
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

219

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

Complexity Metrics for Measuring the Understandability and
Maintainability of Business Process Models using Goal-Question-Metric

(GQM)

Abdul Azim Abdul Ghani Koh Tieng Wei Geoffrey Muchiri Muketha Wong Pei Wen

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor.

Summary
Business Process Models (BPMs), often created using a
modeling language such as UML activity diagrams, Event-
Driven Process Chains Markup Language (EPML) and Yet
Another Workflow Language (YAWL), serve as a base for
communication between the stakeholders in the software
development process. In order to fulfill this purpose, they should
be easy to understand and easy to maintain. For this reason, it is
useful to have measures that can provide us adequate
information about understandability and maintainability of the
BPM. Although there are hundreds of software complexity
measures that have been described and published by many
researchers over the last few decades, measuring the complexity
of business process models is a rather new area of research with
only a small number of contributions. In this paper, we provide a
comprehensive report on how existing complexity metrics of
software were adapted in order to analyze the current business
process models’ complexity. We also proposed a Goal-
Question-Metric (GQM) framework for measuring the
understandability and maintainability of BPMs.

Keywords:
Complexity Metrics, Business Process Modeling and Analysis,
Goal-Question-Metric

1. Introduction

One of the main purposes for developing BPM is to
support the communication between the stakeholders in
the software development process [4]. To fulfill this
objective, the models should be easy to understand and
easy to maintain. If we are interested to create a model
that is easy to understand and easy to maintain, at first we
have to define what is understandability and
maintainability: Boehm defines understandability as the
degree to which the purpose of the system or component
is clear to the evaluator, while in the later case, the IEEE
Standard Computer Dictionary defines maintainability as
the ease with which a software system or component can
be modified to correct faults, improve performance, or
other attributes, or adapt to a changed environment. To a
certain extent, we may conclude that the measurements
should tell us whether the model is easy or difficult to
understand and, we may conclude from the metrics that
the model should be re-engineered, for example by
decomposing it into simpler modules.

There are hundreds of software complexity metrics
measures that have been described and published by a
significant number of researchers. Metrics were designed
to analyze software such as imperative, procedural, and
object-oriented programs [5]. For example, the most
fundamental complexity measure, the number of lines of
code (LOC), simply counts the lines of executable code,
data declarations, comments, and so on. While this
measure is extremely simple, it has been used successfully
for the purposes like predicting the error rate, estimating
development and maintenance costs. However, to our best
knowledge, there is almost no published work where the
metrics were created particularly for measuring the
complexity of BPM. Most of the works are transfer and
adaptation of quality metrics from software engineering
domain to business processes [6].

In this paper, we discuss in the most comprehensive way
on how a set existing complexity metrics of software were
modified and adapted by researchers to provide useful
information on complexity of the BPM. This paper is
organized as follows. In Section 2, various efforts of
works on complexity metric for BPM are reported. Then
we have summarized the metrics from literature and their
usage for analyzing the complexity of BPM in Section 3.
This is followed by our proposed GQM-based metrics for
measuring the understandability and maintainability of
BPM. Conclusions and future works are drawn in Section
5.

2. Related Work

To our knowledge, there is no much published work about
complexity analysis of BPM. The authors of [5] have
surveyed several contributions from neighboring
disciplines on how complexity can be measured. They
have gathered insight from software engineering,
cognitive science, and graph theory, and discussed to what
extent analogous metrics can be defined for business
process models. In order to demonstrate that these metrics
serve their purpose, they plan to carry out several
empirical validations by means of controlled experiments.
These experiments will involve more than 100 students

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

220

from the 3 Universities from Netherlands, Austria and
Portugal. The collected data will be analyzed using
statistical methods to verify the degree of correlation
between students’ perception of complexity of processes
and the proposed metrics. In their small experiment that
involved 19 graduates students was conducted and tested
if the control-flow complexity of a set of 22 business
processes could be predicted using Control Flow
Complexity (CFC) metrics. The analyzed result shows
that CFC metric is highly correlated with the CFC of
processes. They concluded that the metric can be used by
business process analysts and process designers to analyze
the complexity of processes and, if possible, develop
simpler processes.

