
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

312

Havrda and Charvat Entropy Based Genetic Algorithm for
Traveling Salesman Problem

Baljit Singh, Arjan Singh and Akashdeep

Department of Computer Science & Engineering, BBSB Engineering College,
 Fatehgarh Sahib-140407, Punjab, India

Abstract
 The application of evolutionary computation
techniques for the solution of combinatorial optimization
problems is now the major area of research. Genetic
algorithm (GA) is an evolutionary technique that uses
crossover and mutation operators to solve such problems
using a survival of fittest idea. The traveling salesman
problem (TSP) is used as a paradigm for a wide class of
problem having complexity due to the combinatorial
explosion. TSP has become a target for the GA community,
because it is probably the central problem in combinatorial
optimization and many new ideas in combinatorial
optimization have been tested on the TSP. When GA is
applied to TSP, frequently encounter a trap of falling into a
local optimal solution rather than a best approximate
solution. This paper proposes Havrda and Charvat entropy
based genetic algorithm for TSP to obtain a best
approximate solution in reasonable time. Havrda and
Charvat entropy is a measure of diversity of each population
into the process of GA to solve the above-mentioned
problem of falling into a local optimal solution. The TSP
with 10 nodes is used to evaluate the performance of the
proposed algorithm. In order to validate the results, TSPs
with 20 and 30 nodes are considered to examine the
versatility of the proposed algorithm. It has been observed
that the proposed algorithm works effectively for different
TSPs as compare to general GA. The results of this study
are quite promising.

Keywords: Genetic Algorithm, Traveling Salesman
Problem, Combinatorial Optimization, Mutation, Crossover,
Entropy.

1. Introduction
 Genetic Algorithms can be applied to optimization,
constraint satisfaction problems and non constraint
problems [1]. Problems of these types are traveling
salesman problem, job shop scheduling, space allocation
and map coloring, shortest path problem [2], linear
transportation problem[3] etc. A genetic algorithm is a
computer algorithm that searches for a good solution to a
problem among a large number of possible solutions [4].
Genetic algorithms are inspired by the evolution in nature.

These search algorithms are based on the mechanism of
natural selection and natural genetics [5]. Genetic
algorithms maintain a population of some feasible solutions
for a given problem. This population undergoes evolution in
a form of natural selection and natural genetics. In each
generation relatively “good” solutions reproduce and
relatively “bad” solutions die, to be replaced by offspring of
the good. To distinguish between solutions, an evolution or
objective function plays the role of the environment.
 In the traveling salesman problem, a salesman
seeks the shortest tour through given cities, with each city
visited exactly once before returning back to his home city.
Consider G be a complete graph with n vertices. Take
length (<u, v>) be the length of the edge <u, v>. A path
starting at a given vertex v0, going through every other
vertex exactly once and finally returning to v0 will be called
a tour. The length of a tour is the sum of lengths of the
edges on the path defining the tour. The problem is to find a
tour of minimum length. Such problem is called the
traveling salesman problem [6]. The importance of the TSP
is that it is representative of a large class of problems,
known as combinatorial optimization problems known as
NP-hard. To date, no one has found an algorithm that will
solve such problems in polynomial bounded time. The best-
known algorithms for NP-hard have a worst-case
complexity that is exponential in the number of inputs. To
produce an algorithm of polynomial complexity to solve an
NP-hard optimization, it will be necessary to relax the
meaning of solving. Relaxation is to remove the
requirement of the algorithm, which solves the optimization
problem, which must always generate an optimal solution.
This requirement will be replaced by the requirement that
the algorithm for optimization problem generates a feasible
solution with the value close to the optimal solution. The
algorithm that finds out such type of solutions is called
approximate algorithm. Genetic algorithm works as
approximate algorithm to solve NP-hard problems. Such
algorithm is used to find approximate solution that is close
to optimal for the TSP in reasonable time. Sometimes,
genetic algorithm falls into a local optimal solution in the
evolution process. This phenomenon occurs when the
diversity of a population at the later generation decrease.
Decrement of diversity population causes deterioration of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

313

effects of the crossover and mutation operations. So it is
necessary to measure and improve pollution diversity at
later stage for achieving global optimal solution of the
problem.
 In this paper, the concept of Havrda and Charvat
entropy [14] is introduced to measure and improve pollution
diversity in genetic algorithm for solving the above
mentioned problem of falling into a local optimal solution.
This proposed algorithm is verified on different TSPs with
10,20 and 30 nodes and compare the results of this
algorithm with general GA for obtaining a good solution in
mentioned time.

