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Abstract 
Incomplete information systems are expanded with the 
significance of objects in order to combine factors such as 
decision maker’s preferences and prior domain knowledge, 
etc. In the expanded incomplete information systems, 
information granules have their own significance, some 
basic concepts in rough set theory such as accuracy 
measure, rough entropies of knowledge and a set are both 
established and proved to be monotonous. Weightily, the 
concepts of knowledge dependency and knowledge 
dependency for decision are not only established but also 
deeply investigated. Furthermore, the measurement of   
knowledge dependency is described by mathematical 
formula strictly, some interesting results about the 
measurement of knowledge dependency are gained with 
the changing of knowledge.  
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1. Introduction 

 
As one of the effective mathematical tools for 

intelligent data analysis[1], Rough Set Theory (RST)[2] 
has been received more and more recognitions by a lot of 
researchers in recent years. The traditional RST was 
proposed by Pawlak and it is on the assumption that all 
objects in the universe have complete values of attributes. 
Unfortunately, incomplete information systems (IIS) can 
be seen everywhere in actual world. There are also many 
researchers have done significant jobs to expand the 
indiscernibility relation that in traditional RST to some 
other relations such as tolerance relation[3], similarity 
relation[4], limited tolerance relation[5] or more common 
binary relation (reflective is needed) in order to use RST to 
deal with incomplete information systems directly and 
effectively.  

Rough set models, whether in complete or incomplete 
information systems, are on the assumption that objects are 
equally important, ie., all objects in universe have same 
significance or importance. However, practical problems 
are not as simple as the assumption sometimes. For 
instance, the different sources of data, the prior domain 
knowledge in different fields and subjective preferences 
with different decision-makers[6], etc, are all able to make 

different objects have different levels of significance. From 
that, it is important to extend incomplete information 
systems by the significance of objects.  
 
2.Expanded incomplete information system 

 
An incomplete information system is a 

quadrupleS =< U,AT,V,f > , where U  is a non-empty 
finite set of objects  

Table 1 An expanded IIS 
 P M S A f’ 
1 H H F D,E 0.8 
2 L * F,C E 0.7 
3 * * C D 0.5 
4 H * F D 0.8 
5 * * F D 0.9 
6 L * F * 1.0 
      

and AT is a non-empty finite set of attributes, such that 
a AT∈  : aU V→ , where aV  is called the value set 

of a. Any attribute domain aV  may contain not only 
special symbol “*” to indicate that the value of an attribute 
is unknown but also set of values. V  is regard as the 
value set of all attributes in S  and then V  should 
satisfies with aV= Va AT∈∪ . Define f as an information 

function in S  and there will be f (x, a) ∈ aV  for any 

a∈ AT  and  x ∈  U.  
 
Definition 1  Let S  be an incomplete information 
system and 1 2,ψ ψ  be two coverings on universe U. If 

μ∀ ∈ 1,ψ ν∃ ∈ 2ψ  holds that μ ν⊆  and if 

2 ,ν ψ μ∀ ∈ ∃ ∈ 1ψ  holds ν μ⊇ , then covering 1ψ  

is a refinement of 2ψ , or equivalently 2ψ  is a 

coarsening of 1ψ , denoted by 1 2ψ ψp  . 
 
Definition 2  An incomplete information system with the 
significance of objects is an expansion of incomplete 
information system, denoted by 
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' ' 'S  =< U,AT,V,f,V ,f  > , where 'V  is the value set 

of objects’ significance and 'f  is a function such that for 
x∀ ∈ U, 'f  (x) ∈ 'V  . Table 1 is an expanded 

incomplete information system in which the information 
function 'f  represents the significance of each object. In 
general, 'f (x) ∈  [0, 1].  

Let 'S  be an expanded incomplete information 
system, for each subset of attributes ATA⊆ , A  
determines a binary relation AR  on U. AR  is not 
always an indiscernibility relation but some other binary 
relation. The binary relation represents the similarity 
between elements of a universe. It is reasonable to assume 
that a binary relation is at least reflexive, but not 
necessarily symmetric and transitive and as a result we call 

AR  is a reflective binary relation[7].  