On the other hand, Jorge Cardoso also proposed a CFC
metric to be used during the design of processes. It can be
used to evaluate the difficulty of producing Business
Process Execution Language (BPEL) process design
before implementation. In addition, they also investigate
the complexity concept to avoid a vague use of the term
“complexity” in the workflow designs. They have
presented several complexity metrics that have been used
for number of years in adjacent fields of science and
explain how they can be adapted and used to evaluate the
complexity of workflows. An empirical validation of the
CFC metric was carried out [11].

Irene Vanderfeesten [6] claims that modeling and
designing business processes without the aid of metrics to
question the quality or properties of their models will lead
to a lower understandability and higher maintenance costs,
and perhaps inefficient execution of the processes in
question as a result of simple processes being modeled in
a complex and unsuitable way. The authors have
elaborated on the importance of quality metrics for
business modeling. It presents a classification and an
overview of current business process modeling and it
gives an example of the implementation of these metrics
using the ProM tool where it can be used to study process
models implemented in more than eight languages.

Since it is not yet clear which metrics are needed in order
to guide and increase the quality of model design, Jan
Mendling [7] has proposed a density metric inspired by
social network analysis in order to quantify the
complexity of an EPC business model on a scale between
zero and one. They have considered minimum and
maximum number of arcs for a given set of function,
event, and connector nodes. In addition, they also test the
EPC density metric in combination with simple metrics of
size for its capability to predict errors in the SAP
reference model. While the significance of density is
promising, the experiment reveals that there are further
metrics needed in addition to density.

In the first place, we agreed to [5] and believed intuitively
that if there are some similarities between software
programs and business processes as shown in Table 1,
then business management systems should have similar
characteristics as other software programs. However, a
specialized quality evaluation of metrics by completely
understanding the difference between the business process
management enterprise software and other software
products was carried out in [13]. Surprisingly, their results
show that business process management is the software
focused on different processes which is something
different from other systems and the presented quality
evaluation metrics reflecting the characteristics of
business process management, process-based software
based on the ISO/IEC 9126 model which is the standard
quality evaluation metric.

Table 1: Similarities between software programs and
business processes

Software Program Business Process
Module/ Class Activity
Method/ Function Operation
Variable/ Constant Data element

A measurement framework based on the GQM paradigm
was proposed in [1]. It is generally applicable to any
business process and supporting software system after its
instantiation. The collaborative software environment
WebEv, Web for the Evaluation, is also proposed for
facilitating the collection and elaboration of the required
measures. To our best understanding on GQM, we have
suggested a few metrics for measuring the
understandability and maintainability of BPM in Section 4.

Volker Gruhn [15] has adopted the cognitive complexity
measure to estimate the comprehension effort for
understanding software. Overviews about factors that
have an influence on the complexity of control flow of a
BPM and metrics that can be used to measure these
factors were discussed in [16]. However, no formal
validation on the proposed metrics has been discussed.

3. Adaptation of Complexity Metrics in
Business Process Model

In this section, we will analyze and summarize the
adaptation of software engineering complexity metrics
which are applied in business process models into 5
categories: size, complexity, structure, comprehensiveness
and modularization. We believed all the following metrics
are helpful in business process design and modeling.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 221

3.1 Size of the Model

The most fundamental and easiest complexity
measurement for software program is the LOC count
which represents the program size. The basic of the LOC
measure is that program length can be used as a predictor
of program characteristics such as errors occurrences,
reliability, and ease of maintenance. In business processes,
we can derive a very simple metric that merely counts the
number of activities (NOA) in a business process. It
should be noted that NOA metric does not take into
account of functionalities in this case and it is not
language dependent as the original LOC metric.

Another adaptation of the LOC metric is it also takes into
account process control-flow elements. If we can consider
the processes are well structured, then we can simply
count the control structures corresponding to splits, since
it is explicitly known that a corresponding join exits.
Several adaptation of LOC metric was derived in [5].

3.2 Complexity of the Model

The cyclomatic number, introduced by McCabe, is the
most widely used measurement in software program. It
calculates from the control flow graph and measures the
number of linearly-independent paths. The cyclomatic
number indicates that the program is easy to understand
and modify. Cardoso [5] has suggested a complexity
measure for BPMs which is a generalization of McCabe’s
cyclomatic number. The CFC metric was based on the
analysis of XOR-splits, OR-splits and, AND-splits control
statement. The main idea behind the CFC metric defined
by Cardoso is the number of mental states that have to be
considered when designer develops a process.