2. Genetic algorithm for TSP
 John Holland’s simple GA [7] inspired all
subsequent GAs and provided the basis for theoretical
analysis of GAs. For TSP solving, it is clear that the simple
GA is not suitable because bit-string encoding is not
suitable and simple genetic operators are not the most
effective or appropriate. For TSP solving, the genetic
algorithm used will have the following chromosome
representation, fitness function, selection technique and
genetic operators [8] :

2.1 Chromosome representation scheme

 Path representation scheme [9] is employed as a
suitable one for representing a schedule of the original
problem. A chromosome represents a tour of the salesman.
A chromosome Tk (k = 1, 2, …,m; m is the population size)
is represented as:
 Tk= (C1 C2 C3 ……….Cn)
Where Ci is the ith city to be visited, i = 1, 2,………, n.
Such type of representation is called permutation
representation (encoding).
 All the cities are sequentially numbered starting
from 1. The route between the cities is described with an
array. Each element of the array represents the number of
the city. The array represents the sequence in which the
cities are traversed to make up a tour. Each chromosome
must contain each and every city exactly once.
Example: Considering a TSP with 7 nodes, a tour:
 1→3→7→5→4→2→6
can be represented using the path representing as

(1 3 7 5 4 2 6)

Figure 1

 Shows the tour 1→3→7→5→4→2→6

For array representation of such tour, we declare an array
t[7].

1 3 7 5 4 2 6
t[0] t[1] t[2] t[3] t[4] t[5] t[6]

This chromosomes represents the tour stating from city 1 to
city 3, city 3 to city 7, city 7 to city 5, city 5 to city 4, city 4
to city 2, city 2 to city 6 and city 6 to city 1. Chromosome
describes the order of cities, in which the salesman will visit
them.

2.2 Fitness function
 The objective function, the function to be
optimized, provides the mechanism for evaluating the
fitness of each chromosome. The fitness function fit (Tk) (k
= 1, 2, …, m) is defined as:

 ()
() ()∑

=
+ +

= n

i
nii

k

CCdCCd
Tfit

1
11 ,,

1

Where d (Ci, Ci+1) is traveling distance from city Ci to Ci+1
 We use computer screen as platform to describe
TSP. Pixels are used to represent cities. If city Ci is
represented by pixel p(x, y) and city Ci+1 is represented by
pixel q(s, t), then d(Ci,Ci+1) is Euclidean distance between
two pixels p(x, y) and q(s, t) that is defined as :

 () () ()tysxCCd ii −+−=+1,

1

3

5

 7 6

4

2

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

314

 () ()22 tysx −+−=

Algorithm for fitness measure

Step 1: Traverse the cities according to the sequence in a
tour
Step 2: Calculate d (Ci, Ci+1) using equation

 () ()22 tysx −+−

 and find the total distance in the tour

 () ()1
1

1 ,,tan CCCCdcedisTotal n

n

i
ii += ∑

=
+

Step 3: Calculate the fitness of the chromosome in the
population

fit (Tk) = 1/Total distance

2.3 Selection Method
 In this algorithm, we use steady-state selection
mechanism [10]. In steady-state selection, only a few
individuals are replaced in each generation. Usually a small
number of the least fit individuals are replaced by offspring
resulting from crossover and mutation of the fittest
individuals.