Furthermore, for any x∈U, let us denote by R[x] the 

set of objects y for which AR  holds, in other words, 

R[x]
A

 is the maximal set of objects which have relation 

AR  with x. In expanded incomplete information system 
'S , R[x]

A
 is a information granule of x with relation 

AR , it is different from the information granule created by 
indiscernibility relation for the reason that any one element 
in the universe may belong to two or more different 
information granules.  
Any one information granule in the expanded incomplete 
information system has an important 
property—-significance, that could be represented as F 
( R[x]

A
)=

A

'
y [x]

f ( )y
∈∑  

Let AU/R  denote classification, which is the family 

set { R[x]
A

: x ∈U}. What should be noticed is that a 

reflective binary relation in 'S  does not constitute a 
partition in general, but a covering on universe U. 
Obviously, AU/R∪ = U and R[x] .

A
≠ ∅   

We know that if B ATA⊆ ⊆ , then 

B AU/R U/Rp .  
 
Definition 3  Let 'S  be an expanded incomplete 
information system, A AT⊆  , then for UX∀ ⊆ , the 
B-lower approximation and the B-upper approximation of 
X are defined as follows, respectively:  

*A ( ) { :[ ] }
ARX x U x X= ∈ ⊆        (1) 

*A ( ) { :[ ] }
ARX x U x X= ∈ ∩ ≠ ∅    (2) 

 
 
Definition 4  Let 'S  be an expanded incomplete 
information system, A AT⊆ and UX ⊆ , then the 
significance of set X is denoted by F 
(X)= '

y X
( ) f ( )F X y

∈
=∑ , the significance of lower and 

upper approximation of X are defined as follows, 
respectively:  

*

'
* y (X)

( ( )) f ( )
A

F A X y
∈

=∑         (3) 

*
*

'
y (X)

( ( )) f ( )
A

F A X y
∈

=∑         (4)  

Using the concepts of significance of lower and upper 
approximation, we can define accuracy measure in 
expanded incomplete information systems as follows.  
 
Definition 5  Let 'S  be an expanded incomplete 
information system, ATA⊆  , the accuracy measure of 
rough set UX ⊆  is defined as:  

*

*
*

*
' '

y (X) y (X)

( ) ( ( )) / ( ( ))

f ( ) / f ( )
A

A A

X F A X F A X

y y

α

∈ ∈

=

=∑ ∑
     (5) 

Theorem 1  Let 'S  be an expanded incomplete 
information system and UX ⊆ , if A B AT⊆ ⊆  , 
then ( ) ( )A BX Xα α≤ .  

Proof For any x∈U, R R[x] [x]
A B
⊇  . According to the 

definition of lower approximation, * *( ) ( )A X B X⊆  

holds. That is, * *( ( )) ( ( ))F A X F B X≤ . Similarly, it is 

easy to prove that * *( ( )) ( ( ))F A X F B X≥ . To sum up, 

we get ( ) ( )A BX Xα α≤ .  
 
Definition 6  Let 'S  be an expanded incomplete 
information system, A AT⊆  , then the rough entropy 
of the knowledge A, denoted by E(A), is defined as:  

A AR R
x U

E(A)=1/F(U) F([x] )log(1/ F([x] ))
∈
∑  (6) 

Theorem 2  Let 'S  be an expanded incomplete 
information system, if B ATA⊆ ⊆  , then E(A)≥E(B) 
holds.  
Proof  For any x U∈ , R R[x] [x]

A B
⊇  , that 

is, R RF([x] ) F([x] )
B A
≤  and R-log(1/F([x] ))

B
 

AR-log(1/F([x] ))≤ .Based on the formation of entropy 
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in Definition 6, 

A

R
R

R
R

F([x] )
(-log(1/F([x] )))

( )
F([x] )

(-log(1/F([x] ))).
( )

B

B

A

F U

F U
≤

 

Extending this inequality, E(A)≥E(B).  
 
Definition 7  Let 'S  be an incomplete information 
system and A AT⊆  , then the rough entropy of 

UX ⊆  about knowledge A, denoted by AE ( )X , is 
defined as:  

AE ( ) E( ) (1 ( ))AX X Xα= + −    （7） 

or AE ( ) E( )*(1 ( ))AX X Xα= −     (8)  

Clearly, A B AT⊆ ⊆  means that AU/R  has a 

small level of granularity than AU/R . It is not difficult to 

prove that A BE ( ) E ( )X X≥  if A B AT⊆ ⊆ , no 
matter what kind of definition of rough entropy of  X  
about knowledge.  