The measure of Halstead is another measure of software
complexity. The measures were developed as a means of
determining a quantitative measure of complexity based
on a program comprehension as a function of program
operands and operators. Cardoso [5] has suggested to map
business process elements to the set of primitive measures
proposed by Halstead. With these primitive measures,
Cardoso has introduced the notion of Halstead-based
process Complexity (HPC) measures for estimating
process length, volume, and difficulty. According to the
author, HPC measures do not require in-depth analysis of
process structures, they can predict rate of errors and
maintenance effort, easy to calculate and applicable for
most process modeling languages.

On the other hand, J. Mendling [7] has found out that
Adaptation of McMabe cyclomatic metric has no impact
on the odds of an error in a BMP model and, include
HPC as well did not provide proper distinction between

size and complexity. J. Mendling has defined the density
metrics to calculate the minimum and maximum number
of arcs for a given set of function, event, and connector
nodes. The results tested for this metric is mixed.
Advantages and limitations are both included in the test
result for this metric. The density metric capable to predict
errors in the SAP reference model, positive impact on
error probability on a significance level better than 99%
but the density metric and size together are not sufficient
to explain the variance of errors.

3.3 Structure of the Model

Gruhn [16] claims that model that contains greater nesting
depth implies greater complexity. Here shows that the
nesting depth value has its impact onto the structured
related complexity metrics. The nesting depth of an
element implies number of decisions in the control flow
that are necessary to reach this element.

Some models might be having a numbers of control flows
that needed to go through to get a decision in order to
come to final outcome. The model with nested XOR-splits
and XOR-joins might be more complex and harder to
understand than almost linear model, but the CFC for both
models might be same. For this reason, the author [16]
also has suggested to use the nesting depth metric to get
the nesting depth value and add the value to the CFC in
order to measure the complexity of BMP.

One of the differences between a well structured model
and not well structured model is the splits or joins. In the
well structured model, splits or joins are contained
completely within the control structure whereas the not
well structured model may have a jump out of the control
block. Not being well structured in BPM informally
means that a misfit between the split and join connectors
exists.

The author in [8] also has suggested to use the split-join-
ratio to calculate the misfit between the split and join
connectors in BPM as what the knot count metric that is
been used to calculate the jumps out of and into a
structured control flow for software programs. The metric
says to be too simple to measure the unstructured model
due to the unstructured in one part of the BPM that results
a high value for split-join-ration can be corrected by
simply adding another unstructured element into the
model which has too small split-join-ratio. The research
for this metric is still under preparation. Due to this metric
is too simple to measure unstructured model.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

222

3.4 Comprehensiveness of the Model

According to [5], cognitive complexity is related to
cognitive psychology that aims at studying, among other
things, thinking, reasoning, and decision making. The
understanding of cognitive complexity is to divide the
memory into long term and short term memory. The short
term memory limit the duration of storage to less than
about 30 seconds whereas the long term memory can last
can last as little as 30 seconds or as long as decades. The
chunk of processes that can be captured and stored by a
short term memory would be determined as meaningful.
The structure of the BPM has to be taken into account
when it is measured by cognitive weight due to the model
may have cancellation or other concepts. Gruhn claims
that the cognitive weight is still needed to have further
research for its usage as the basic idea in BPM.

Process patterns are examples that show how to connect
activities together to solve a common problem. In
software complexity, a good design pattern helps to
improve code quality, understandability and
maintainability [16]. The author [12] recognizes the anti-
patterns. Anti-patterns are specific repeated practices that
appear initially to be beneficial, but ultimately result in
bad consequences that outweigh the hoped-for advantages
[Wikipedia]. If the anti-pattern has been found in coding,
this is a sign of a bad programming [16]. The author [16]
also says that uncovering the anti-patterns in BPM should
be useful in order to define whether the model has a good
modeling style.

3.5 Modularization of the Model

Modular modeling of business process is supported by
almost all BPM languages. By dividing a BPM into
modular sub-models we can increase their
understandability and also lead to smaller, reusable
models for future maintenance.

