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Abstract 
             The application of evolutionary computation 
techniques for the solution of combinatorial optimization 
problems is now the major area of research. Genetic 
algorithm (GA) is an evolutionary technique that uses 
crossover and mutation operators to solve such problems 
using a survival of fittest idea. The traveling salesman 
problem (TSP) is used as a paradigm for a wide class of 
problem having complexity due to the combinatorial 
explosion. TSP has become a target for the GA community, 
because it is probably the central problem in combinatorial 
optimization and many new ideas in combinatorial 
optimization have been tested on the TSP. When GA is 
applied to TSP, frequently encounter a trap of falling into a 
local optimal solution rather than a best approximate 
solution. This paper proposes Havrda and Charvat entropy 
based genetic algorithm for TSP to obtain a best 
approximate solution in reasonable time. Havrda and 
Charvat entropy is a measure of diversity of each population 
into the process of GA to solve the above-mentioned 
problem of falling into a local optimal solution. The TSP 
with 10 nodes is used to evaluate the performance of the 
proposed algorithm. In order to validate the results, TSPs 
with 20 and 30 nodes are considered to examine the 
versatility of the proposed algorithm. It has been observed 
that the proposed algorithm works effectively for different 
TSPs as compare to general GA. The results of this study 
are quite promising. 
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1. Introduction 
              Genetic Algorithms can be applied to optimization, 
constraint satisfaction problems and non constraint 
problems [1]. Problems of these types are traveling 
salesman problem, job shop scheduling, space allocation 
and map coloring, shortest path problem [2], linear 
transportation problem[3] etc. A genetic algorithm is a 
computer algorithm that searches for a good solution to a 
problem among a large number of possible solutions [4]. 
Genetic algorithms are inspired by the evolution in nature. 

These search algorithms are based on the mechanism of 
natural selection and natural genetics [5]. Genetic 
algorithms maintain a population of some feasible solutions 
for a given problem. This population undergoes evolution in 
a form of natural selection and natural genetics. In each 
generation relatively “good” solutions reproduce and 
relatively “bad” solutions die, to be replaced by offspring of 
the good. To distinguish between solutions, an evolution or 
objective function plays the role of the environment.       
               In the traveling salesman problem, a salesman 
seeks the shortest tour through given cities, with each city 
visited exactly once before returning back to his home city. 
Consider G be a complete graph with n vertices. Take 
length (<u, v>) be the length of the edge <u, v>. A path 
starting at a given vertex v0, going through every other 
vertex exactly once and finally returning to v0 will be called 
a tour. The length of a tour is the sum of lengths of the 
edges on the path defining the tour. The problem is to find a 
tour of minimum length. Such problem is called the 
traveling salesman problem [6]. The importance of the TSP 
is that it is representative of a large class of problems, 
known as combinatorial optimization problems known as 
NP-hard. To date, no one has found an algorithm that will 
solve such problems in polynomial bounded time. The best-
known algorithms for NP-hard have a worst-case 
complexity that is exponential in the number of inputs. To 
produce an algorithm of polynomial complexity to solve an 
NP-hard optimization, it will be necessary to relax the 
meaning of solving. Relaxation is to remove the 
requirement of the algorithm, which solves the optimization 
problem, which must always generate an optimal solution. 
This requirement will be replaced by the requirement that 
the algorithm for optimization problem generates a feasible 
solution with the value close to the optimal solution. The 
algorithm that finds out such type of solutions is called 
approximate algorithm. Genetic algorithm works as 
approximate algorithm to solve NP-hard problems. Such 
algorithm is used to find approximate solution that is close 
to optimal for the TSP in reasonable time. Sometimes, 
genetic algorithm falls into a local optimal solution in the 
evolution process. This phenomenon occurs when the 
diversity of a population at the later generation decrease. 
Decrement of diversity population causes deterioration of 
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effects of the crossover and mutation operations. So it is 
necessary to measure and improve pollution diversity at 
later stage for achieving global optimal solution of the 
problem. 
                In this paper, the concept of Havrda and Charvat 
entropy [14] is introduced to measure and improve pollution 
diversity in genetic algorithm for solving the above 
mentioned problem of falling into a local optimal solution. 
This proposed algorithm is verified on different TSPs with 
10,20 and 30 nodes and compare the results of this 
algorithm with general GA for obtaining a good solution in 
mentioned time. 
  