The accuracy measure, rough entropy of knowledge 
and rough entropy of a set will be degenerated to the 
traditional concepts in incomplete information systems if 
all objects have the same significance. In other words, for 
any x∈ U, 'f (x) is a constant. Besides, those basic 
concepts in expanded incomplete information systems are 
also monotonously changing, while the granularity level of 
the classification on the universe is changing 
monotonously.  

It is easy to prove the following properties in expanded 
incomplete information system:  

*
*F(A (X)) F(X) F(A (X))≤ ≤    (9)        

*
*F(A ( )) F( ) F(A ( ))=0∅ = ∅ = ∅     (10) 

*
*F(A ( )) F( ) F(A ( ))U U U= =       (11) 

* **F(A ( )) F(A (X) A ( )))X Y Y∪ ≥ ∪  (12) 

* **F(A ( )) F(A (X) A ( )))X Y Y∩ ≤ ∩  (13) 

3. Knowledge dependency  
Using classification, we can analyze dependencies 

between two subsets of attributes[8]. For an expanded 
incomplete information system 'S , let x, y∈ U and 
A AT⊆ . We denote (x, y)∈RA if and only if (x, y)∈Ra 
for all a∈A.  

 
Definition 8  Let 'S  be an expanded incomplete 
information system, a knowledge dependency between 
subsets of attributes A,B AT⊆  , is denoted by 

A B→  which holds in the information system 'S  if 
and only if, for every x, y∈U, which have that (x, 
y)∈ AR  implies (x, y)∈ BR .  

The partial dependency of knowledge means that 
reasoning between knowledge could be partially. In other 
words, part of the knowledge B could be reasoned by A 
and the partial reasonability could be represented by 
positive space of knowledge. 
 
Definition 9  In an incomplete information system 
without considering the significance of objects, 
A,B AT⊆  , the positive space determined by A with 
respect to B on universe U, denoted by POS(A, B), is 
defined as follows:  
POS(A,B)= *{ ( ) : / }AA X X U R∪ ∈   (14)   

 
Definition 10   Let 'S  be an expanded incomplete 
information system and A,B AT⊆ . Knowledge B 
depends in degree k from knowledge A, denoted by 

kA B⎯⎯→ ,  where  k∈ [0, 1] and is defined as 
follows:  

'
x POS(A,B)

'

f ( ) ( ( , )k=
f ( ) ( )

x U

x F POS A B
x F U

∈

∈

=
∑
∑

 (15)  

Clearly, when 'f ( )x  is a constant, k is the traditional 

degree of knowledge dependency. If  0A B⎯⎯→ ,then 
we can say that  A,B  are independent; if  1A B⎯⎯→ , 
then we can simply write A B→ . 
 
Definition 11  Let 'S  be an expanded incomplete 
information system, an identity dependency between 
knowledge A, B AT⊆  is a statement, denoted by 
A B↔ , which holds in a information system if and only 
if  A B→  and B A→ .  
Lemma  Let 'S  be an expanded incomplete 
information system, sets of attributes A,B,C AT⊆  , 
then we have properties:  
POS(A, B)⊆ POS(A∪ C, B)         (16) 
POS(A, B)⊇POS(A, B∪ C)         (17) 
POS(A, B C)∪ ⊆ POS(A∪ C, B)      (18) 
POS(B,C)=U⇒POS(A,B)⊆ POS(A,C) (19) 
A⊆B⇒POS(A, C)⊆ POS(B, C)     (20) 
Proof  For any x∈U, we have [ ] [ ]

A A CR Rx x
∪

⊇  . For 

any W∈ / BU R , if [ ]
ARx W⊆ , then [ ]

A CRx W
∪
⊆ . 

Conversely, [ ]
A CRx W
∪
⊆  does not mean [ ]

ARx W⊆ . 
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So it is clear that POS(A, B)⊆ POS(A∪ C, B). That is, 
formula (17) is held. 

For any x∈U, we have  [ ] [ ]
B B CR Rx x

∪
⊇ . For any 

W∈ / AU R , if W [ ]
B CRx
∪

⊆  , then W [ ]
BRx⊆ . But  

W [ ]
BRx⊆  does not mean W [ ]

B CRx
∪

⊆ . So from the 
above discussed, it is clear that POS(A, B) ⊇ POS(A, 
B∪ C). 