Henry and Kafura [14] proposed a metric based on the
impact of the information flow in the program’ structure.
The technique suggests identifying the number of calls to
module (i.e. the flows of local information entering: Fan-
In) and identifying the number of calls from a module (i.e.
the flows of local information leaving: Fan-Out). This
metric can be used in the same way for analyzing BPMs.
If a sub-model of a BPM has a high structural complexity
according to the fan-in/fan-out metric, they will be
difficult to use and are most likely poorly designed. The
high value for fan-in will achieve by the module been
called and used by other module and high fan-out is
caused by the module called to use or import the other
modules [16].

4. GQM-based Complexity Metrics

Although some researchers have proposed individual or
sets of isolated metrics such as [9], they do not give us
guidelines on how to choose a particular metric for a
particular situation. Several models have been proposed to
address this problem. In the two subsections that follow,
we compare two previous approaches with GQM, and
then give a GQM example that derives understandability
and maintainability metrics for business process models.

4.1 Approaches for Deriving Metrics

A powerful approach called Goal-Attribute-Measure
(GAM) has been proposed [20]. It is based on Norman
Fenton’s [18] ideas where measurement objects are
identified as products, processes and resources. To derive
measures in GAM, identify measurement customers and
their goals, and then identify a set of target attributes, their
driving attributes, and measurement objects. Attributes are
then divided into directly measurable sub attributes from
which a set of measures are defined [20, 21]. In GAM, the
scope of goals is on measurement objects while focus is
on the structuring and definition of attributes.

In a related study [17] a popular approach called the
Balanced Scorecard (BSC) is proposed. It originated from
strategic management and is used by top management to
provide a measure on how the organization is progressing
towards its strategic goals [17]. BSC provides four
perspectives namely, financial perspective (shareholders’
view), customer perspective (value-adding view), internal
perspective (process-based view), and learning and
growth perspective (future view).

The first step in deriving BSC measures starts with the
analysis of the mission and vision of the organization.
This is followed by the definition of goals for financial
and other perspectives. The next step defines drivers that
will help achieve the goals. Finally, indicators for each
driver are defined [1, 19].

One of the most goal-focused and most widely used of all
other measurement approaches is the Goal-Question-
Metric (GQM) [1-3, 19]. A GQM a team defines project
goals and a set of questions to achieve each goal. Next,
the team develops metrics to address each question.
GQM’s questions and metrics are similar to BSC’s drivers
and indicators respectively except they have a different
scope. A detailed description of the differences and
similarities between BSC and GQM can be found in [19].

The initial GQM paradigm was too flexible, and could
easily generate unnecessarily large sets of metrics. Several
different improvements have been proposed to address

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 223

this problem. In [18] it is argued that GQM should be
combined with process maturity level of the organization
in order to determine the most appropriate metrics. For
example, if an organization is at maturity level 1, only
baseline measures can be collected since most of the
characteristics of objects to be measured are ill-defined.
On the other hand, a richer set of measures can be
collected at higher maturity levels where processes are
well defined [18].

In [3] a prioritization step has been incorporated into
GQM to reduce the generated metrics to a bare minimum.
The problem with prioritization is that it has the side
effect of a stripped-down GQM tree which may fail to
address certain perspectives of the project. Table 2 below
compares GAM, BSC and GQM approaches for defining
metrics.

Table 2: Comparison of GAM, BSC, and GQM
approaches

Approach Architecture Scope Focus
GAM Goal

Attribute
Measure

Measurement
object

Attribute
structuring
& definition

BSC Goal
Driver
Indicator

Organization Driver
definition

GQM Goal
Question
Metric

Project Question
definition

As can be seen from the table above, GAM is best used to
measure specific objects; BSC is used when measuring
organizational progress even outside IT scope; and GQM
is used when measuring a software project as a whole.

4.2 Metrics for Understandability and
Maintainability

In this paper, we define understandability as the ability to
easily manage business flow without additional
explanation. Case example: Can users easily understand
some functions such as “Undo” or “Resubmit”? We also
define maintainability as the ability to agilely change
business process. Case example: How easy is it to change
business process in runtime?

In this section we apply GQM to the twin goals of
understandability and maintainability. Our aim is to
generate the complete set of metrics that can help an
organization to measure all attributes of these two goals
from the perspective of user satisfaction, usability,
functionality and reliability. We demonstrate this in our
example below:

G1 To analyze a business process with the aim to
evaluate its comprehensibility from user point of
view

Q1.1 How easy is it to read the model?