2. Genetic algorithm for TSP                                                                                                      
               John Holland’s simple GA [7] inspired all 
subsequent GAs and provided the basis for theoretical 
analysis of GAs. For TSP solving, it is clear that the simple 
GA is not suitable because bit-string encoding is not 
suitable and simple genetic operators are not the most 
effective or appropriate. For TSP solving, the genetic 
algorithm used will have the following chromosome 
representation, fitness function, selection technique and 
genetic operators [8] : 
 
 
2.1 Chromosome representation scheme 

   Path representation scheme [9] is employed as a 
suitable one for representing a schedule of the original 
problem. A chromosome represents a tour of the salesman. 
A chromosome Tk (k = 1, 2, …,m; m is the population size) 
is represented as: 
               Tk= (C1  C2  C3 ……….Cn) 
Where Ci is the ith city to be visited, i = 1, 2,………, n. 
Such type of representation is called permutation 
representation (encoding).  
    All the cities are sequentially numbered starting 
from 1. The route between the cities is described with an 
array. Each element of the array represents the number of 
the city. The array represents the sequence in which the 
cities are traversed to make up a tour. Each chromosome 
must contain each and every city exactly once.  
Example: Considering a TSP with 7 nodes, a tour:  
 1→3→7→5→4→2→6 
can be represented using the path representing as  
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Figure 1 

 Shows the tour 1→3→7→5→4→2→6 

For array representation of such tour, we declare an array 
t[7]. 
 

1 3 7 5 4 2 6 
t[0]     t[1]         t[2]       t[3]      t[4]       t[5]       t[6] 
 

This chromosomes represents the tour stating from city 1 to 
city 3, city 3 to city 7, city 7 to city 5, city 5 to city 4, city 4 
to city 2, city 2 to city 6 and city 6 to city 1. Chromosome 
describes the order of cities, in which the salesman will visit 
them.    
 
2.2 Fitness function  
                   The objective function, the function to be 
optimized, provides the mechanism for evaluating the 
fitness of each chromosome. The fitness function fit (Tk) (k 
= 1, 2, …, m) is defined as:  
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Where d (Ci, Ci+1) is traveling distance from city Ci to Ci+1 
 We use computer screen as platform to describe 
TSP. Pixels are used to represent cities. If city Ci is 
represented by pixel p(x, y) and city Ci+1 is represented by 
pixel q(s, t), then d(Ci,Ci+1) is Euclidean distance between 
two pixels p(x, y) and q(s, t) that is defined as : 
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                      ( ) ( )22 tysx −+−=  

Algorithm for fitness measure 

Step 1: Traverse the cities according to the sequence in a 
tour 
Step 2: Calculate d (Ci, Ci+1) using equation    
  
              ( ) ( )22 tysx −+−

  

 
   and find the total distance in the tour 
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Step 3: Calculate the fitness of the chromosome in the 
population  

 
fit (Tk) = 1/Total distance 

 
2.3 Selection Method  
                 In this algorithm, we use steady-state selection 
mechanism [10]. In steady-state selection, only a few 
individuals are replaced in each generation. Usually a small 
number of the least fit individuals are replaced by offspring 
resulting from crossover and mutation of the fittest 
individuals.  
 
2.4 Crossover operator 
                 A large number of crossover have been 
developed for the permutation encoding such as partially 
mapped crossover (PMX), order crossover (OX), cycle 
crossover (CX), edge recombination (ERX) [11], edge 
assembly crossover (EAX) [12] etc In this algorithm, 
partially mapped crossover (PMX) mechanism is used. 
Under PMX, two strings are aligned, and two crossing sites 
are picked uniformly at random along the strings. These two 
points define a matching section that is used to affect a 
cross through ‘position-by-position’ exchange operations i.e. 
each element between the two crossover points in the 
alternate parent are mapped to the position held by this 
element in the first parent. 
 
Algorithm for PMX 
Step 1: Two chromosomes as parent P1 and P2 are aligned, 

and two   crossover    sites are picked uniformly at 
random along the chromosomes.  

Step 2: Each element between the two crossover points in 
the alternate parent is mapped to the position held 
by this element in the first parent. 

Step 3: The remaining elements are inherited from the 
parent without any conflict.  

Step 4: If conflict occurs, then for the first child: 

            (a) Find the position of the element, where conflict 
occurs, in the second parent. Pick the element 
from that position in the first parent and place it 
that position where conflict occur in the first 
child. 

           (b) For the second child, parent roles reversed.  
 
2.5 Mutation operator  
               In this algorithm, swap mutation operator [13] is 
used. In swap mutation operation, pick two alleles at 
random and swap their positions. Mutation operator 
reserves most of adjacency information and disrupts order 
more.                              
 