2.4 Crossover operator
 A large number of crossover have been
developed for the permutation encoding such as partially
mapped crossover (PMX), order crossover (OX), cycle
crossover (CX), edge recombination (ERX) [11], edge
assembly crossover (EAX) [12] etc In this algorithm,
partially mapped crossover (PMX) mechanism is used.
Under PMX, two strings are aligned, and two crossing sites
are picked uniformly at random along the strings. These two
points define a matching section that is used to affect a
cross through ‘position-by-position’ exchange operations i.e.
each element between the two crossover points in the
alternate parent are mapped to the position held by this
element in the first parent.

Algorithm for PMX
Step 1: Two chromosomes as parent P1 and P2 are aligned,

and two crossover sites are picked uniformly at
random along the chromosomes.

Step 2: Each element between the two crossover points in
the alternate parent is mapped to the position held
by this element in the first parent.

Step 3: The remaining elements are inherited from the
parent without any conflict.

Step 4: If conflict occurs, then for the first child:

 (a) Find the position of the element, where conflict
occurs, in the second parent. Pick the element
from that position in the first parent and place it
that position where conflict occur in the first
child.

 (b) For the second child, parent roles reversed.

2.5 Mutation operator
 In this algorithm, swap mutation operator [13] is
used. In swap mutation operation, pick two alleles at
random and swap their positions. Mutation operator
reserves most of adjacency information and disrupts order
more.

Algorithm for SMO
Step 1: Randomly choose one tour and randomly select two

mutation points.
Step 2: Interchange the cities at these two points.

General genetic algorithm for solving TSP

Step 1: Initialize GA parameters

Set number of cities: n, population size: m,
crossover probability: pc, mutation probability:
pm, and total time: S.

 Let starting time s=0, maxfit = 0
 Generate m chromosomes (tours) randomly.
Step 2: Evaluate

Step 2.1: Calculate the fitness value of each
chromosome

 Step 2.2: if maxfit < max {fit (Tk)}

 bestsol = findbest {fit (Tk)}
 and
 maxfit = max {fit (Tk)}
 Endif
 Where max is a operator that find the maximum
fitness value of the chromosome from the population i.e.
find the minimum distance of the tour from all tours in the
population and findbest is a operator which takes the Tk
(chromosome or tour) having the largest fitness value i.e.
take the tour having minimum distance.
Step 3: Crossover

Perform the crossover PMX on chromosomes
selected with probability pc.
Step 4: Mutation
 Perform the swap mutation on chromosomes
selected with probability pm.
Step 5: Selection
 Select m chromosomes from the parents and
offspring for the next generation by steady state selection
method.
Step 6: Stop testing
 If s<S
 return to step 2

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

315

 else
 output bestsol
 Endif

3. Havrda and Charvat entropy based genetic

algorithm for TSP
 To avoid falling into a local optimal solution in
the evolution process, Havrda and Charvat entropy based
genetic algorithm is proposed which gives good solution in
reasonable time. Such algorithm can keep high diversity of
chromosome population at later stage

3.1 Havrda and Charvat entropy
 Let ()npppP,........., 21= be a
probability distribution, then Havrda and Charvat [14] gave
the measure

 () 01
1

1
1

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= ∑

=

α
α

α
n

j
jpPH

to measure its uncertainty or entropy.

3.2 Measure of chromosome population diversity
 The trap of local optimal solution is one of the
most important problems of GA. Such problem occurs when
all chromosomes in a population become similar. In this
case, crossover and mutation operators do not play
significant role. To escape from the trap of local optimal
solution, we need to maintain high diversity of the
population. In the proposed scheme, the diversity of
chromosome population is measured using Havrda and
Charvat entropy at later stage and then improves low
diversity population. Evaluation of the diversity of
chromosome population is done by obtaining the locus
diversity for each loca of all chromosomes in the population.
 The locus diversity Hj of the jth locus
(j=1 ,2,…….n) is defined as:

 01
1

1
>⎟

⎠

⎞
⎜
⎝

⎛
−

−
= ∑ α

α ε

α

Citiesi
jij pH

where

m

na
p ji

ji =

naji : the number of appearance of city i at locus j

Hj approaches to the maximum value z= () ()αα −−− 111m
when each city appears uniformly in the population,
conversely it approaches to the minimum value 0 when a
city appear in the same locus of all chromosomes in the
population.