M1.1.1 No. of symbols and formulas
used

M1.1.2 Type of structures used
M1.1.3 No. of unstructured statements

Q1.2 To what extent is it convenient?

M1.2.1 Types of standards used

G2 To analyze a business process with the aim to

evaluate its changeability from manager point of
view

Q2.1 How complex is the process?

M2.1.1 No. of activities/ services in the
process

M2.1.2 LOC (for an executable
language like BPEL)

M2.1.3 CFC
M2.1.4 No. of modules in process or

sub-system
M2.1.5 Fan-in and Fan-out

After generating a list of metrics, numeric formulas are
then developed for each metric. Before use, the metrics
should be validated through empirical experiments that
test the correlation between a metric and the attribute
being measured. For example in [11] a CFC validation
experiment was conducted with the hypothesis that there
is a significant correlation between the CFC metric and
the subject’s rating of the control-flow complexity of
processes. We, however, did not validate our GQM
metrics example above because a controlled experiment is
beyond the scope of this paper and has to be done in
future research.

5. Conclusion and Future Research

In this paper, we have surveyed and reported few findings
from software engineering, particularly in complexity
metrics, and we gather opinion from researchers as to
what extent analogous metrics can be defined for business
process models. Table 3 summarizes the results from our
survey: adaptation of complexity metrics of software
program in BPMs.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

224

Table 3: Complexity Metrics for software and BPMs
Software
Complexity
Metric

BPM
complexity
Metric

Usage of the metric in
BPM

Lines of
code

Number of
activities

Simply count the
number of activities for
the model.

Cyclomatic
number

 CFC Measure the number of
control flow in the
model.

Nesting
depth

Nesting
depth

Defined the structured
of the model. Higher
nesting depth value
indicates more
complex.

Knot-count Split-join-
ratio

To define whether the
model being well
structured

Cognitive
Weight

Cognitive
Weight

Measure the
understandability of a
model

Anti-pattern Anti-
pattern

To uncover the bad
modeling style in BPM
model.

Fan-in/Fan
out

Fan-in/Fan
out

To define good or bad
modularization of a
model.

GQM ensures that each metric has a purpose, and no
metrics are defined without a purpose. We provided a
GQM-based complexity metrics for handling the
understandability and maintainability of BPM in Section 4.

In our future research, we intend to investigate and extend
the GQM approach to enable it to generate the minimum
set of metrics that is also complete and that doesn’t lead to
the problem of a stripped-down GQM tree. Also, most of
the adapted metrics on BPM have not been validated, and
we therefore plan to conduct validation experiments as
future work.

References
[1] Lerina Aversano, Thierry Bodhuin, Gerardo Canfora,

Maria Tortorella, (2004). “A Framework for
Measuring Business Processes based on GQM”.
Proceeding of the 37th Hawaii International
Conference on System Sciences @ 2004 IEEE.

[2] Victor Basili, G. Caldiera and H. D. Rombach, “The
Goal Question Metric Approach”. Encyclopedia of
Software Engineering, Wiley, 1994.

[3] Berander, P. and P. Jonsson. “A Goal Question Metric
Based Approach for Efficient Measurement
Framework Definition”. ISESE’06. ACM. 2006.

[4] Bill Curtis, Marc I. Kellner and Jim Over, (1992).
“Process Modeling”. Communications of the ACM.
Vol35(9). pp.75-90.

[5] Jorge Cardoso, J. Mendling, G. Neumann, H.A.
Reijers, (2006). "A Discourse on Complexity of
Process Models", BPI’06 - Second International
Workshop on Business Process Intelligence, In
conjunction with BPM 2006, Vienna, Austria, 5-7
September, 2006. J. Eder, S. Dustdar et al. (Eds.):
BPM 2006 Workshops, LNCS 4103, pp. 115–126,
2006. Springer-Verlag, Berlin, Heidelberg, 2006.

[6] Irene Vanderfeesten, Jorge Cardoso, Jan Mendling,
Hajo A. Reijers, Wil van der Aalst, (2007). “Quality
Metrics for Business Process Models”. Workflow
Handbook 2007, WfMC, Layna Fischer (Ed.),
Lighthouse Point, FL, USA, Future Strategies Inc., pp.
179-190. ISBN: 0-9777527-1-2.

