 
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6. Scalability 
NAMST-A handles graphs that are larger than an FPGA’s 
capacity. This section explains how computation to be 
done in a clock cycle is divided into smaller steps, and 
how these steps are sequentially executed on FPGA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28 shows the logical interface between the host 
computer and the FPGA. If the FPGA can accommodate 
only ‘k’ nodes (1<=k<=N), then computation to be done in 
an iteration (clock cycle) is divided in to N/k steps and in 
each step, computation of ‘k’ nodes is done. To start 
computation for an iteration, X and O of all nodes are 
loaded into FPGA memory, since a node’s computation 
needs adjacent node information. First ‘k’ node’s Xi and 
Oi, and first ‘k‘ rows of D are sent to the FPGA and 
computation is done for first ‘k’ nodes. Node structure is  
same for all nodes except current node’s X, O and D, and 
hence these values are loaded when computation for a  
node has to be done. After the computation, results from 
the FPGA are stored in a temporary space in the host 
computer for use in the next iteration.  Similarly 
computation of all nodes is done by taking ‘k’ nodes at a 
time and once computation for the current iteration is over, 
the values held in temporary space are updated as new 
values. Before starting computation for the next iteration, 
once again X and O are loaded in to FPGA. 
 
Suppose we want to find MST for a graph of 10 nodes 
using an FPGA that can accommodate only 4 nodes, in 
that case computation to be done in an iteration is divided 
in to three steps as shown in Figure 29.  

 

 

 

 NAMST 
(Basic) 

NAMST-A 
(Adaptive) 

N 5 10 17 5 10 17 

Max. 
Operating 

Clock 
frequency 

122.84 109.38 103.00 105.26 97.42 81.60 

LUT % 1 3 7 2 6 12 

Gate Count 4,061 7,880 14,058 8,606 18,329 33,324

Clock cycles 8 17 28 10 20 35 

Execution 
time in ns 

using Max. 
operating  

clock(FPGA) 

65.12 155.42 271.84 95.00 205.29 428.92

Actual Clock 
used MHz 
(Virtex- II 

Pro) 

100 100 100 100 50 50 

Execution 
time in ns 
(Virtex II -

Pro) 
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Fig. 28. Interface between FPGA and host computer for 'k’ nodes 
computation. 

Fig. 27. Execution times for NAMST. Fig. 29. Computation of '4' nodes in a clock cycle.
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7. Conclusions 

A new reconfigurable logic based minimum spanning tree 
algorithm (NAMST-A) is proposed. NAMST-A has a time 
complexity O(N). The algorithm is based on ball and 
string model. Unlike most other existing algorithms, 
NAMST-A does not need to find minimum of 
nodes/adjacent nodes, which makes it faster compared to 
other MST algorithms. In addition, it is implemented on 
reconfigurable logic to have high performance close to 
that of ASICs. In the basic version/NAMST, nodes always 
fall down by a unit distance and hence ‘S’ clock cycles are 
needed to find MST, where ‘S’ is the size of the MST. The 
adaptive version of NAMST (NAMST-A) takes less than 
S clock cycles to find MST in graphs with large edge 
weights(>5), but takes more than ‘S’ clock cycles in case 
of graphs with small edge weights. Hence for graphs with 
small edge weights basic version is efficient and for 
graphs with large edge weights adaptive version is 
efficient. 
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