Procedure to measure chromosome population diversity

count=0
 For j=1 to n
 Compute Hj
 If Hj < z/2
 count=count+1
 Endif
Endfor
If count> n/a
 The diversity of the chromosome population is too low

and need to improve it
 Else
 The diversity of the chromosome population is high and

no need to improve it
Endif

Where a is a control parameter. Larger the value of a ,

higher the probability of doing improvement and
vise versa.

3.3 Population diversity improvement

 Step1: select q chromosomes from the population
 q is a random integer number,
(m/4)<q<(m/2)
 Step2: Exchange genes among the loca which have

lower locus diversities in selected
chromosomes.

 Havrda and Charvat entropy based genetic

algorithm for TSP

Step 1: Initialize GA parameters

Set number of cities: n, population size: m,
crossover probability: pc, mutation probability:
pm, and total time: S.

 Let starting time s=0, maxfit = 0
 Iteration =0
 Generate m chromosomes (tours) randomly.
Step 2: Evaluate

Step 2.1: Calculate the fitness value of each
chromosome

 Step 2.2: if maxfit < max {fit (Tk)}

 bestsol = findbest {fit (Tk)}
 and
 maxfit = max {fit (Tk)}
 Endif
 Where max is a operator that find the maximum
fitness value of the chromosome from the population i.e.
find the minimum distance of the tour from all tours in the
population and findbest is a operator which takes the Tk
(chromosome or tour) having the largest fitness value i.e.
take the tour having minimum distance.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

316

Step 3: Crossover
Perform the crossover PMX on chromosomes

selected with probability pc.
Step 4: Mutation
 Perform the swap mutation on chromosomes
selected with probability pm.
Step 5: Selection
 Select m chromosomes from the parents and
offspring for the next generation by steady state selection
method.
Step 6: Measure of chromosome population diversity
 If iteration <ITER (value of ITER is set
experimentally)
 Goto step 8
 Else
 Evaluate chromosome population diversity
 Endif
Step 7: Population diversity improvement
 If population diversity is too low
 Improve it
 Endif

Step 8: Stop testing
 If s<S
 Iteration=iteration+1
 Goto to step 2
 Else
 output bestsol
 Endif

4. Experiment Results
 General genetic algorithm and Havrda and Charvat
entropy based genetic algorithm for TSP are implemented in
C++. TSPs with 10, 20 and 30 nodes are used to analyze
general genetic algorithm and Havrda and Charvat entropy
based genetic algorithm .The experiment has been made on
a PC (Pentium-4: 2GHz CPU, 256 RAM, OS: Windows
98,Turbo C++: version 3.0). Computer monitor is used as a
platform to perform experiment. Nodes (Cities) are
displayed graphically on the screen. Distance between two
nodes is Euclidean distance, which is defined as
 () ()22 tysxd −+−=
where, one node is at pixel (x, y) and other node is at pixel
(s, t). When program run, randomly nodes are created
according to the size of problem. We pick initial random
solution (tour) and calculate its cost. After a fixed time,
some iterations (generations) are done and we get a solution,
which is called best solution (tour). The quality of solution
is measured by comparing the cost of final obtained tour
after a fixed time with initial random tour. When number of
nodes = 20, the initial random tours according to the
population size are shown in Figure 2 and the best solution
is shown in Figure 3.