 According to formula (16) and (17), we have POS(A, 
B)⊆ POS(A∪ C, B) and POS(A, B) ⊇POS(A, B∪ C). 
Then POS(A, B∪ C) ⊆ POS(A, B)⊆ POS(A∪ C, B). 
This means that formula (18) is also right. 

 Suppose x POS(A, B)∈ . Then there exists 
W ∈ / BU R  such that [ ]

BRx W⊆ . Owing to 
POS(B,C)= U, we have x POS(B,C) and ∈ there exists 
V ∈ / CU R  such that W ⊆ V . In other words, 

[ ]
BRx W V⊆ ⊆ . Therefore, x∈POS(A,C). Since x is 

arbitrary, POS(A, B)⊆ POS(A,C). That is to say, formula 
(19) is out of question. 

Suppose x ∈ POS(A,C). That is, there exists 
W∈ / CU R  such that [ ]

ARx W⊆ . Owing to A⊆B, we 

have [ ] [ ]
A BR Rx x⊇ . Thus [ ]

BRx W⊆ . In other words, 
x∈POS(B, C). Furthermore, POS(A,C)⊆ POS(B,C), and 
then formula (20) is also okay. 

Corollary 1  Let 'S  be an expanded incomplete 
information system and sets of attributes A, B, C⊆AT , 
then we have the following relationships:  

(1) if 1kA B⎯⎯→  and  2kA C B∪ ⎯⎯→  ,  then 

1 2k k≤ ; (2) if  1kA B⎯⎯→  and  2kA B C⎯⎯→ ∪  , then 

1 2k k≥ ; (3) if 1kA B C⎯⎯→ ∪  and 2kA C B∪ ⎯⎯→  , then 

1 2k k≤ ;   (4) if  1kA B⎯⎯→ , B C→  , then 
2 ,kA C⎯⎯→  and 1 2k k≤ ;  (5) if  A B⊆ , 
1kB C⎯⎯→  , then 2 ,kA C⎯⎯→  and 1 2k k≥ .  

Proof (1) Following the formula (16), POS(A, 
B)⊆ POS(A∪ C,B) holds. So 

 ' '
( , ) ( , )

( ) ( )
x POS A B x POS A C B

f x f x
∈ ∈ ∪

≤∑ ∑  is also 

valid. That is, 1 2k k≤ .  
(2) According to formula (17), 

POS(A,B) ⊇ POS(A,B ∪ C) holds. So 
' '

( , ) ( , )
( ) ( )

x POS A B x POS A B C
f x f x

∈ ∈ ∪
≥∑ ∑ . That is, 

1 2k k≥ .  
(3)Following formula (18), POS(A,B ∪ C) 

⊆ POS(A∪ C,B) holds. So 

'
( , )

( )
x POS A B C

f x
∈ ∪∑ '

( , )
( )

x POS A C B
f x

∈ ∪
≤∑ . That is, 

1 2k k≤ .  
(4)   Owing to formula (19), we have POS(B, 

C)=U ⇒ POS(A, B) ⊆ POS(A, C). So 
' '

( , ) ( , )
( ) ( ).

x POS A B x POS A C
f x f x

∈ ∈
≤∑ ∑  That is 

1 2k k≤ . 
(5)  Due to formula (20), we have A ⊆ B implies 

POS(A,C) ⊆ POS(B, C). So 
' '

( , ) ( , )
( ) ( )

x POS B C x POS A C
f x f x

∈ ∈
≤∑ ∑ . That is, 

1 2k k≥ .  
What have been discussed above is around the 

knowledge dependency in information systems, however, 
there are also knowledge dependency (for subset of 
decision) in decision systems. Reference [8] discussed the 
functional dependency (for subset of decision) and 
relational algorithms in complete decision systems. 
Naturally, it is useful to extend this concept in expanded 
incomplete decision systems.  
 
Definition 12  An expanded incomplete decision system 
is an expanded incomplete information system 

' ' '=< U,C D,V,f,V,f  >D ∪ , where C is the set of condition 
attributes and D is  the set  of  decision attributes such 
that C∩D = ∅  and  for  any  d∈D and x∈U, f(d, x) 

* | ( ) | 1f d≠ ∧ =  in which | |T  represents  the 
cardinality of set T .  
 