Algorithm for SMO 
Step 1: Randomly choose one tour and randomly select two 

mutation points.  
Step 2: Interchange the cities at these two points.  
 
General genetic algorithm for solving TSP 
 
Step 1: Initialize GA parameters 

Set number of cities: n, population size: m, 
crossover       probability: pc, mutation probability: 
pm, and total time: S.  

 Let starting time s=0,  maxfit = 0   
                Generate m chromosomes (tours) randomly.  
Step 2: Evaluate  

Step 2.1: Calculate the fitness value of each 
chromosome  

                Step 2.2: if maxfit < max {fit (Tk)} 
                            
                        bestsol = findbest {fit (Tk)} 
                                        and 
                        maxfit = max {fit (Tk)} 
                                Endif 
 Where max is a operator that find the maximum 
fitness value of the chromosome from the population i.e. 
find the minimum distance of the tour from all tours in the 
population and findbest is a operator which takes the Tk 
(chromosome or tour) having the largest fitness value i.e. 
take the tour having minimum distance. 
Step 3: Crossover 

Perform the crossover PMX on chromosomes 
selected with probability pc.  
Step 4: Mutation   
 Perform the swap mutation on chromosomes 
selected with probability pm.  
Step 5: Selection  
 Select m chromosomes from the parents and 
offspring for the next generation by steady state selection 
method.  
Step 6: Stop testing  
 If s<S  
     return to step 2 
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                else 
                     output bestsol  
                Endif 
          
3. Havrda and Charvat entropy based genetic 

algorithm for TSP    
                  To avoid falling into a local optimal solution in 
the evolution process, Havrda and Charvat entropy based 
genetic algorithm is proposed which gives good solution in 
reasonable time. Such algorithm can keep high diversity of 
chromosome population at later stage 
 
3.1 Havrda and Charvat entropy 
                    Let ( )npppP .........,........., 21=  be a 
probability distribution, then Havrda and Charvat [14] gave 
the measure 
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to measure its uncertainty or entropy. 
 
3.2 Measure of chromosome population diversity 
               The trap of local optimal solution is one of the 
most important problems of GA. Such problem occurs when 
all chromosomes in a population become similar. In this 
case, crossover and mutation operators do not play 
significant role. To escape from the trap of local optimal 
solution, we need to maintain high diversity of the 
population. In the proposed scheme, the diversity of 
chromosome population is measured using Havrda and 
Charvat entropy at later stage and then improves low 
diversity population. Evaluation of the diversity of 
chromosome population is done by obtaining the locus 
diversity for each loca of all chromosomes in the population.    
              The locus diversity Hj of the jth locus 
(j=1 ,2,…….n) is defined as: 
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Hj  approaches to the maximum value z= ( ) ( )αα −−− 111m  
when each city appears uniformly in the population, 
conversely it approaches to the minimum value 0 when a 
city appear in the same locus of all chromosomes in the 
population. 
 

Procedure to measure chromosome population diversity 
 
count=0 
 For j=1 to n 
     Compute Hj 
          If  Hj < z/2 
            count=count+1 
          Endif 
Endfor 
If count> n/a 
     The diversity of the chromosome population is too low 

and need   to improve it  
 Else  
      The diversity of the chromosome population is high and 

no need   to improve it  
Endif 
 
Where a is a control parameter. Larger the value of a , 

higher the   probability of doing improvement and 
vise versa.     

 
3.3 Population diversity improvement 
 
          Step1: select q chromosomes from the population 
                        q is a random integer number, 
(m/4)<q<(m/2) 
          Step2: Exchange genes among the loca which have 

lower      locus diversities in selected 
chromosomes. 

 
       Havrda and Charvat entropy based genetic 

algorithm for TSP    
 
Step 1: Initialize GA parameters 

Set number of cities: n, population size: m, 
crossover       probability: pc, mutation probability: 
pm, and total time: S.  