[7] Jan Mendling, (2007). “Testing Density as a
Complexity Metric for EPCs”. Vienna University of
Economics and Business Administration Augasse 2-6,
A-1090Wien, Austria.

[8] Jan Mendling, M.Moser, G.Neumann, H.M.W.
Verbeek, B.F.van Dongen, and W.M.P .vander Aalst
“A Quantitative Analysis of Faulty EPC in the SAP
Reference Model” Vienna University of Economics
and Business Administration Augasse2-6, 1090
Vienna, Austria.

[9] Jorge Cardoso, (2006). “Complexity Analysis of
BPEL Web Processes”. Software Process:
Improvement and Practice Journal @ 2006 John Wiley
& Sons, Ltd.

[10] Jorge Cardoso, (2006). “Approaches to Compute
Workflow Complexity”. Department of Mathematics
and Engineering University of Madeira, 9050-390
Funchal, Portugal

[11] Jorge Cardoso, (2006). “Process Control-flow
Complexity Metric: An Empirical Validation” IEEE
International Conference on Services Computing
(IEEE SCC 06), Chicago, USA, September 18-22,
2006. pp. 167-173, IEEE Computer Society. ISBN: 0-
7695-2670-5

[12] Juha Gustafsson (2000). “Metrics Calculation in
Maisa”

[13] Lee Yeong Seok, Bae Jung Hyun, Shin Scok Koo,
(2005). “Development of Quality Evaluation Metrics
for BPM (Business Process Management) System”.
Proceedings of the Fourth Annual ACIS International
Conference on Computer and Information Science
(ICIS’05) @ 2005 IEEE.

[14] S. Henry, D. Kafura, (1981). “Sofware Structure
Metrics based on Information-flow” IEEE
Transactions on Software Engineering, 7(5), pp.510 –
518

[15] Volker Gruhn, Ralf Laue, (2006). “Adopting the
Cognitive Complexity Measure for Business Models”.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 225

Proceedings of the 5th IEEE Int. Conf. on Cognitive
Informatics (ICCI’06) @ 2006 IEEE.

[16] Volker Gruhn, Ralf Laue, (2007). “2 Approaches for
Business Process Model Complexity Metrics”.
Technology for Business Information System, pp.13-
24 @ 2007 Springer.

[17] Maris Martinsons, Robert Davison, Dennis Tse,
(1999). “The Balanced Scorecard: a Foundation for
the Strategic Management of Information Systems”.
Decision Support Systems 25 (1999), pp. 71-78.

[18] Norman Fenton and Shari. L. Pfleenger, (1996).
Software Metrics: A rigorous and Practical Approach,
2nd edition, IT Publishing Company.

[19] Luigi Buglione and Alain Abran, “Balanced
Scorecard and GQM: what are the differences?”
(2000). FESMA-AEMES Software Measurement
Conferences.

[20] A.T. Nilsson and J. L. Rise, (1996). “Performance
Measurements, Procedure to Design Measures – Goal
Attribute Measure (GAM)”, Ericsson Quality Institute,
LME/Q-93:332, Rev.E, (Internal Publication).

[21] Jorma Hirvensalo, (2003). “Quality Measurement
and the Utilization of Measurement Results in a
Software Development Process”, Doctoral
Dissertation, Helsinki University of Science and
Technology.

Abdul Azim Abdul Ghani is an
Associate Professor cum the Dean of
the Faculty of Computer Science and
Information Technology, University
Putra Malaysia. He obtained his PhD
in computer science from University
of Strathclyde, Scotland. His
research interests are software
metrics and software quality.

Koh Tieng Wei received the first
degree in computer science in 2003
and the MS degree in software
engineering in 2006 from the Putra
University, Malaysia. Currently, he
is pursuing a PhD degree with his
research work related to object-
oriented software sizing measure.

Geoffrey Muchiri Muketha
received a Bachelor of Science
degree in Information Science from
Moi University, Kenya, in 1995 and
a Master of Science degree in
Computer Science from Periyar
University, India in 2004. He is
currently pursuing his PhD in
Software Engineering from

Universiti Putra Malaysia, Malaysia. His research interests
are Business Process modeling and measurement.

Wong Pei Wen received the
Bachelor of Computer Science in
2007 in University Putra Malasia and
now she is pursuing the Master of
Science degree in Computer Science
from University Putra Malasia.