Definition 13  A knowledge dependency (for a subset 
Y⊆D of decision attributes) between knowledge A, B⊆C 
is a statement, denoted by A→B(Y ), which holds in the 
decision system if and only if F (POS(A, Y )) ≥  F 
(POS(B, Y )), i.e., for 1kA Y⎯⎯→  and 2kB Y⎯⎯→ , 
there must be 1 2k k≥ .  
 
Definition 14 Let ' ' '=< U,C D,V,f,V,f  >D ∪  be an 
expanded incomplete decision system and A, B ⊆ C , 

Y ⊆ D, that knowledge dependency 1kA Y⎯⎯→  has 

more strength than 2kB Y⎯⎯→  in degree l , denoted by  
( )lA B Y⎯⎯→ ,              (21) 

It means  1 2l k k= −   
' '

( , ) ( , )
'

( ) ( )

( )
x POS A Y x POS A Y

x U

f x f x

f x
∈ ∈

∈

−
=
∑ ∑

∑
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( ( , )) ( ( , ))

( )
F POS A Y F POS B Y

F U
−

=   

(22) 
What should be noticed is that the meaning of l is different 
from k in Definition 10. l=0 means that 1kA Y⎯⎯→  and 

2kB Y⎯⎯→  have the same degree of knowledge 

dependency, while l=1 means that A Y→  and B→Y . 

Corollary 2  Let ' ' ' =< U,C D,V,f,V,f  >D ∪  be an 
expanded incomplete decision system and A, B, G⊆C, 
Y⊆D, then we have the following relations:  
) ( )i A B A B Y⊇ ⇒ →              (23) 

1 2
1 2) ( ) ( ),k kii A BY A B GY k k⎯⎯→ ⇒ ⎯⎯→ ∪ ≥  (24) 

1 2
1 2) ( ) ( ),k kiii A BY A G BY k k⎯⎯→ ⇒ ∪ ⎯⎯→ ≤  (25) 

) ( ), ( ) ( )iv A B Y B G Y A G Y→ → ⇒ → .  (26) 
Proof  )i Following formula (20), we have  
POS(A,Y ) ⊇ POS(B,Y ) because A ⊇ B. That is, F 
(POS(A, Y ))≥ F (POS(B, Y ), which meets the  condition 
in Definition 13, so  we have ( )A B A B Y⊇ ⇒ → .   

)ii  According to formula (16), we have 
POS(B,Y) ⊆ POS(B ∪ G,Y). That is, 

( ( , )) ( ( , ))
( )

( ( , )) ( ( , ))
( )

F POS A Y F POS B Y
F U

F POS A Y F POS B G Y
F U

−

− ∪
≥

  

and then 1 2k k≥ .  

)iii  From formula (16), we have 
POS(B,Y) ⊆ POS(B ∪ G,Y). That is, 

( ( , )) ( ( , ))
( )

( ( , )) ( ( , ))
( )

F POS A Y F POS B Y
F U

F POS A G Y F POS B Y
F U

−

∪ −
≤

  

and then 1 2k k≤ . 

)iv From condition, F(POS(A, Y))≥  
F(POS(B,Y)) and F(POS(B,Y)) ≥ F (POS(G, Y)) imply  
F(POS(A,Y)) ≥ F(POS(C,Y)) and as a result we have 

( ),A B Y→  ( )B G Y→  ( )A G Y⇒ → .  
Clearly, formula (26) tells us that knowledge 

dependency (for a subset of decision) in expanded 
incomplete information system is of transitivity.  
 
 
 

4. Conclusions  
The expanded incomplete information system, in other 

words, incomplete information system with significance of 
objects is more suitable to meet the needs of actual 
researches. Owing to the information function f. being 
added in the information system, so many basic concepts 
of RST that mentioned in section 2 should be modified. 
Some properties studied in section 3 help us to understand 
the measurement about the knowledge dependency and the 
knowledge dependency for decision deeply and thoroughly, 
especially suitable to the dynamic changing of knowledge 
in the information and decision systems. In the future, 
other methods such as probability and conditional 
entropy[9] which can measure knowledge dependencies 
will be our keynotes.  
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