 Let starting time s=0,  maxfit = 0   
                        Iteration =0 
                Generate m chromosomes (tours) randomly.  
Step 2: Evaluate  

Step 2.1: Calculate the fitness value of each 
chromosome  

                Step 2.2: if maxfit < max {fit (Tk)} 
                             
                   bestsol = findbest {fit (Tk)} 
                                 and 
                   maxfit = max {fit (Tk)} 
                               Endif 
 Where max is a operator that find the maximum 
fitness value of the chromosome from the population i.e. 
find the minimum distance of the tour from all tours in the 
population and findbest is a operator which takes the Tk 
(chromosome or tour) having the largest fitness value i.e. 
take the tour having minimum distance. 
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Step 3: Crossover 
Perform the crossover PMX on chromosomes 

selected with probability pc.  
Step 4: Mutation   
 Perform the swap mutation on chromosomes 
selected with probability pm.  
Step 5: Selection  
 Select m chromosomes from the parents and 
offspring for the next generation by steady state selection 
method.  
Step 6: Measure of chromosome population diversity 
             If iteration <ITER ( value of ITER is set 
experimentally)   
                  Goto step 8 
             Else 
                   Evaluate chromosome population diversity 
             Endif   
Step 7: Population diversity improvement 
              If  population diversity is too low  
                      Improve it  
              Endif  
  
Step 8: Stop testing  
 If s<S  
                   Iteration=iteration+1 
     Goto  to step 2 
                Else 
                     output bestsol  
                Endif  
 
4. Experiment Results 
        General genetic algorithm and Havrda and Charvat 
entropy based genetic algorithm for TSP are implemented in 
C++. TSPs with 10, 20 and 30 nodes are used to analyze 
general genetic algorithm and Havrda and Charvat entropy 
based genetic algorithm .The experiment has been made on 
a PC ( Pentium-4: 2GHz CPU, 256 RAM, OS: Windows 
98,Turbo C++: version 3.0). Computer monitor is used as a 
platform to perform experiment. Nodes (Cities) are 
displayed graphically on the screen. Distance between two 
nodes is Euclidean distance, which is defined as 
                ( ) ( )22 tysxd −+−=  
where, one node is at pixel (x, y) and other node is at pixel 
(s, t). When program run, randomly nodes are created 
according to the size of problem. We pick initial random 
solution (tour) and calculate its cost. After a fixed time, 
some iterations (generations) are done and we get a solution, 
which is called best solution (tour). The quality of solution 
is measured by comparing the cost of final obtained tour 
after a fixed time with initial random tour. When number of 
nodes = 20, the initial random tours according to the 
population size are shown in Figure 2 and the best solution 
is shown in Figure 3.    
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2: Initial Random Tours 

      

     
 

Figure 3: The best tour after 30 seconds 
 
 One important characteristics of the current literature on 
GA is the solution quality has been considered as the only 
performance measurement. So the performance of both 
algorithms depends upon the quality of solution in a fixed 
time. Such fixed time is CPU time. CPU time excludes I/O 
processing time and is measured using the clock function 
(library function available in C++) which returns the 
number of CPU ticks from the beginning of the program. 
The solution (tour) quality is measured from the cost 
(length) of solution (tour). Lesser the cost of solution, better 
the quality. To measure the quality of solution, initial 
random tour is chosen first and then its cost is calculated. 
After some fixed time, the solution is found and its cost is 
calculated. The quality of solution is measured in term 
of %age decrease between the cost of initial random 
solution and final solution 
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coscos% ×
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  where    costirs: cost of initial random solution 
              costfs: cost of final solution 
 
Experiment results that are shown in Table-1 are obtained 
on a TSP of size n=10. In this case population size=8 and 
CPU time=30 seconds. 15 independent trials (means run the 
program 15 times) are performed. In each trial, cities are 
randomly generated on the screen and initial random tour is 
picked. The cost of this initial random tour is calculated. 
After some iterations (generations), which are performed in 
30 seconds, a final tour is obtained. The cost of this final 
tour and the %age decrease between initial random tour and 
final tour is calculated. Similarly experimental results which 
are shown in table 2 and table 3 for TSPs of size=20 (set 
population size=18 and time=35 seconds) and size=30(set 
population size=18 and time=35 seconds) respectively. 
 
 

Table-1: Performance of Havrda & Charvat entropy 
based GA and general GA and when m=8, n=10 & 

time=30 seconds 
Trial No. %age decrease by  

Havrda and 
Charvat entropy 

based GA 

%age 
decrease by 
general GA 

1 58.13 46.47 
2 51.13 26.18 
3 58.09 39.42 
4 53.34 16.36 
5 56.22 30.15 
6 59.22 45.17 
7 48.21 29.84 
8 48.13 35.61 
9 52.56 35.93 
10 49.42 32.27 
11 57.38 23.15 
12 58.70 21.80 
13 59.98 30.36 
14 59.98 38.36 
15 58.72 34.29 

 
                              
 
 
 
 
 
                                                                       