Figure 2: Initial Random Tours

Figure 3: The best tour after 30 seconds

 One important characteristics of the current literature on
GA is the solution quality has been considered as the only
performance measurement. So the performance of both
algorithms depends upon the quality of solution in a fixed
time. Such fixed time is CPU time. CPU time excludes I/O
processing time and is measured using the clock function
(library function available in C++) which returns the
number of CPU ticks from the beginning of the program.
The solution (tour) quality is measured from the cost
(length) of solution (tour). Lesser the cost of solution, better
the quality. To measure the quality of solution, initial
random tour is chosen first and then its cost is calculated.
After some fixed time, the solution is found and its cost is
calculated. The quality of solution is measured in term
of %age decrease between the cost of initial random
solution and final solution

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

317

100
cos

coscos% ×
−

=
tirs

tfstirsdecrease

 where costirs: cost of initial random solution
 costfs: cost of final solution

Experiment results that are shown in Table-1 are obtained
on a TSP of size n=10. In this case population size=8 and
CPU time=30 seconds. 15 independent trials (means run the
program 15 times) are performed. In each trial, cities are
randomly generated on the screen and initial random tour is
picked. The cost of this initial random tour is calculated.
After some iterations (generations), which are performed in
30 seconds, a final tour is obtained. The cost of this final
tour and the %age decrease between initial random tour and
final tour is calculated. Similarly experimental results which
are shown in table 2 and table 3 for TSPs of size=20 (set
population size=18 and time=35 seconds) and size=30(set
population size=18 and time=35 seconds) respectively.

Table-1: Performance of Havrda & Charvat entropy
based GA and general GA and when m=8, n=10 &

time=30 seconds
Trial No. %age decrease by

Havrda and
Charvat entropy

based GA

%age
decrease by
general GA

1 58.13 46.47
2 51.13 26.18
3 58.09 39.42
4 53.34 16.36
5 56.22 30.15
6 59.22 45.17
7 48.21 29.84
8 48.13 35.61
9 52.56 35.93
10 49.42 32.27
11 57.38 23.15
12 58.70 21.80
13 59.98 30.36
14 59.98 38.36
15 58.72 34.29

Table-2: Performance of Havrda &Charvat entropy

based GA and general GA when m=18, n=20 &
time=35 seconds

Trial No. %age decrease by
Havrda and

Charvat entropy
based GA

%age
decrease by
general GA

1 62.87 57.70
2 65.19 58.81
3 62.75 53.69
4 53.84 47.28
5 67.20 51.44
6 63.53 55.05
7 60.05 54.88
8 56.81 47.18
9 58.52 55.74

10 57.87 47.58
11 60.88 55.91
12 64.89 48.64
13 65.07 52.21
14 56.69 53.19
15 61.76 54.02

Table-3: Performance of Havrda & Charvat entropy
based GA and general GA and when m=28, n=30 &

time=40 seconds
Trial No. %age decrease by

Havrda and
Charvat entropy

based GA

%age
decrease by
general GA

1 64.23 46.56
2 60.88 46.60
3 54.95 43.02
4 60.98 35.22
5 59.95 38.39
6 62.57 36.49
7 60.12 41.82
8 57.00 45.31
9 54.30 29.40

10 60.54 37.41
11 57.55 47.36
12 65.24 33.51
13 56.53 48.15
14 63.33 37.38
15 52.93 47.07

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

318

 15 independent trials are carried out on Havrda
and Charvat entropy based GA and general GA, and the
statistical results are shown in table 4 .To show the quality
of result, the %age decrease between initial random tour and
final tour is listed. This table shows the best and
average %age decrease Hamilton distance (denoted by
BEST and AVG respectively). Furthermore, to show the
significant improvement of Havrda and Charvat entropy
based GA, statistical test is used that is defined as:

21

2121

nn
nn

S
XX

t
+

−
=

where 1X : mean of %age decrease Hamilton distance of
Havrda and Charvat entropy based GA

 2X : mean of %age decrease Hamilton distance of
general GA

 n1 : number of trials for Havrda and Charvat
entropy based GA

 n2 : number of trials for general GA
 S : combined standard deviation
S is defined as:

() ()
221

15

1

15

1

2
22

2
11

−+

−+−
=
∑ ∑
= =

nn

XXXX
S i i

ii

where X1i : %age decrease Hamilton distance in ith trial of

Havrda and Charvat entropy based GA
 X2i : %age decrease Hamilton distance in ith trial of

general GA

Table-4: Statistical comparison of Havrda &Charvat

entropy based GA and general GA
Proble
m size

Havrda
&Charvat
entropy based
GA

General GA t

BEST AVG BEST AVG

10
20
30

59.98
65.44
65.24

55.26
61.19
59.41

46.47
58.81
48.15

32.36
52.89
40.91

10.59
6.05
10.74

From the AVG values in Table-4, it can de concluded that
Havrda and Charvat entropy based GA can always obtain
better results than general GA. Secondly, from the BEST
values, it can be concluded that Havrda and Charvat entropy
based GA can obtain the best solution than that obtained by

general GA. Meanwhile, with test statistic t, the following
hypothesis can be tested:

 againstH 210 : μμ =

 21: μμα >H (To conclude that, in Havrda and Charvat

entropy based GA %age decrease
Hamilton distance is greater
than %age decrease Hamilton distance
in general GA)

Where 21 ,μμ denote the performance of Havrda and
Charvat entropy based GA and general GA.
 In these samples, degree of freedom is n1+n2-2
=28. As αH is one-sided, apply one-tailed test for
determine the rejection region at 5 percent level (take the
level of significance α =0.05) using t-distribution [15]
table for 28 degree of freedom: ()221 −+ nntα =1.0701.
From Table-4, it can be clearly concluded that Havrda and
Charvat entropy based GA perform better than the general
GA, since all test statistics t are greater than αt , where null
hypothesis is rejected.

5. Conclusions and Future works
 In this study, we proposed Havrda and Charvat entropy
based GA for TSP. This improves the population diversity
by introducing the concept of Havrda and Charvat entropy
to escape from the local optimal trap. The experiment
results show that the quality of solution of TSP obtained
from Havrda and Charvat entropy based GA is good as
compare to the solution obtained from general GA. Thus,
Havrda and Charvat entropy based GA find a good tour for
TSP from large search space in reasonable time.
 For future research works, we can apply Havrda and
Charvat entropy based GA to combinatorial optimization
problems such as scheduling of processors, graph
partitioning, optimal computer network design, and so on.

6. References
[1] R.Shankuriler, Kenyon R.Miller, “genetic algorithms /

neural network synergy for nonlinearly constrained
optimization problems”, IEEE, 1992.

[2] Mistuo Gen, Runwei Cheng and Dingwei Wang,
“genetic algorithms for solving shortest path problem”,
IEEE, 1997.

[3] G.A. Vignaux and Z.Michalewicz, “a genetic algorithm
for the linear transportation problem”, IEEE 1991.

[4] David E. Goldberg, “genetic algorithms in search,
optimization and machine learning”, Pearson Education,
2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

319

[5] M.Srinivas, Lalit M. Patnaik, “genetic algorithms: a
survey”, IEEE, 1994.

[6] Sartaj Sahni, “algorithms analysis and design”, Galgotia
Publications Pvt. Ltd., New Delhi, 1996.

[7] Melanie Mitchell, “ an introduction to genetic
algorithms”, PHI, 2002.

[8] Kalyanmoy Deb, “optimization for engineering design”,
PHI, 2003.

[9]Lawrence J. Schmitt, Mohammad M. Amini ,
“performance characteristics of alternative genetic
algorithm approaches to the traveling salesman problem
using path representation: an empirical study”,
European journal of operation research ,1998.

[10] S.Rajasekaran, G.A. Vijayalakshmi Pai, “neural
network, fuzzy logic and genetic algorithms”, PHI, 2003.

[11] H.D. Nguyen, I. Yoshihara, M. Yasunaga, “modified
edge recombination operators of genetic algorithms for
the traveling salesman problem”, IEEE, 2000.

[12]Yuichi Nagata , Shigenobu Kobayashi, “ an analysis of
edge assembly crossover for the traveling salesman
problem”, IEEE,1999.

[13] Wayne Pullan, “adapting the genetic algorithm to the
traveling salesman problem” , IEEE,2003.

[14] J.N. Kapur, “measures of information and their
applications”, Wiley Eastern Limited, New Delhi, 1994.

[15] C.R. Kothari, “research methodology”, Wishwa
prakashan,2002.