      
Table-2: Performance of Havrda &Charvat entropy 

based GA and general GA  when m=18, n=20 & 
time=35 seconds 

Trial No. %age decrease by  
Havrda and 

Charvat entropy 
based GA 

%age 
decrease by 
general GA 

1 62.87 57.70 
2 65.19 58.81 
3 62.75 53.69 
4 53.84 47.28 
5 67.20 51.44 
6 63.53 55.05 
7 60.05 54.88 
8 56.81 47.18 
9 58.52 55.74 

10 57.87 47.58 
11 60.88 55.91 
12 64.89 48.64 
13 65.07 52.21 
14 56.69 53.19 
15 61.76 54.02 

 
 
 

Table-3: Performance of Havrda & Charvat entropy 
based GA and general GA and when m=28, n=30 & 

time=40 seconds 
Trial No. %age decrease by  

Havrda and 
Charvat entropy 

based GA 

%age 
decrease by 
general GA 

1 64.23 46.56 
2 60.88 46.60 
3 54.95 43.02 
4 60.98 35.22 
5 59.95 38.39 
6 62.57 36.49 
7 60.12 41.82 
8 57.00 45.31 
9 54.30 29.40 

10 60.54 37.41 
11 57.55 47.36 
12 65.24 33.51 
13 56.53 48.15 
14 63.33 37.38 
15 52.93 47.07 
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         15 independent trials are carried out on Havrda 
and Charvat entropy based GA and general GA, and the 
statistical results are shown in table 4 .To show the quality 
of result, the %age decrease between initial random tour and 
final tour is listed. This table shows the best and 
average %age decrease Hamilton distance (denoted by 
BEST and AVG respectively). Furthermore, to show the 
significant improvement of Havrda and Charvat entropy 
based GA, statistical test is used that is defined as:     
 

             
21
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where 1X : mean of %age decrease Hamilton distance of 
Havrda and Charvat entropy based GA  

         2X : mean of %age decrease Hamilton distance of 
general GA  

           n1 : number of trials for  Havrda and Charvat 
entropy based GA  

         n2 : number of trials for  general GA  
         S  : combined standard deviation  
S is defined as: 
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where X1i : %age decrease Hamilton distance in ith trial of 

Havrda and Charvat entropy based GA  
           X2i : %age decrease Hamilton distance in ith trial of 

general GA  
 
 
Table-4: Statistical comparison of Havrda &Charvat 

entropy based GA and general GA  
Proble
m size 

Havrda 
&Charvat 
entropy based 
GA 

General GA t 

BEST AVG BEST AVG   
 

10 
20 
30 

 

 
59.98 
65.44 
65.24 

 
55.26 
61.19 
59.41 

 
46.47 
58.81 
48.15 

 
32.36 
52.89 
40.91 

 
10.59
6.05 
10.74

 
From the AVG values in Table-4, it can de concluded that 
Havrda and Charvat entropy based GA can always obtain 
better results than general GA. Secondly, from the BEST 
values, it can be concluded that Havrda and Charvat entropy 
based GA can obtain the best solution than that obtained by 

general GA. Meanwhile, with test statistic t, the following 
hypothesis can be tested: 
    
 againstH 210 : μμ =  
 
 21: μμα >H   ( To conclude that, in Havrda and Charvat 

entropy based GA  %age decrease 
Hamilton   distance is greater 
than %age decrease Hamilton   distance 
in general GA) 

Where 21 ,μμ denote the performance of Havrda and 
Charvat entropy based GA and general GA. 
             In these samples, degree of freedom is n1+n2-2 
=28. As αH  is one-sided, apply one-tailed test for 
determine the rejection region at 5 percent level (take the 
level of significance α =0.05) using t-distribution [15] 
table for 28 degree of freedom: ( )221 −+ nntα =1.0701. 
From Table-4, it can be clearly concluded that Havrda and 
Charvat entropy based GA perform better than the general 
GA, since all test statistics t are greater than αt , where null 
hypothesis is rejected. 
 
5. Conclusions and Future works 
        In this study, we proposed Havrda and Charvat entropy 
based GA for TSP. This improves the population diversity 
by introducing the concept of Havrda and Charvat entropy 
to escape from the local optimal trap. The experiment 
results show that the quality of solution of TSP obtained 
from Havrda and Charvat entropy based GA is good as 
compare to the solution obtained from general GA. Thus, 
Havrda and Charvat entropy based GA find a good tour for 
TSP from large search space in reasonable time. 
           For future research works, we can apply Havrda and 
Charvat entropy based GA to combinatorial optimization 
problems such as scheduling of processors, graph 
partitioning, optimal computer network design, and so on. 
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